
Learning Discriminative and Shareable Features

for Scene Classification

Zhen Zuo1, Gang Wang1,2, Bing Shuai1, Lifan Zhao1,
Qingxiong Yang3, and Xudong Jiang1

1 Nanyang Technological University, Singapore
2 Advanced Digital Sciences Center, Sinapore

3 City University of Hong Kong

Abstract. In this paper, we propose to learn a discriminative and share-
able feature transformation filter bank to transform local image patches
(represented as raw pixel values) into features for scene image classi-
fication. The learned filters are expected to: (1) encode common visual
patterns of a flexible number of categories; (2) encode discriminative and
class-specific information. For each category, a subset of the filters are
activated in a data-adaptive manner, meanwhile sharing of filters among
different categories is also allowed. Discriminative power of the filter
bank is further enhanced by enforcing the features from the same cate-
gory to be close to each other in the feature space, while features from
different categories to be far away from each other. The experimental
results on three challenging scene image classification datasets indicate
that our features can achieve very promising performance. Furthermore,
our features also show great complementary effect to the state-of-the-art
ConvNets feature.

Keywords: Feature learning, Discriminant analysis, Information shar-
ing, Scene Classificsion.

1 Introduction

Generating robust, informative, and compact local features has been considered
as one of the most critical factors for good performance in computer vision. In
the last decade, numerous hand-crafted features, such as SIFT [1] and HOG [2],
have ruled the local image representation area. Recently, a number of papers [3–9]
have been published to learn feature representations from pixel values directly,
aiming to extract data-adaptive features which are more suitable. However, most
of these works operate in an unsupervised way without considering the class
label information. We argue that extracting discriminative features is important
for classification, as information on local patches is usually redundant, features
which are discriminative for classification should be extracted.

In this paper, we develop a method to learn transformation filter bank to
transform pixel values of local image patches into features, which is called Dis-
criminative and Shareable Feature Learning (DSFL). As shown in Fig. 1, we
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Fig. 1. Illustration of DSFL. w1, ..., wD represent the filters in the global filter bank
W . For each class, we force it to activate a small subset of filters to learn class-specific
patterns, and different classes can share the same filters to learn shareable patterns.
Finally, the feature of a image patch xi can be represented as fi = F (Wxi). (Best
viewed in color).

aim to learn an over-complete filter bank, which is able to cover the variances
of images from different classes, meanwhile keeping the shareable correlation
among different classes and discriminative power of each category. To build such
a global filter bank, an intuitive way is to independently learn a filter bank for
each class, and concatenate them together. However, if filters learned from dif-
ferent classes are not shared, the number of filters will increase linearly with the
number of categories, which is not desirable for local feature representation. To
learn a more compact global filter bank, we force each category to only activate
a subset of the global filters during the learning procedure. Beyond reducing
feature dimensions, sharing filters can also lead to more robust features. Images
belonging to different classes do share some information in common (e.g. in scene
classification, both ‘computer room’ and ‘office’ contain ‘computer’ and ‘desk’).
The amount of information shared depends on the similarity between different
categories. Hence, we allow filters to be shared, meaning that the same filters can
be activated by a number of categories. We introduce a binary selection variable
vector to adaptively select what filters to share, and among what categories.

To improve the discrimination power, we introduce a discriminative term to
force features from the same category to be close and features from different
categories to be far away. (e.g. patches corresponding to bookshelf in ‘office’
can hardly be found in ‘computer room’). However, not all the patches from
the same categories are close, as they are very diverse. Hence, we introduce a
method to select exemplars from each category, and a feature should be similar
to a subgroup of the exemplars from the same category. Furthermore, not all
the local patches from different classes should be forced to be separable, thus,
we relax the discriminative term to allow sharing similar patches across different
classes, and focus on separating the less similar patches from different classes.

