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Abstract. The elastic shape analysis of surfaces has proven useful in several
application areas, including medical image analysis, vision, and graphics.

This approach is based on defining new mathematical representations of pa-
rameterized surfaces, including the square root normal field (SRNF), and then
using the L2 norm to compare their shapes. Past work is based on using the pull-
back of the L

2 metric to the space of surfaces, performing statistical analysis
under this induced Riemannian metric. However, if one can estimate the inverse
of the SRNF mapping, even approximately, a very efficient framework results: the
surfaces, represented by their SRNFs, can be efficiently analyzed using standard
Euclidean tools, and only the final results need be mapped back to the surface
space. Here we describe a procedure for inverting SRNF maps of star-shaped
surfaces, a special case for which analytic results can be obtained. We test our
method via the classification of 34 cases of ADHD (Attention Deficit Hyperac-
tivity Disorder), plus controls, in the Detroit Fetal Alcohol and Drug Exposure
Cohort study. We obtain state-of-the-art results.

Keywords: Statistical shape analysis, elastic shape analysis, parameterized
surface, geodesic computation, deformation analysis.

1 Introduction

The analysis of the shapes of 3D objects is an important area of research with a wide
variety of applications. The need for shape analysis arises in many branches of science,
for example, medical image analysis, protein structure analysis, computer graphics, and
3D printing and prototyping. Many of these are especially concerned with capturing
variability within and across shape classes, and so the main focus of research has been
on statistical shape analysis and on comparing shapes [2,22,28]. The main differences
among the different approaches proposed so far lie in the mathematical representations
and metrics used in the analysis. One may use chosen landmarks to represent shapes,
and perform Kendall-type shape analysis [8], or use point clouds and apply thin plate
splines or ICP [3]. One may represent shapes using medial surfaces [4], level sets [21],
or deformable templates [11]. However, the most natural representation for studying
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the shapes of 3D objects would seem to be their continuous boundaries. Windheuser et
al. [26] solve a dense registration problem, but use linear interpolation between regis-
tered pairs of points in R

3 to compute geodesic paths. Kilian et al. [17] represent param-
eterized surfaces by discrete triangulated meshes, assume a Riemannian metric on the
space of such meshes, and compute geodesic paths between given meshes. The method
has the limitation that it assumes the correspondence between points on the two meshes
to be known. Heeren et al. [12] propose a method to compute geodesic-based defor-
mations of thin shell shapes. Some papers use SPHARM or SPHARM-PDM [5,24]
to tackle this problem by choosing a fixed arc-length type parameterization. This is a
major restriction, and does not allow elastic shape analysis of surfaces. They also as-
sume that the surfaces are already in full correspondence. A large set of papers in the
literature treat the parameterization (or registration) and comparison steps in a disjoint
manner [4,29,10,7,25]. In other words, they take a set of surfaces and use some en-
ergy function, such as the entropy or the minimum description length, to register points
across surfaces. Once the surfaces are registered, they are compared using standard
procedures. Because these two steps are often performed under different metrics, the
resulting registrations and shape comparisons tend to be suboptimal.

Recently there has been increasing interest in frameworks for studying the shapes of
parameterized surfaces, and in particular in methods that provide invariance to shape-
preserving transformations such as rigid motions, global scaling, and reparameteriza-
tions. These frameworks are predominantly Riemannian: one identifies an appropriate
representation space for the relevant surfaces, endows it with a Riemannian metric, and
develops an algorithm for computing geodesic paths under that metric. Invariance to
shape-preserving transformations is obtained by forming quotient spaces under these
groups, and geodesic calculations are then transferred to this quotient space using an
alignment step. The key idea is to choose a mathematical representation and an associ-
ated Riemannian metric so that the desired invariances are obtained, and geodesic com-
putations are rendered simple. This has been achieved in the shape analysis of curves
by using as representation and metric, the square-root velocity function (SRVF) and a
particular member of the family of elastic metrics: the resulting metric in the SRVF
space is then the L

2 metric [23]. The L
2 metric greatly simplifies computations, and

enables sophisticated statistical analyses that require fast geodesic calculations. Critical
to its utility is the fact that the mapping from the space of curves to the SRVF space is a
bijection (up to a translation). Solutions found in SRVF space using the L

2 metric can
thus be uniquely mapped back to the original curve space, which is significantly more
efficient than calculating in the curve space itself. This paper contributes to the search
for a similarly efficient framework for the shape analysis of surfaces.

