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Abstract. Representing images and videos with Symmetric Positive
Definite (SPD) matrices and considering the Riemannian geometry of
the resulting space has proven beneficial for many recognition tasks. Un-
fortunately, computation on the Riemannian manifold of SPD matrices
–especially of high-dimensional ones– comes at a high cost that lim-
its the applicability of existing techniques. In this paper we introduce
an approach that lets us handle high-dimensional SPD matrices by con-
structing a lower-dimensional, more discriminative SPDmanifold. To this
end, we model the mapping from the high-dimensional SPD manifold to
the low-dimensional one with an orthonormal projection. In particular,
we search for a projection that yields a low-dimensional manifold with
maximum discriminative power encoded via an affinity-weighted simi-
larity measure based on metrics on the manifold. Learning can then be
expressed as an optimization problem on a Grassmann manifold. Our
evaluation on several classification tasks shows that our approach leads
to a significant accuracy gain over state-of-the-art methods.

Keywords: Riemannian geometry, SPD manifold, Grassmann mani-
fold, dimensionality reduction, visual recognition.

1 Introduction

This paper introduces an approach to embedding the Riemannian structure
of Symmetric Positive Definite (SPD) matrices into a lower-dimensional, more
discriminative Riemannian manifold. SPD matrices are becoming increasingly
pervasive in various domains. For instance, diffusion tensors naturally arise
in medical imaging [16]. In computer vision, SPD matrices have been shown
to provide powerful representations for images and videos via region covari-
ances [20]. Such representations have been successfully employed to categorize
textures [20,6], pedestrians [21], faces [15,6], actions and gestures [18].

SPD matrices can be thought of as an extension of positive numbers and form
the interior of the positive semidefinite cone. It is possible to directly employ the
Frobenius norm as a similarity measure between SPD matrices, hence analyzing
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Fig. 1. Conceptual comparison of typical dimensionality reduction methods on the
manifold [4,22] and our approach. Top row (existing techniques): The original
manifold (a) is first flattened either via tangent space computation or by Hilbert space
embedding. The flattened manifold (b) is then mapped to a lower-dimensional, option-
ally more discriminative space (c). The distortion incurred by the initial flattening may
typically make this mapping more complicated. Bottom row (our approach): The
original manifold (d) is directly transformed to a lower-dimensional, more discrimina-
tive manifold (e).

problems involving such matrices via Euclidean geometry. However, as several
studies have shown, undesirable phenomena may occur when Euclidean geome-
try is utilized to manipulate SPD matrices [16,21,8]. One example of this is the
swelling effect that occurs in diffusion tensor imaging (DTI), where a matrix
represents the covariance of the local Brownian motion of water molecules [16]:
When considering Euclidean geometry to interpolate between two diffusion ten-
sors, the determinant of the intermediate matrices may become strictly larger
than the determinants of both original matrices, which is a physically unaccept-
able behavior. In [16], a Riemannian structure for SPD matrices was introduced
to overcome the drawbacks of the Euclidean representation. This Riemannian
structure is induced by the Affine Invariant Riemmanian Metric (AIRM), and is
referred to as the SPD or tensor manifold.

As shown in several studies [16,21,6,8], accounting for the geometry of SPD
manifolds can have a highly beneficial impact. However, it also leads to challenges
in developing effective and efficient inference methods. The main trends in ana-
lyzing SPDmanifolds are to either locally flatten them via tangent space approxi-
mations [21,18], or embed them in higher-dimensional Euclidean spaces [6,2,8]. In
both cases, the computational cost of the resulting methods increases
dramatically with the dimension of the SPD matrices. As a consequence, very
low-dimensional SPD matrices are typically employed (e.g., region covariance
descriptors obtained from a few low-dimensional features), with the exception
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of a few studies where medium-size matrices were used [15,6]. While the ma-
trices obtained from low-dimensional features have proven sufficient for specific
problems, they are bound to be less powerful and discriminative than the high-
dimensional features typically used in computer vision.

To overcome this limitation, here, we introduce an approach that lets us han-
dle high-dimensional SPD matrices. In particular, from a high-dimensional SPD
manifold, we construct a lower-dimensional, more discriminative SPD manifold.
While some manifold-based dimensionality reduction techniques have been pro-
posed [4,22], as illustrated in Fig. 1, they typically yield a Euclidean representa-
tion of the data and rely on flattening the manifold, which incurs distortions. In
contrast, our approach directly works on the original manifold and exploits its
geometry to learn a representation that (i) still benefits from useful properties of
SPD manifolds, and (ii) can be used in conjunction with existing manifold-based
recognition techniques to make them more practical and effective.