We tested our method on three widely used scene image classification datasets:
Scene 15, UIUC Sports, and MIT 67 Indoor. The experimental results show that
our features can outperform most of the existing ones. By combining our feature
with the ConvNets [3,10] features (supervised pretrained on ImageNet [11]), we
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can achieve state-of-the-art results on Scene 15, UIUC Sports and MIT 67 Indoor
with a classification accuracy of 92.81% , 96.78%, and 76.23% respectively.

2 Related Works

Our work focuses on learning local feature descriptors. Hand-crafted features
including SIFT [1], HOG [2], GIST [12], and LBP [13] were popular used in this
area. However, even though they are very powerful, they can hardly capture
any information other than what have been defined by prior knowledge. In this
paper, we aim to learn a data adaptive local feature representation.

Recently, directly learning features from image pixel values [4–9,14–18] emerges
as a hot research topic in computer vision because it is able to learn data adap-
tive features. And many of them have achieved superior performance on many
important computer vision tasks such as digital image recognition [6], and ac-
tion recognition [17]. However, most existing feature learning works adopt unsu-
pervised learning methods to learn filters for feature extraction. Different from
them, we argue that discriminative information can be critical for classification
and discriminative patterns can be learned. We experimentally show that our dis-
criminative feature learning works better than unsupervised feature learning on
scene datasets by encoding the shareable and discriminative class correlation clues
into feature representation.While in the supervised feature learning line, the Con-
vNets [3] is a very deep feature learning structure (5 convolutional layers, 2 fully
connected layers, and 1 softmax layer), it focuses on progressively learning multi-
levels of visual patterns. When pre-trained on ImageNet, it is the state-of-the-art
feature extractor on many tasks [10,19,20]. In contrast, our DSFL focuses on en-
coding the shareable and discriminative correlation among different classes into
each layer’s feature transformation. In the Section 4, we will show that our DSFL
learns significant complementary information to this powerful feature, and com-
bines with which, we can update the current state-of-the-art on all of the three
scene classification datasets.

There are also some related papers trying to extract discriminative repre-
sentations from images. For example, [21–24] learn discriminative dictionaries
to encode local image features. Another line of work [25–28] that represents
scene images in terms of weakly-supervised mined discriminative parts gained
increasingly popularity and success. The basic idea is to build a discriminative
framework, and use it to mine a set of representative and distinct parts (multi-
scale patches) for every class. Afterwards, images can be represented with the
max pooled responses of such mid-level patterns. Different from these works,
we focus on discriminatively learning filters to transform local image patches
into features, and allowing sharing local feature transformation filters between
different categories. To the best of our knowledge, this hasn’t been done before.
Furthermore, in [29, 30], object part filters at the middle level are shared to
represent a large number of object categories for object detection. Compared
to them, our training image patches don’t have strong supervised labels except
image-level class labels, so we develop an exemplar selection scheme and a near-
est neighbour based maximum margin method to make it more robust to noise.
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3 Discriminative and Shareable Feature Learning

In this section, we first describe the three components of our Discriminative
and Shareable Feature Learning (DSFL) framework. Then we will provide an
alternating optimization strategy to solve this problem.

3.1 DSFL Learning Components

We aim to learn features that can preserve the information of the original data,
be shareable and be discriminative. To achieve these goals, we have three learning
components in the DSFL learning framework. We write x ∈ R

Do as a vector of
raw pixel values of an image patch. Given a number of x from different categories,
we aim to learn a feature transformation filter bankW ∈ R

D×D0 (each row repre-
sents one filter, and there are D filters). By multiplying W with x, and applying
an activation function F (·), we expect to generate feature fi = F (Wxi), which
is discriminative and as compact as possible. For this purpose, W should be
learned to encode information which is discriminative among classes and only
has a small number of rows (filters). In our learning framework, we force each
class to activate a subset of filters in W to learn class-specific patterns. And we
allow different classes to share filters to reduce the number of filters.