Kurtek et al. [18,20] took the first steps in this direction. Let f : S2 → R
3 be a

parameterized surface and let F be the space of all such smooth mappings. Suppose
S2 is parameterized by the pair s ≡ (u, v) for all s ∈ S2. Kurtek et al. introduced a
surface representation defined by q(s) =

√|n(s)|f(s), where n(s) = fu(s) × fv(s)
is the unnormalized normal to the surface at f(s); this was termed the square-root map
(SRM). Equipping the space of SRMs with the L

2 metric greatly simplifies geodesic
calculations, and also has the crucial property that Γ , the group of all orientation-
preserving diffeomorphisms of S2, acts by isometries. Unfortunately, the representation
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has several limitations, including that the metric distance between two shapes changes
if they are both translated by the same amount; that it is difficult to invert (indeed may
not have an inverse); and that the metric has no clear physical interpretation in terms of
surfaces.

Jermyn et al. [16] introduced a new representation that avoids some of the limitations
of the SRM, while preserving its advantages: the square-root normal field (SRNF) sends
f �→ Q(f), where Q(f)(s) ≡ n(s)/ |n(s)|1/2. Equipping the space of SRNFs, Q, with
the L

2 metric again trivializes geodesic calculations, and Γ again acts by isometries.
Now, however, the representation is translation invariant by definition, while the L

2

metric on Q corresponds to a partial elastic Riemannian metric on F strictly analogous
to the elastic metric used in the case of curves.

The SRNF shares one difficulty with the SRM, however, and that is the problem of
inversion. Knowing Q(f) is equivalent to knowing the Gauss map ñ = n/ |n| and the
induced measure |n|1/2. While the Gauss map together with the induced metric is suffi-
cient to reconstruct the surface up to translations and rotations [1,9] (or in combination
with only the conformal class of the metric, up to translations, rotations and scale [13]),
it is not clear that Q is injective up to simple transformations.1 (In addition, Q is almost
certainly not surjective, a point to which we will return.) If one cannot invert the rep-
resentation, geodesics and statistical analyses conducted in Q cannot be moved back to
F . One can always pull the L

2 metric back to F and perform computations there [27],
but this defeats the purpose of introducing the representation and the L2 metric on it.

An alternative is to proceed pragmatically, supposing invertibility until it creates
problems. (It is worth noting that even if f is not unique given Q(f), the distance
between any two such surfaces is zero, and thus any two geodesics in F mapping to
a geodesic in Q will have the same length.) We take this pragmatic approach in this
paper. The problem we wish to solve is this: Given q ∈ Q, find f ∈ F such that
Q(f) = q. Were it solved, geodesics, mean shapes, PCA, etc. could be computed in
Q under the L

2 metric and then mapped back to F , just as is possible in the case
of curves using the SRVF, with resulting large gains in computational efficiency with
respect to e.g. [16,27]. For general surfaces, this can only be done numerically. We
develop a numerical method to find such an f if it exists, and to find the closest (in the
elastic metric) f to the set Q−1(q) if it does not. This numerical procedure is expensive,
however, and in this paper we do not use it directly to invert Q for general surfaces.
Rather, we show that for an important subset of surfaces, an analytic solution exists to
the inversion problem. These are the ‘star-shaped’ surfaces, i.e. those whose enclosed
volumes are star domains, a large family of surfaces with great relevance for many real
problems. Combining the analytic result with the numerical procedure, we are able to
compute geodesics and perform statistical analyses in the space of star-shaped surfaces
in a very efficient manner: in fact the computational cost is reduced by an order of
magnitude.

The paper is organized as follows. Section 2 gives an overview of the statistical tasks
we use as points of comparison, and describes algorithms for these tasks under previ-
ous and proposed methods. Section 3 describes the analytic solution to the inversion

1 It is not simply a case of applying Bonnet’s theorem, because in addition to dn, the second
fundamental form involves the derivative df , which is the quantity we are trying to find.
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problem, while Section 4 describes the algorithms in detail. Section 5 describes the use
of the methods for the classification of subjects with Attention Deficit Hyperactivity
Disorder (ADHD) using the shapes of brain subcortical structures, and demonstrates
state-of-the-art classification results at greatly reduced computational cost.

2 Model Problems

In order to illustrate the advantages of the new methods, we have selected as points
of comparison, several algorithmic and computational tasks that are fundamental to
statistical shape analysis:

1. Geodesic Path Construction: Given two surfaces f1 and f2, one wants to construct
a geodesic path α(t) s.t. α(0) = f1 and α(1) = f2.