More specifically, given training SPD matrices, we search for a projection
from their high-dimensional SPD manifold to a low-dimensional one such that
the resulting representation maximizes an affinity-weighted similarity between
pairs of matrices. In particular, we exploit the class labels to define an affinity
measure, and employ either the AIRM, or the Stein divergence [19] to encode
the similarity between two SPD matrices. Due to the affine invariance property
of the AIRM and of the Stein divergence, any full rank projection would yield
an equivalent representation. This allows us, without loss of generality, to model
the projection with an orthonormal matrix, and thus express learning as an
unconstrained optimization problem on a Grassmann manifold, which can be
effectively optimized using a conjugate gradient method on the manifold.

We demonstrate the benefits of our approach on several tasks where the
data can be represented with high-dimensional SPD matrices. In particular,
our method outperforms state-of-the-art techniques on three classification tasks:
image-based material categorization and face recognition, and action recognition
from 3D motion capture sequences. A Matlab implementation of our algorithm
is available from the first author’s webpage.

2 Related Work

We now discuss in more details the three techniques that also tackle dimension-
ality reduction of manifold-valued data.

Principal Geodesic Analysis (PGA) was introduced in [4] as a generalization of
Principal Component Analysis (PCA) to Riemannian manifolds. PGA identifies
the tangent space whose corresponding subspace maximizes the variability of the
data on the manifold. PGA, however, is equivalent to flattening the Riemannian
manifold by taking its tangent space at the Karcher, or Fréchet, mean of the data.
As such, it does not fully exploit the structure of the manifold. Furthermore,
PGA, as PCA, cannot exploit the availability of class labels, and may therefore
be sub-optimal for classification.

In [22], the Covariance Discriminative Learning (CDL) algorithm was pro-
posed to embed the SPD manifold into a Euclidean space. In contrast to PGA,
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CDL utilizes class labels to learn a discriminative subspace using Partial Least
Squares (PLS) or Linear Discriminant Analysis (LDA). However, CDL relies on
mapping the SPD manifold to the space of symmetric matrices via the principal
matrix logarithm. While this embedding has some nice properties (e.g., diffeo-
morphism), it can also be thought of as embedding the SPD manifold into its
tangent space at the identity matrix. Therefore, although supervised, CDL also
exploits data potentially distorted by the use of a single tangent space, as PGA.

Finally, in [5], several Nonlinear Dimensionality Reduction techniques were
extended to their Riemannian counterparts. This was achieved by introducing
various Riemannian geometry concepts, such as Karcher mean, tangent spaces
and geodesics, in Locally Linear Embedding (LLE), Hessian LLE and Lapla-
cian Eigenmaps. The resulting algorithms were applied to several unsupervised
clustering tasks. Although these methods can, in principle, be employed for su-
pervised classification, they are limited to the transductive setting since they do
not define any parametric mapping to the low-dimensional space.

In this paper, we learn a mapping from a high-dimensional SPD manifold to
a lower-dimensional one without relying on tangent space approximations of the
manifold. Our approach therefore accounts for the structure of the manifold and
can simultaneously exploit class label information. The resulting mapping lets
us effectively handle high-dimensional SPD matrices for classification purposes.
Furthermore, by mapping to another SPD manifold, our approach can serve
as a pre-processing step to other Riemannian-based approaches, such as the
manifold sparse coding of [6], thus making them practical to work with more
realistic, high-dimensional features. Note that, while our formulation is inspired
from graph embedding methods in Euclidean spaces, e.g., [24], here we work
with data lying on more challenging non-linear manifolds.

To the best of our knowledge, this is the first work that shows how a high-
dimensional SPD manifold can be transformed into another SPD manifold with
lower intrinsic dimension. Note that a related idea, but with a very different
approach, was introduced in [9] to decompose high-dimensional spheres into
submanifolds of decreasing dimensionality.

3 Riemannian Geometry of SPD Manifolds

In this section, we discuss some notions of geometry of SPD manifolds. Through-
out this paper we will use the following notation: Sn

++ is the space of real n× n
SPD matrices; In ∈ R

n×n is the identity matrix; GL(n) is the general linear
group, i.e., the group of real invertible n× n matrices.