The Global Reconstruction Term. To ensure that the feature transforma-
tion matrix W ∈ R

D×D0 can preserve the information hidden in the original
data, we utilize a global reconstruction term, which aims to minimize the error
between the reconstructed data and the original data. The cost function is shown
as following:

Lu =

N∑

i=1

Lu (xi,W ) + λ1

N∑

i=1

‖fi‖1

where Lu (xi,W ) =
∥∥xi −WTWxi

∥∥2
2

and fi = F (Wxi) , F (·) = abs (·)

(1)

where N is the total number of training patches. Lu is the empirical loss function
with respect to global filter bank W and unlabelled training patch xi. W

TWxi

denotes the reconstructed data of xi. This auto-encoder [4, 31] style reconstruc-
tion cost penalization term can not only prevent W from degeneration, but also
allow W to be over-complete. The term ‖fi‖1 is used to enforce the sparsity of
the learned feature fi. Following [5, 17], we set F (·) = abs (·). Then the sparse
term ‖fi‖1 degenerates to summation of all the dimensions of fi.

Shareable Constraint Term. Equation 1 can only learn a generative W with-
out encoding any class-specific information. A method to overcome this limita-
tion is to force a subset of filters to only respond to a specific class. Thus, we
propose a constraint term to ensure that only a subset of the filters will be acti-
vated by one class, while the same filters can potentially be activated by multiple
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classes. For each class c, we write αc ∈ R
D as a binary vector to indicate the

selection status of rows of W . If αc
d = 1, d = 1, ..., D, then the d-th row of W

is activated. We use Ac = diag (αc) for representation convenience. The cost of
our shareable constraint term of class c is formulated as following:

Lc
sha =

Nc∑

j=1

Lc
sha

(
xc
j , A

cW
)
+ λ2‖αc‖0

s.t. αc
d ∈ {0, 1} , d = 1, ..., D

where Lc
sha

(
xc
j , A

cW
)
=
∥∥∥xc

j − (AcW )
T
(AcW )xc

j

∥∥∥
2

2

(2)

where Nc is the number of training patches from class c, and C is the total num-
ber of classes. For the shareable term, similar to Lu, Lc

sha is the reconstruction
cost function with respect to the filter bank subset αcW and training patch xc

j

from class c. We apply l0 norm on αc to force each class to activate a small
number of rows. Consequently, for the d-th element in αc, if it is only set to 1
for class c, then it means the d-th row of W will only be activated and learned
with training patches from class c. If the d-th element is set to 1 for class c1 and
class c2, then the d-th row of W is a shareable filter, which should be activated
and learned with training data from class c1 and c2. When αc is updated in each
iteration, the corresponding training data for each filter will also be updated.

Discriminative Regularization Term. To enhance the discriminative power
of feature descriptors, we further introduce a discriminative term based on the
assumption that discriminative features should be close to the features from the
same category, and be far away from the features from different categories in
the feature space. In the image level scenario [32, 33], labels are consistent with
the targets. However, in patch level scenario, local features from the same class
are inherently diverse, and directly forcing all of them to be similar to each
other is not suitable. Similar to [34–36], we adopt the nearest neighbour based
‘patch-to-class’ distance metric to enforce discrimination. For a training patch
xc
j , its positive nearest neighbour patch set from the same category is denoted

as Γ
(
xc
j

)
; and its negative nearest neighbour patch set from the categories other

than c is denoted as Γ̄
(
xc
j

)
. The k-th nearest neighbour in the two sets are

represented as Γk

(
xc
j

)
and Γ̄k

(
xc
j

)
respectively.