2. Shooting Geodesics: Given a surface f and a tangent vector v0 at f , one wants to
construct a geodesic path α(t) s.t. α(0) = f and α̇(0) = v.

3. Statistical Summaries of Shapes: Given a sample of observed surfaces f1, . . . , fn,
one wants to estimate the mean shape and principal directions of variation.

4. Random Sampling from Shape Models: Given a sample of observed surfaces
f1, . . . , fn, one wants to fit a probability model to the data and sample random
shapes from it.

5. Transferring Deformations between Shapes: Given surfaces f1, h1 and f2, one
wants to find h2 such that f2 deforms to it in a similar way f1 deforms to h1.

Table 1 outlines the algorithms for performing these tasks using both previous and
the proposed methods. Computationally intensive steps are underlined, and the compu-
tational complexity is indicated in boxes.

3 The Inversion Problem

In order to exploit the SRNF to full advantage, we need to be able to find a surface
f such that Q(f) = q. In this section, we describe solutions to this problem, first for
arbitrary surfaces, and then for star-shaped surfaces.

3.1 General Surfaces

We formulate the inversion problem as an optimization problem by defining an energy
function E0 : F → R+ such that

E0(f ; q) = ‖Q(f)− q‖22 . (1)

Finding an f ∈ F such that Q(f) = q is then equivalent to seeking zeros of E0. If no
such f exists, then a minimizer of E will be a nearest such f under the elastic metric.
We define f∗ = argminf∈F E0(f ; q).

Minimization is performed using a gradient descent approach. Since F is an infinite-
dimensional vector space, we will approximate the gradient using a finite basis for F .
From a computational point of view, it may be easier to express the deformation of
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Table 1. Comparison of Algorithms
Previous Proposed

Karcher
Mean Algorithm 1 Let μ0

f be an initial estimate.
Set j = 0.

1. Register f1, . . . , fn to μj
f .

2. For each i = 1, . . . , n, construct a
geodesic to connect fi to μj

f and eval-

uate vi = exp−1

μ
j
f

(qi).

3. Compute the average direction v̄ =
1
n

∑n
i=1 vi.

4. If ‖v̄‖ is small, stop. Else, update
μj+1
f = exp

μ
j
f
(εv̄) by shooting a

geodesic, ε¿0, small.
5. Set j = j + 1 and return to Step 1.

n geodesics per iteration

Algorithm 2 Let q̄ = Q(μ0
f ) with μ0

f

as an initial estimate. Set j = 0.

1. Register Q(f1), . . . , Q(fn) to q̄.
2. Update the average q̄ =

1
n

∑n
i=1 qi.

3. If change in ‖q̄‖ is small, stop. Else,
set j = j + 1 and return to Step 1.

Find μf by inversion s.t. Q(μf ) = q̄.

1 inversion

Parallel
Transport Algorithm 3 Find a geodesic α(t) con-

necting f1 to f2. For τ = 1, . . . ,m, do the
following.

1. Parallel transport V ( τ−1
m

) from
α( τ−1

m
) to α( τ

m
) and name it V ( τ

m
).

Set v|| = V (1).

1 geodesic + m parallel transports

Algorithm 4 Parallel transport on L
2

remains constant.

1. Compute w = Q∗,f1(v) (differen-
tial of the mapping Q).

2. Find f by inversion s.t. Q(f) =
Q(f2) + εw, ε is small.

3. Evaluate f−f2
ε

and set it to be v||.

1 inversion
Transfer
Deforma-
tion Algorithm 5

1. Find a geodesic β(t) connecting f1 to

h1 and evaluate v = exp−1
f1

(h1).
2. Find a geodesic α(t) connecting f1 to

f2. Set V (0) = v. For τ = 1, . . . , m,
do the following.
(a) Parallel transport V ( τ−1

m
) from

α( τ−1
m

) to α( τ
m
) and name it

V ( τ
m
).

3. Shoot a geodesic β′(t) from f2 with ve-

locity v|| = V (1) and set h2 = β′(1).

3 geodesics + m parallel transports

Algorithm 6 Parallel transport on L
2

remains constant.

1. Compute v = Q(h1)−Q(f1).
2. Find h2 by inversion s.t. Q(h2) =

Q(f2) + v.

1 inversion
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a surface, rather than the surface itself, using a basis. We therefore set f = f0 + w,
where w =

∑
b∈B αbb, with αb ∈ R, and where B forms an orthonormal basis of F .