Definition 1. A real and symmetric matrix X ∈ R
n×n is said to be SPD if

vTXv is positive for any non-zero v ∈ R
n.

The space of n × n SPD matrices is obviously not a vector space since mul-
tiplying an SPD matrix by a negative scalar results in a matrix which does
not belong to Sn

++. Instead, Sn
++ forms the interior of a convex cone in the n2-

dimensional Euclidean space. The Sn
++ space is mostly studied when endowed
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with a Riemannian metric and thus forms a Riemannian manifold [16]. A natural
way to measure closeness on a manifold is by considering the geodesic distance
between two points on the manifold. Such a distance is defined as the length of
the shortest curve connecting the two points. The shortest curves are known as
geodesics and are analogous to straight lines in R

n. The Affine Invariant Rie-
mannian Metric (AIRM) is probably the most popular Riemannian structure
for analyzing SPD matrices [16]. Let P be a point on Sn

++. The AIRM for two
tangent vectors v,w ∈ TPSn

++ is defined as

〈v,w〉P := 〈P−1/2vP−1/2,P−1/2wP−1/2〉 = Tr
(
P−1vP−1w

)
. (1)

Definition 2. The geodesic distance δg : Sn
++ × Sn

++ → [0,∞) induced by the
AIRM is defined as

δ2g(X ,Y ) = ‖ log(X−1/2Y X−1/2)‖2F , (2)

where log(·) is the matrix principal logarithm.

More recently, Sra introduced the Stein metric on SPD manifolds [19]:

Definition 3. The Stein metric δS : Sn
++ × Sn

++ → [0,∞) is a symmetric type
of Bregman divergence and is defined as

δ2S(X,Y ) = ln det

(
X + Y

2

)
− 1

2
ln det(XY ) . (3)

The Stein metric shows several similarities to the geodesic induced by the
AIRM while being less expensive to compute [3]. In addition to the properties
studied by Sra [19], we provide the following important theorem which relates
the length of curves under the two metrics.

Theorem 1. The length of any given curve is the same under δg and δs up to
a scale of 2

√
2.

Proof. Given in supplementary material. 	

One of the motivations for projecting a higher-dimensional SPD manifold to

a lower-dimensional one is to preserve the properties of δ2g and δ2S [16,19]. One
important such property, especially in computer vision, is affine invariance [16].

Property 1 (Affine invariance). For any M ∈ GL(n),

δ2g(X ,Y ) = δ2g(MXMT ,MY MT ),

δ2S(X ,Y ) = δ2S(MXMT ,MY MT ).

This property postulates that the metric between two SPD matrices is un-
affected by the action of the affine group. In the specific case where the SPD
matrices are region covariance descriptors [20], this implies that the distance
between two descriptors will remain unchanged after an affine transformation
of the image features, such as a change of illumination when using RGB values.
Note that, in addition to this specific implication, we will also exploit the affine
invariance property for a different purpose when deriving our learning algorithm
in the next section.
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4 Geometry-Aware Dimensionality Reduction

We now describe our approach to learning an embedding of high-dimensional
SPD matrices to a more discriminative, low-dimensional SPD manifold. More
specifically, given a matrix X ∈ Sn

++, we seek to learn the parameters W ∈
R

n×m, m < n, of a generic mapping f : Sn
++ × R

n×m → Sm
++, which we define

as
f(X,W ) = W TXW . (4)

Clearly, if Sn
++ � X � 0 and W has full rank, Sm

++ � W TXW � 0.
Given a set of SPDmatricesX = {X1, · · · ,Xp}, where eachmatrixXi ∈ Sn

++,
our goal is to find a transformation W such that the resulting low-dimensional
SPD manifold preserves some interesting structure of the original data. Here, we
encode this structure via an undirected graph defined by a real symmetric
affinity matrix A ∈ R

p×p. The element Aij of this matrix measures some notion
of affinity between matricesXi andXj , and may be negative. We will discuss the
affinity matrix in more details in Section 4.2.