In the class-specific feature space of class c (transformed by AcW ), the fea-
ture representation of the k-th positive and negative nearest neighbour patches
sets are denoted as Γk

(
f c
j

)
= F (

AcWΓk

(
xc
j

))
and Γ̄k

(
f c
j

)
= F (

AcWΓ̄k

(
xc
j

))

correspondingly. We aim to minimize the distance between each feature to its
positive nearest neighbours, while maximize the distance between each feature to
its negative nearest neighbours. Furthermore, according to the maximum margin
theory in learning, we should focus on the ‘hard’ training samples. Hence, we
develop a ‘hinge-loss’ like objective function to learn AcW :
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Lc
dis =

Nc∑

j=1

max
(
δ +Dis

(
xc
j , Γ

(
xc
j

))−Dis
(
xc
j , Γ̄

(
xc
j

))
, 0
)

where Dis
(
xc
j , Γ

(
xc
j

))
=

1

K

K∑

k=1

∥∥f c
j − Γk

(
f c
j

)∥∥2
2

Dis
(
xc
j , Γ̄

(
xc
j

))
=

1

K

K∑

k=1

∥∥f c
j − Γ̄k

(
f c
j

)∥∥2
2

(3)

in which, δ is the margin, we set it to 1 in our experiments, and K is the number
of nearest neighbours in the nearest neighbour patch sets, we fixed it as 5.

However, there are two limitations of the above nearest neighbour based learn-
ing method. Firstly, as mentioned in [36], the local patch level nearest neighbour
search is likely to be dominated by noisy feature patches. Thus, some of the
searched nearest neighbours in Equation 3 might not carry discriminative pat-
terns, consequently the performance will be suppressed. Secondly, it is expensive
to search nearest neighbours from the whole patch set. A straight forward solu-
tion is applying clustering and using the cluster centroids as the exemplars [36].
However, conventional clustering methods may consider non-informative domi-
nant patterns as inliers of clusters, while treating informative class-specific pat-
terns as outliers. Thus, we propose a method to select exemplars.

Inspired by the image-level exemplar selection method in [37], we propose an
exemplar selection methods that is suitable for patch-level patterns. We firstly
define the ‘coverage set’ of a patch x. Given X as the original global patch set,
which is combined with patches densely extracted from all the training images.
For each patch x ∈ X , we search its M nearest neighbours from X , and define
these M patches as the ‘coverage set’ of x. Then for each class, we define their
exemplar patches as the ones that cannot be easily covered by patches from
many classes other than c. To reach this goal, we design a ‘patch-to-database’
(P2D) distance to measure the discriminative power of a patch xc

i from class c:

P2D
(
xc
j

)
=

1

C − 1

∑

c̄ �=c

1

Nc̄

Nc̄∑

n=1

∥∥xc
j − xc̄

n

∥∥
2

(4)

where xc̄
n is a patch from classes c̄, c̄ �= c, Nc̄ is the number of patches from

classes c̄ whose coverage sets contain xc
j , and C is the number of classes. If

P2D
(
xc
j

)
is small, it means that xc

j represents a common pattern among many
classes, and should be removed, otherwise, it should be kept as a discriminative
exemplar. For each class, we rank the patches based on their P2D (·) distances
descendingly, and select the top 10% of them as discriminative exemplars. The
selecting procedures are shown in Algorithm 1. The exemplars will replace the
original patch set, and be used to search for the nearest neighbours in Equation
3. Specifically, for each training patch xc

j , we search its nearest neighbours set

Γ
(
xc
j

)
from the exemplars in class c, and search its negative nearest neighbours

set Γ̄
(
xc
j

)
from the exemplars belonging to classes other than c.
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Algorithm 1. Discriminative Exemplar Selection

Input:
X: Global patch set
Xc: Patch set of class c
ε: Threshold for selecting discriminative exemplars
M : Number of patches in each coverage set
Output:
Ec: Exemplars of class c

1. Calculate the coverage set of each patch from X
for c = 1 to C do

2. For each patch from Xc, calculate its P2D distance based on Equation 4
3. Descendingly rank the patches from Xc based on their P2D distances.
4. Select the top ε percent ranked patches as the exemplars Ec

end
return Ec

3.2 DSFL Objective Function and Optimization

Combining the global unsupervised reconstruction term Lu, the shareable con-
straint term Lsha and the discriminative regularization Ldis, we write the objec-
tive function of DSFL as:

min
W,αc

Lu + γ

C∑

c=1

Lc
sha+η

C∑

c=1

Lc
dis

where Lu =

N∑

i=1

Lu (xi,W ) + λ1

N∑

i=1

‖fi‖1

Lc
sha =

Nc∑

j=1

Lc
sha

(
xc
j , A

cW
)
+ λ2‖αc‖0

Lc
dis =

Nc∑

j=1

max
(
δ +Dis

(
xc
j , Γ

(
xc
j

))−Dis
(
xc
j , Γ̄

(
xc
j

))
, 0
)

s.t. αc
d ∈ {0, 1} , d = 1, ..., D

(5)

In Equation 5, when αc is fixed, it is convex in W , and when W is fixed, a
suboptimal αc can also be obtained. However, the function cannot be jointly
optimized. Thus, we adopt an alternating optimization strategy to iteratively
update W and each αc.

– Fix αc to update W :

min
W

N∑

i=1

Lu (xi,W ) + λ1

N∑

i=1

‖fi‖1 + γ
C∑

c=1

Nc∑

j=1

Lc
sha

(
xc
j , A

cW
)
+ η

C∑

c=1

Lc
dis (6)
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Algorithm 2. DSFL: Discriminative and Shareable Feature Learning

Input:
xi: Unlabelled training patch
xc
j : Image-level labelled training patch from class c

D: Number of filters in the global filter bank
γ, η, λ1, λ2: Trade off parameters for controlling weight of shareable term,
discriminative term, and sparsity
Output:
W : Global filter bank (feature transformation matrix)

1. Initialize αc = 0T

2. Set W as a random number D ×D0 matrix
3. Learn W with only unsupervised term Lu as the initialized W to the DSFL
4. Select exemplars for each class based on Equation 4
5. Search the positive and negative nearest neighbour exemplar sets for each xc

j

while W and αc not converge do
for c = 1 to C do

6. Fix W and solve Equation 7 by updating αc

end
7. Fix αc, c = 1, ..., C and solve Equation 6 by updating W

end
return W

As mentioned in Section 3.1, ‖fi‖1 degenerates to summation of different
dimensions in fi, thus, Equation 6 can be easily optimized by unconstrained
solvers, e.g. L-BFGS.

– Fix W to update αc:

min
αc

Nc∑

j=1

Lc
sha

(
xc
j , A

cW
)
+ λ2‖αc‖0 + ηLc

dis (7)

For the optimization of αc, we update one αc each time for the c-th class,
and fix αc̄ (c̄ �= c). To get such binary filter selection indicators, we apply a
greedy optimization method. We first set all the elements in αc as 0, then we
search for the single best filter that can minimize Equation 7, and activate that
filter by setting the corresponding element in αc to 1. Afterwards, based on the
previously activated filters, we search for next filter that can further minimize
the cost function. After several rounds of searching, when the loss Lc

sha is smaller
than a threshold, the optimization of αc terminates, we stop updating αc, and
send the renewed αc as the input to Equation 6 again to further optimize W .

The learning algorithm and initialization procedure are shown in Algorithm
2. The alternative optimization terminated until the values of both W and αc

converge (takes about 5 rounds).
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3.3 Hierarchical Extension of DSFL

DSFL can be easily stacked to extract features at multiple levels. Features at
lower level may represent edges and lines, while features at higher level may
represent object parts, etc. In our implementation, we stack another layer on
the top of the basic DSFL structure1. In the first layer DSFL network, 400
dimensional features are learned from 16x16 pixel raw images patches, which
are densely extracted from the original/resized images with step size 4. In the
second layer, another 400 dimensional feature is learned based on first layer
features. To get the inputs for the second layer, we concatenate the first layer
features densely extracted within 32x32 image areas. We further process PCA to
reduce the dimension to 300 and send it to the second layer. Finally, we combine
the features learned from both layers as our DSFL feature.