Given A, we search for an embedding such that the affinity between pairs of
SPD matrices is reflected by a measure of similarity on the low-dimensional SPD
manifold. In this paper, we propose to make use of either the AIRM or the Stein
metric to encode (dis)similarities between SPD matrices. For each pair (i, j) of
training samples, this lets us write a cost function of the form

Jij(W ;Xi,Xj) = Aijδ
2
(
W TXiW ,W TXjW

)
, (5)

where δ is either δg or δS . These pairwise costs can then be grouped together in
a global empirical cost function

L(W ) =
∑

i,j

Jij(W ;Xi,Xj), (6)

which we seek to minimize w.r.t. W .
To avoid degeneracies and ensure that the resulting embedding forms a valid

SPD manifold, i.e., W TXW � 0, ∀X ∈ Sn
++, we need W to have full rank.

Here, we enforce this requirement by imposing orthonormality constraints onW ,
i.e., W TW = Im. Note that, with either the AIRM or the Stein divergence, this
entails no loss of generality. Indeed, any full rank matrix W̃ can be expressed as
MW , with W an orthonormal matrix and M ∈ GL(n). The affine invariance
property of the AIRM and of the Stein metric therefore guarantees that

Jij(W̃ ;Xi,Xj) = Jij(MW ;Xi,Xj) = Jij(W ;Xi,Xj) .

Finally, learning can be expressed as the minimization problem

W ∗ = argmin
W∈Rn×m

∑

i,j

Aijδ
2
(
W TXiW ,W TXjW

)
s.t. W TW = Im . (7)

In the next section, we describe an effective way of solving (7) via optimization
on a (different) Riemannian manifold.
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4.1 Optimization on Grassmann Manifolds

Recent advances in optimization methods formulate problems with orthogonal-
ity constraints as optimization problems on Stiefel or Grassmann manifolds [1].
More specifically, the geometrically correct setting for the minimization prob-
lem minL(W ) with the orthogonality constraint W TW = Im is, in general,
on a Stiefel manifold. However, if the cost function L(W ) possesses the prop-
erty that for any rotation matrix R (i.e., R ∈ SO(m),RRT = RTR = Im),
L(W ) = L(WR), then the problem is on a Grassmann manifold.

Since both the AIRM and the Stein metric are affine invariant, we have

J (X i,Xj ,W ) = J (Xi,Xj ,WR),

and thus L(W ) = L(WR), which therefore identifies (7) as an (unconstrained)
optimization problem on the Grassmann manifold G(m,n).

In particular, here, we utilize a nonlinear Conjugate Gradient (CG) method
on Grassmann manifolds to minimize (7). A brief description of the steps of this
algorithm is provided in supplementary material. For a more detailed treatment,
we refer the reader to [1]. As for now, we just confine ourselves to saying that
nonlinear CG on Grassmann manifolds requires the n × m Jacobian matrix of
L(W ) w.r.t. W . For the Stein metric, this Jacobian matrix can be obtained by
noting that

DW ln det
(
W TXW

)
= 2XW

(
W TXW

)−1
, (8)

which lets us identify the Jacobian of the Stein divergence as

DW δ2S
(
W TXiW ,W TXjW

)
= (Xi +Xj)W (W T Xi +Xj

2
W )−1

−XiW (W TXiW )−1 −XjW (W TXjW )−1 .

For the AIRM, we can exploit the fact that Tr (log(X)) = ln det
(
X

)
, ∀X ∈ Sn

++.
We can then derive the Jacobian by utilizing Eq. 8, which yields

DW

(
δ
2
g

(
W

T
XiW ,W

T
XjW

) )
= DW

(∥∥∥ log
((

W
T
XjW

)−1/2
W

T
XiW

(
W

T
XjW

)−1/2
)∥∥∥2

F

)

= 2DW

{
Tr

(
log

((
W

T
XjW

)−1/2
W

T
XiW

(
W

T
XjW

)−1/2
))}

·

· log
((

W
T
XjW

)−1/2
W

T
XiW

(
W

T
XjW

)−1/2
)

= 2DW

(
ln det

(
W

T
XiW

(
W

T
XjW

)−1
))

log
((

W
T
XjW

)−1/2
W

T
XiW

(
W

T
XjW

)−1/2
)

= 4
(
XiW (W

T
XiW )

−1 − XjW (W
T
XjW )

−1
)
log

((
W

T
XjW

)−1/2
W

T
XiW

(
W

T
XjW

)−1/2
)
.