4 Experiments and Analysis

4.1 Datasets and Experiment Settings

We tested our DSFL method on three widely used scene image classification
datasets: Scene 15 [38], UIUC Sports [39], and MIT 67 Indoor [40]. In order
to make fair comparisons with other types of features, we only used gray scale
information for all these datasets.

We tested on all the three datasets with the most standard settings: on Scene
15, we randomly selected 100 images per category for training, and the rest for
testing; on UIUC sports, we randomly selected 70 images per class as training
images, and 60 images per class as testing images; on MIT 67 Indoor, we fol-
lowed the original splits in [40], which used around 80 training images and 20
testing images for each category. For UIUC sports and MIT 67 Indoor, since
the resolution of the original images are too high for learning local features effi-
ciently, we resized them to have maximum 300 pixels along the smaller axis. For
Scene 15 and UIUC sports, we randomly split the training and testing dataset
for 5 times. The average accuracy numbers over these 5 rounds are reported
for comparison. For all the local features, we densely extracted features from
six scales with rescaling factors 2−i/2, i = 0, 1, ..., 5. Specifically, RICA [4] and
DSFL features were extracted with step size 3 for the first layer, and step size 6
for the second layer; SIFT features [1] were extracted from 16x16 patches with
stride 3; HOG2x2 features [41] were extracted based on cells of size 8x8, and the
stride is 1 cell; LBP features [13] were extracted from cells of size 8x8.

For each training image, we randomly picked 400 patches (200 for MIT In-
door), and used them as training data to learn W . In the objective function
Equation 5, the value of margin δ was fixed as 1, and we sequentially learnt
the weight parameters λ1, λ2, γ and η by cross validation. In Algorithm 1, the
threshold of exemplar selection ε was set to 10%, and the coverage set size M

1 Adding more layers can slightly improve the performance, but the computational
cost is high, thus we apply two layer DSFL to reach a compromise.
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Table 1. Comparison results between our feature and other features. (DeCAF is the
feature learned by the deep ConvNets pre-trained on ImageNet).

Mehods Scene 15 UIUC Sports MIT 67 Indoor

GIST [12] 73.28% - 22.00%
CENTRIST [42] 83.10% 78.50% 36.90%
SIFT [1] 82.06% 85.12% 45.86%
HOG2x2 [41] 81.58% 83.96% 43.76%
LBP [13] 82.95% 80.04% 39.25%

RICA [4] 79.85% 82.14% 47.89%
DSFL 84.19% 86.45% 52.24%

DeCAF [3,10] 87.99% 93.96% 58.52%
SIFT [1] + DeCAF [3,10] 89.90% 95.05% 70.51%
DSFL + DeCAF [3,10] 92.81% 96.78% 76.23%

was set to 10. In Algorithm 2, the maximum number of iterations of updating
W and αc was set to 5.

We tested our local features based on the LLC framework [43], which used
locality-constrained linear coding to encode local features, and performed max-
pooling and linear-SVM afterwards. The size of the codebook was fixed as 2000,
and each image was divided into 1x1, 2x2, and 4x4 spatial pooling regions [38].
We’ve also tested on other frameworks with different coding strategies (e.g. vec-
tor quantization) and pooling schemes (e.g. average pooling), our DSFL can
consistently outperform traditional local features.

4.2 Comparison with Other Features

As shown in Table 1, we compared our DSFL with popular features which have
shown good performance on scene images classification: SIFT [1], GIST [12],
CENTRIST [42], and HoG [2, 44], LBP [13]. Our DSFL feature is able to out-
perform all of the hand crafted features. We also compared our DSFL with
RICA [4], which is the baseline unsupervised feature learning method without
encoding any discriminative or class-specific information. As shown in Table 1,
our method consistently and significantly outperforms RICA. We’ve also tested
the performance of only using the features learned by the first partially con-
nected layer, and for the three datasets, the results were 82.61%, 83.92%, and
47.16%, which are less powerful than the two layer features.

In Table 1, the DeCAF feature [10] is an implementation of the 7 layer Con-
vNets [3]. Here we used the 6-th layer DeCAF feature. According to [10, 20],
empirically the 6-th layer feature will lead to better results than the 7-th layer
feature. On the three datasets, we also tested with the 7-th layer feature, and
got 87.35%, 93.44%, and 58.27% respectively. Thus, the 6-th layer DeCAF fea-
tures were used for evaluation. Although this pre-trained DeCAF feature is very
powerful, yet directly comparing our feature with it is not fair. We do not uti-
lize the huge amount of image data from ImageNet [11], we haven’t used color
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auditorium

DSFL: 75.00% DeCAF: 100.00%

bowling

corridor

winecellar

DSFL: 66.70% DeCAF: 38.89%

DSFL: 57.14% DeCAF: 47.62%

DSFL: 23.81% DeCAF: 76.19%

Fig. 2. Comparison results on MIT 67 Indoor. The first two rows show the two cate-
gories on which DSFL works better than DeCAF, the last two rows show the classes
that are better represented by DeCAF. DSFL and DeCAF are complimentary. Com-
bining them can result in better results for scene classification.

information, and we focus on local feature representation rather than global
image representation. The ConvNets was trained on the ImageNet with a large
amount of object images. We suppose the features learned from these two frame-
works should be complementary. In Fig. 2, we tested on MIT 67 to show the
complementary effect. In the first two rows, our DSFL worked better than De-
CAF, and we show the testing images which were correctly classified by DSFL,
but wrongly classified by DeCAF. In the last two rows, DeCAF outperformed
DSFL, and we show the testing images which our DSFL failed to recognize but
DeCAF could. To quantitatively analyze the complementation effect, we com-
bined our DSFL with the DeCAF feature. As shown in the last row of Table
1, we are able to get much better performance than purely using the power-
ful ConvNets features and produce the state-of-the-art performance. We also
tested the combination of SIFT and DeCAF. The accuracy numbers are not as
good as those of the combination of DSFL and DeCAF, which indicates that
our DSFL can learn more effective complementary information by considering
data adaptive information. The traditional hand-crafted features such as SIFT
usually extracted ‘garbor-like’ features, most of which can be learned by the
lower levels in ConvNets. However, ConvNets adopts backpropagation for opti-
mization based on huge training datasets, the bottom layers of the network were
usually not well trained. In contrast, we explicitly used supervised information
to train bottom layer features. Our method is more suitable for relatively small
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Table 2. Comparison Results of our method and other popular methods on Scene 15,
UIUC sports, and MIT 67 Indoor

Mehods Scene 15 UIUC Sports MIT 67 Indoor

ROI + GIST [40] - - 26.50%
DPM [45] - - 30.40%
Object Bank [46] 80.90% 76.30% 37.60%
Discriminative Patches [47] - - 38.10%
LDC [36] 80.30% - 43.53%
macrofeatures [48] 84.30% - -
Visual Concepts + 3 combined features [25] 83.40% 84.80% 46.40%
MMDL + 5 combined features [49] 86.35% 88.47% 50.15%
Discriminative Part Detector [27] 86.00% 86.40% 51.40%
LScSPM [50] 89.78% 85.27% -
IFV [28] - - 60.77%
MLrep + IFV [26] - - 66.87%

DSFL + DeCAF [3,10] 92.81% 96.78% 76.23%

datasets, as evidenced by the experimental results, while previous attempts on
trying to train a CNN classifier on small datasets usually failed. So these two
lines of works are expected to be complimentary.