The pseudo-code for our SPD manifold learning (SPD-ML) method is given in
Algorithm 1, where ∇WL(W ) denotes the gradient on the manifold obtained
from the JacobianDWL(W ), and τ(H ,W 0,W 1) denotes the parallel transport
of tangent vector H from W 0 to W 1 (see supplementary material for details).

4.2 Designing the Affinity Matrix

Different criteria can be employed to build the affinity matrix A. In this work,
we focus on classification problems on Sn

++ and therefore exploit class labels to
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Algorithm 1. SPD Manifold Learning (SPD-ML)

Input:
A set of SPD matrices {Xi}pi=1, Xi ∈ Sn

++

The corresponding labels {yi}pi=1, yi ∈ {1, 2, · · · , C}
The dimensionality m of the induced manifold

Output:
The mapping W ∈ G(m,n)

Generate A using (9), (10) and (11)
W old ← In×m (i.e., the truncated identity matrix)
W ←W old

Hold ← 0
repeat

H ← −∇WL(W ) + ητ (Hold,W old,W )
Line search along the geodesic γ(t) from W = γ(0) in the direction H to find
W ∗ = argmin

W
L(W )

Hold ←H
W old ←W
W ←W ∗

until convergence

construct A. Note, however, that our framework is general and also applies to
unsupervised or semi-supervised settings. For example, in an unsupervised sce-
nario,A could be built from pairwise similarities (distances) on Sn

++. Solving (7)
could then be understood as finding a mapping where nearby data pairs on the
original manifold Sn

++ remain close in the induced manifold Sm
++.

Let us assume that each point Xi ∈ Sn
++ belongs to one of C possible classes

and denote its class label by yi. Our aim is to define an affinity matrix that
encodes the notions of intra-class and inter-class distances, and thus, when solv-
ing (7), yields a mapping that minimizes the intra-class distances while simul-
taneously maximizing the inter-class distances (i.e., a discriminative mapping).

More specifically, let {(X i, yi)}pi=1 be the set of p labeled training points,
where Xi ∈ Sn

++ and yi ∈ {1, 2, · · · , C}. The affinity of the training data on Sn
++

can be modeled by building a within-class similarity graph Gw and a between-
class similarity graph Gb. In particular, we define Gw and Gb as binary matrices
constructed from nearest neighbor graphs. This yields

Gw(i, j) =

{
1, if Xi ∈ Nw(Xj) or Xj ∈ Nw(Xi)
0, otherwise

(9)

Gb(i, j) =

{
1, if Xi ∈ Nb(Xj) or Xj ∈ Nb(X i)
0, otherwise

(10)
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where Nw(X i) is the set of νw nearest neighbors of X i that share the same
label as yi, and Nb(Xi) contains the νb nearest neighbors of Xi having different
labels. The affinity matrix A is then defined as

A = Gw −Gb , (11)

which resembles the Maximum Margin Criterion (MMC) of [11]. In practice,
we set νw to the minimum number of points in each class and, to balance the
influence of Gw and Gb, choose νb ≤ νw, with the specific value found by cross-
validation. We analyze the influence of νb in supplementary material.

4.3 Discussion in Relation to Region Covariance Descriptors

In our experiments, we exploited Region Covariance Matrices (RCMs) [20] as
image descriptors. Here, we discuss some interesting properties of our algorithm
when applied to these specific SPD matrices.

There are several reasons why RCMs are attractive to represent images and
videos. First, RCMs provide a natural way to fuse various feature types. Second,
they help reducing the impact of noisy samples in a region via their inherent
averaging operation. Third, RCMs are independent of the size of the region,
and can therefore easily be utilized to compare regions of different sizes. Finally,
RCMs can be efficiently computed using integral images [21,18].

Let I be a W × H image, and O = {oi}ri=1, oi ∈ R
n be a set of r obser-

vations extracted from I, e.g., oi concatenates intensity values, gradients along
the horizontal and vertical directions, filter responses,... for image pixel i. Let
μ = 1

r

∑r
i=1 oi be the mean value of the observations. Then image I can be

represented by the n× n RCM

CI =
1

r − 1

r∑

i=1

(oi − μ) (oi − μ)
T
= OJJTOT , (12)

where J = r−3/2(rIr − 1r×r). To have a valid RCM, r ≥ n, otherwise CI would
have zero eigenvalues, which would make both δ2g and δ2S indefinite.

After learning the projection W , the low-dimensional representation of image
I is given by W TOJJTOTW . This reveals two interesting properties of our
learning scheme. 1) The resulting representation can also be thought of as an
RCM with W TO as a set of low-dimensional observations. Hence, in our frame-
work, we can create a valid Sm

++ manifold with only m observations instead of at
least n in the original input space. This is not the case for other algorithms, which
require having matrices on Sn

++ as input. In supplementary material, we study
the influence of the number of observations on recognition accuracy. 2) Applying
W directly the set of observations reduces the computation time of creating the
final RCM on Sm

++. This is due to the fact that the computational complexity
of computing an RCM is quadratic in the dimensionality of the features.
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5 Empirical Evaluation

In this section, we study the effectiveness of our SPD manifold learning approach.
In particular, as mentioned earlier, we focus on classification and present results
on two image datasets and one motion capture dataset. In all our experiments,
the dimensionality of the low-dimensional SPD manifold was determined by
cross-validation. Below, we first briefly describe the different classifiers used in
these experiments, and then discuss our results.

Classification algorithms: The SPD-ML algorithm introduced in Section 4 allows
us to obtain a low-dimensional, more discriminative SPD manifold from a high-
dimensional one. Many different classifiers can then be used to categorize the
data on this new manifold. In our experiments, we make use of two such classi-
fiers. First, we employ a simple nearest neighbor classifier based on the manifold
metric (either AIRM or Stein). This simple classifier clearly evidences the ben-
efits of mapping the original Riemannian structure to a lower-dimensional one.
Second, we make use of the Riemannian sparse coding algorithm of [6] (RSR).
This algorithm exploits the notion of sparse coding to represent a query SPD
matrix using a codebook of SPD matrices. In all our experiments, we formed
the codebook purely from the training data, i.e., no dictionary learning was
employed. Note that RSR relies on a kernel derived from the Stein metric. We
therefore only applied it to the Stein metric-based version of our algorithm. We
refer to the different algorithms evaluated in our experiments as:

NN-Stein: Stein metric-based Nearest Neighbor classifier.
NN-AIRM: AIRM-based Nearest Neighbor classifier.
NN-Stein-ML: Stein metric-based Nearest Neighbor classifier on the low-
dimensional SPD manifold obtained with our approach.
NN-AIRM-ML: AIRM-based Nearest Neighbor classifier on the
low-dimensional SPD manifold obtained with our approach.
RSR: Riemannian Sparse Representation [6].
RSR-ML: Riemannian Sparse Representation on the low-dimensional SPD
manifold obtained with our approach.

In addition to these methods, we also provide the results of the PLS-based
Covariance Discriminant Learning (CDL) technique of [22], as well as of the
state-of-the-art baselines of each specific dataset.

5.1 Material Categorization

For the task of material categorization, we used the UIUC dataset [12]. The
UIUC material dataset contains 18 subcategories of materials taken in the wild
from four general categories (see Fig. 2): bark, fabric, construction materials,
and outer coat of animals. Each subcategory has 12 images taken at various
scales. Following standard practice, half of the images from each subcategory
was randomly chosen as training data, and the rest was used for testing. We
report the average accuracy over 10 different random partitions.
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Fig. 2. Samples from the UIUC material dataset

Small RCMs, such as those used for texture recognition in [6], are hopeless
here due to the complexity of the task. Recently, SIFT features [13] have been
shown to be robust and discriminative for material classification [12]. Therefore,
we constructed RCMs of size 155 × 155 using 128 dimensional SIFT features
(from grayscale images) and 27 dimensional color descriptors. To this end, we
resized all the images to 400 × 400 and computed dense SIFT descriptors on a
regular grid with 4 pixels spacing. The color descriptors were obtained by simply
stacking colors from 3× 3 patches centered at the grid points. Each grid point
therefore yields one 155-dimensional observation oi in Eq. 12. The parameters
for this experiments were set to νw = 6 (minimum number of samples in a class),
and νb = 3 obtained by 5-fold cross-validation.

Table 1 compares the performance of our different algorithms and of the state-
of-the-art method on this dataset (SD) [12]. The results show that appropriate
manifold-based methods (i.e., RSR and CDL) with the original 155×155 RCMs
already outperform SD, while NN on the same manifold yields worse perfor-
mance. However, after applying our learning algorithm, NN not only outper-
forms SD significantly, but also outperforms both CDL and RSR. RSR on the
learned SPD manifold (RSR-ML) further boosts the accuracy to 66.6%.