We also compared our method (combining DSFL and DeCAF) with other
methods applied on these three scene datasets. As shown in Table 2, our method
achieved the highest accuracy on all of the three datasets. Note that Visual
Elements [26] utilized numerous patches extracted at scales ranging from 80x80
to the full image size, and the patches were represented by standard HOG [2] plus
a 8x8 color image in L*a*b space, and very high dimensional IFV [28] features.
While MMDL [49] combined 5 types of features on 3 scales. Furthermore, most of
the previous works were based on hand-crafted local feature descriptions, which
means that our learned DSFL features can be combined with them to achieve
better results. For example, LScSPM [50] focused on coding, which can be used
to encode our DSFL features.

4.3 Analysis of the Effect of Different Components

In this section, we aim to compare our shareable and discriminative learning
method to the baseline without encoding such information, which is equivalent
to the RICA method in [4]. We first show the visualization of the filters learned
from UIUC Sports in Fig. 3(a) and Fig. 3(b). We can see that our DSFL is able
to capture more sharply localized patterns, corresponding to more class-specific
visual information.

Effect of Learning Shareable Filter Bank. We tested the DSFL with or
without the feature sharing terms, and got the intermediate results in Table
3. The first row of the table shows the baseline unsupervised RICA features
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(a) RICA (b) DSFL

Fig. 3. Visualization of the filters learned by RICA and our DSFL on the UIUC Sports
dataset

learned by solving Equation 1. In the second row, Lu + Lsha corresponds to
features learned with Equation 2. The improvement in accuracy shows that
learning shareable features is effective for classification. However, if we removed
the global reconstruction error term Lu and only kept the shareable terms, as
shown in the third row, the performance dramatically dropped.

Effect of Discriminative Regularization and Exemplar Selection. Ac-
cording to the fourth row and the fifth row of Table 3, we can find that if we
didn’t select exemplars for learning, we could not achieve much improvement
because noisy training examples might overwhelm the useful discriminative pat-
terns. However, once we learned using selected exemplars, our method could
achieve significant improvement in classification accuracy. This shows that dis-
criminative exemplar selection is critical in our learning framework.

Furthermore, it’s obvious that only using 10% of the whole patch set dramat-
ically increased the efficiency of nearest neighbour search afterwards. Thus, our
exemplar selection method is both effective and efficient.

Table 3. Analysis of the effect of each components

Mehods Scene 15 UIUC Sports MIT 67 Indoor

Lu (RICA [4]) 79.85% 82.14% 47.89%

Lu + Lsha 82.01% 83.67% 49.70%
Lsha 72.69% 72.52% 24.12%
Lu + Lsha + Ldis (without Exemplar) 82.50% 83.43% 51.28%

Lu + Lsha + Ldis (Full DSFL) 84.19% 86.45% 52.24%

Effect of the Size of Filter Bank. To further analyze the influence caused by
the size of filters, we test on Scene 15 dataset with 128, 256, 512, 1024, and 2048
filters for the DSFL. The results are shown in Fig. 4. At the beginning, when
the size is small, the learned features are relatively weak. When the number of
filters increases, and W becomes over-complete, the performance is substantially
improved. Thus, learning over-complete filter bank does help to obtain better
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Fig. 4. Results of varying number of filters in Scene 15

feature representation because the resulting filter bank captures more informa-
tion. However, when the number of filters further increases, the performance
does not change much, while the learning process will be extremely slow. In our
experiment, we use 400 as a compromise between efficiency and accuracy.

5 Conclusion

In this paper, we propose a weakly supervised feature learning method, called
DSFL, to learn a discriminative and shareable filter bank to transform local
image patches into features. In our DSFL method, we learn a flexible number of
shared filters to represent common patterns shared across different categories.
To enhance the discriminative power, we force the features from the same class
to be locally similar, while features from different classes to be separable. We test
our method on three widely used scene image classification benchmark datasets,
and the results consistently show that our learned features can outperform most
of the existing features. By combining our features with the ConvNets features
pre-trained on ImageNet, we can greatly enhance the representation, and achieve
state-of-the-art scene classification results. In the future, we will integrate our
learning method with deeper learning structure to extract multi-level features
for more effective classification.
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