To further evidence the importance of geometry-aware dimensionality reduc-
tion, we replaced our low-dimensional RCMs with RCMs obtained by applying
PCA directly on the 155 dimensional features. The AIRM-based NN classifier
used on these RCMs gave 42.1% accuracy (best performance over different PCA
dimensions). While this is better than the performance in the original feature
space (i.e., 35.6%), it is significantly lower than the accuracy of our NN-AIRM-
ML approach (i.e., 58.3%). Finally, note that performing NN-AIRM on the origi-
nal data required 490s on a 3GHz machine with Matlab. After our dimensionality
reduction scheme, this only took 9.7s.

5.2 Action Recognition from Motion Capture Data

As a second experiment, we tackled the problem of human action recognition
from motion capture sequences using the HDM05 database [14]. This database
contains the following 14 actions: ‘clap above head’, ‘deposit floor’, ‘elbow to
knee’, ‘grab high’, ‘hop both legs’, ‘jog’, ‘kick forward’, ‘lie down floor’, ‘rotate
both arms backward’, ‘sit down chair’, ‘sneak’, ‘squat’, ‘stand up lie’ and ‘throw
basketball’ (see Fig. 3 for an example). The dataset provides the 3D locations of
31 joints over time acquired at the speed of 120 frames per second. We describe
an action of a K joints skeleton observed over m frames by its joint covariance
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Table 1. Mean recognition accuracies
with standard deviations for the UIUC
material dataset [12]

Method Accuracy

SD [12] 43.5% ±N/A
CDL [22] 52.3% ± 4.3

NN-Stein 35.8% ± 2.6
NN-Stein-ML 58.1% ± 2.8

NN-AIRM 35.6% ± 2.6
NN-AIRM-ML 58.3% ± 2.3

RSR [6] 52.8% ± 2.1
RSR-ML 66.6% ± 3.1

Table 2. Recognition accuracies for
the HDM05-MOCAP dataset [14]

Method Accuracy

CDL [22] 79.8%

NN-Stein 61.7%
NN-Stein-ML 68.6%

NN-AIRM 62.8%
NN-AIRM-ML 67.6%

RSR [6] 76.1%
RSR-ML 81.9%

Fig. 3. Kicking action from the HDM05 motion capture sequences database [14]

descriptor [7], which is an SPD matrix of size 3K×3K. This matrix is computed
as in Eq. 12 by taking oi as the 93-dimensional vector concatenating the 3D
coordinates of the 31 joints in frame i.

In our experiments, we used 2 subjects for training (i.e., ’bd’ and ’mm’) and
the remaining 3 subjects for testing (i.e., ’bk’, ’dg’ and ’tr’)1. This resulted in
118 training and 188 test sequences for this experiment. The parameters of our
method were set to νw = 5 (minimum number of samples in one class), and
νb = 5 by cross-validation.

We report the performance of the different methods on this dataset in Ta-
ble 2. Again we can see that the accuracies of NN and RSR are significantly
improved by our learning algorithm, and that our RSR-ML approach achieves
the best accuracy of 81.9%. As on the UIUC dataset, we also evaluated the
performance RCMs built by reducing the dimensionality of the features using
PCA. This yielded an accuracy of 63.3% with an AIRM-based NN classifier (best
performance over different PCA dimensions). Again, while this slightly outper-
forms the accuracy of NN-AIRM (i.e., 62.8%), it remains clearly inferior to the
performance of our NN-AIRM-ML algorithm (i.e., 67.6%).

1 Note that this differs from the setup in [7], where 3 subjects were used for training
and 2 for testing. However, with the setup of [7] where an accuracy of 95.41% was
reported, all our algorithms resulted in about 99% accuracy.
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(a) ba (b) bj (c) bk (d) bc (e) bd (f) be (g) bf (h) bg (i) bh

Fig. 4. Samples from the FERET dataset [17]

5.3 Face Recognition

For face recognition, we used the ‘b’ subset of the FERET dataset [17], which
contains 1800 images from 200 subjects. Following common practice [6], we used
cropped images, downsampled to 64×64. Fig. 4 depicts samples from the dataset.

We performed six experiments on this dataset. In all these experiments, the
training data was composed of frontal faces with expression and illumination
variations (i.e., images marked as ‘ba’, ‘bj’ and ‘bk’). The six experiments cor-
respond to using six different non-frontal viewing angles as test data (i.e., images
marked as ‘bc’,‘bd’, ‘be’, ‘bf’, ‘bg’ and ‘bh’, respectively).

To represent a face image, we block diagonally concatenated three different
43×43 RCMs: one obtained from the entire image, one from the left half and one
from the right half. This resulted in an RCM of size 129 × 129 for each image.
Each 43× 43 RCM was computed from the features

ox,y = [ I(x, y), x, y, |G0,0(x, y)|, · · · , |G4,7(x, y)| ] ,

where I(x, y) is the intensity value at position (x, y), Gu,v(x, y) is the response
of a 2D Gabor wavelet [10] centered at (x, y) with orientation u and scale v, and
| · | denotes the magnitude of a complex value. Here, following [6], we generated
40 Gabor filters at 8 orientations and 5 scales.

In addition to our algorithms, we evaluated the state-of-the-art Sparse Repre-
sentation based Classification (SRC) [23] and its Gabor-based extension
(GSRC) [25]. For SRC, we reduced the dimensionality of the data using PCA and
chose the dimensionality that gave the best performance. For GSRC, we followed
the recommendations of the authors to set the downsampling factor in the Gabor
filters, but found that better results could be obtained with a larger λ than the rec-
ommended one, and thus report these better results obtained with λ = 0.1. The
parameters for our approach were set to νw = 3 (minimum number of samples in
one class), and νb = 1 by cross-validation.

Table 3 reports the performance of the different methods. Note that both CDL
and RSR outperform the Euclidean face recognition systems SRC and GSRC.
Note also that even a simple Stein-based NN on 129 × 129 RCMs performs
roughly on par with GSRC and better than SRC. More importantly, the repre-
sentation learned with our SPD-ML algorithm yields significant accuracy gains
when used with either NN or RSR for all different viewing angles, with more
than 10% improvement for some poses.
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Table 3. Recognition accuracies for the FERET face dataset [17]

Method bc bd be bf bg bh average acc.

SRC [23] 9.5% 37.5% 77.0% 88.0% 48.5% 11.0% 45.3% ± 3.3
GSRC [25] 35.5% 77.0% 93.5% 97.0% 79.0% 38.0% 70.0% ± 2.7
CDL [22] 35.0% 87.5% 99.5% 100.0% 91.0% 34.5% 74.6% ± 3.1

NN-Stein 29.0% 75.5% 94.5% 98.0% 83.5% 34.5% 69.2% ± 3.0
NN-Stein-ML 40.5% 88.5% 97.0% 99.0% 91.5% 44.5% 76.8% ± 2.7

NN-AIRM 28.5% 72.5% 93.0% 97.5% 83.0% 35.0% 68.3% ± 3.0
NN-AIRM-ML 39.0% 84.0% 96.0% 99.0% 90.5% 45.5% 75.7% ± 2.6

RSR [6] 36.5% 79.5% 96.5% 97.5% 86.0% 41.5% 72.9% ± 2.7
RSR-ML 49.0% 90.5% 98.5% 100% 93.5% 50.5% 80.3% ± 2.4

6 Conclusions and Future Work

We have introduced a learning algorithm to map a high-dimensional SPD man-
ifold into a lower-dimensional, more discriminative one. To this end, we have
exploited a graph embedding formalism with an affinity matrix that encodes
intra-class and inter-class distances, and where the similarity between two SPD
matrices is defined via either the Stein divergence or the AIRM. Thanks to their
invariance to affine transformations, these metrics have allowed us to model the
mapping from the high-dimensional manifold to the low-dimensional one with
an orthonormal projection. Learning could then be expressed as the solution to
an optimization problem on a Grassmann manifold. Our experimental evalua-
tion has demonstrated that the resulting low-dimensional SPD matrices lead to
state-of-the art recognition accuracies on several challenging datasets.

In the future, we plan to extend our learning scheme to the unsupervised
and semi-supervised scenarios. Finally, we believe that this work is a first step
towards showing the importance of preserving the Riemannian structure of the
data when performing dimensionality reduction, and thus going from one man-
ifold to another manifold of the same type. We therefore intend to study how
this framework can be applied to other types of Riemannian manifolds.
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