(In practice, we use spherical harmonics.) Here f0 denotes the current estimate of f∗,
and w is a deformation of f0. Then, we minimize the new energy

E(w; q) = ‖Q(f0 + w)− q‖22 , (2)

with respect to w. One can view f0 as an initial guess of the solution or a known surface
with shape similar to the one being estimated. If no initial guess is possible, one can
initialize f0 as a unit sphere or even set f0 = 0.

We need to evaluate the directional derivatives of E. The directional derivative of E
at f0 + w in the direction of b, ∇bE(w; q), is given by:

∇bE(w; q, f0) =
d

dε
|ε=0‖Q(f0 + w + εb)− q‖22 = 2〈Q(f0 + w)− q,Q∗,f0+w(b)〉 .

(3)
Here Q∗,f denotes the differential of Q at f . This can be evaluated using the following
expression: for all s ∈ S2,

Q∗,f(b)(s) =
nb(s)√|n(s)| −

n(s) · nb(s)

2|n(s)|5/2 n(s) (4)

where nb(s) = fu(s)× bv(s)+ bu(s)×fv(s). From the perspective of numerical accu-
racy, the second term can be replaced by a more stable form, ñ(s)·nb(s)

2
√

|n(s)| ñ(s), resulting

in

Q∗,f (b)(s) =
1

√|n(s)|

(
nb(s)− ñ(s) · nb(s)

2
ñ(s)

)
. (5)

Finally, the update is determined by the gradient ∇E(f0; q) =
∑

b∈B (∇bE(b; q, f0)) b
obtained using Eqn. 3, 4 and 5.

3.2 Star-Shaped Surfaces

The numerical solution is for general surfaces. However, solving the optimization prob-
lem in this general case is difficult due to the high dimensionality of the search space.
We now restrict attention to a special subspace of ‘star-shaped’ surfaces. Remarkably,
in this case an analytic solution to the inversion problem exists. At the same time, such
surfaces are of great relevance for many applications.

By a ‘star-shaped’ surface, we mean a parameterized surface f ∈ F that, up to
translation, can be written in the form f(u, v) = r(u, v)e(u, v), where r(u, v) ∈ R,
and e(u, v) ∈ S2 is the unit vector in R

3 given in Euclidean coordinates by e(u, v) =
(cos(u) sin(v), sin(u) sin(v), cos(v)). It can be seen by inspection that the form of e
means that the angular spherical coordinates (θ, φ) of points on the surface are simply
given by (θ(u, v), φ(u, v)) = (u, v). Note that the volume enclosed by a star-shaped
surface is a star domain, that is, there exists a point in the enclosed volume such that
the straight line segments from that point to every point on the surface all lie entirely in
the enclosed volume, but that in addition to this purely geometric property, we demand
that the surface have a particular parameterization.
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In the case of star-shaped surfaces, the map Q can be analytically inverted, as fol-
lows. The radial component of the normal vector n of an star-shaped surface is, by
definition, given by

nr(u, v) = 〈n(u, v), e(θ(u, v), φ(u, v))〉 (6)

since e(θ, φ) is the radial unit vector in the direction in R
3 defined by (θ, φ). If the star-

shaped surface were in general parametrization, we could not compute nr because we
would not know θ and φ, the angular coordinates of the surface we are trying to recover.
In the special parameterization, however, the expression just becomes

nr(u, v) = 〈n(u, v), e(u, v)〉 (7)

and this can be calculated. The result is very simple:

nr(u, v) = r2(u, v) . (8)

As a result, given an SRNF q and a parameterization e, the star-shaped surface f̃ corre-
sponding to this q, i.e. such that Q(f̃) = q, takes the form:

f̃(u, v) =
(√

|q(u, v)| qr(u, v)
)
e(u, v) , (9)

where qr = 〈q, e〉 is the radial component of q.
Note that f̃ depends on both q and a fixed parameterization e(u, v). If both are known,

then Q can be analytically inverted, as above. If a surface encloses a star domain, but
is in a general parameterization (and hence not star-shaped by definition), one can still
choose to apply Eqn. 9. In this case, the resulting f̃ will not in general be the original
surface f , but it may provide a good initialization for solving the reconstruction-by-
optimization problem. The numerical inversion method also provides a way to check
whether a given SRNF q corresponds to a star-shaped surface: simply construct f̃ and
then compute Q(f̃); if one finds Q(f̃) = q, then q corresponds to a star-shaped surface.

One can thus use the analytic result together with numerical inversion to construct
geodesics in F between two star-shaped surfaces. First, find the geodesic in Q between
the corresponding SRNFs, which is trivially a straight line. It is not guaranteed, how-
ever, that all intermediate SRNFs correspond to star-shaped surfaces; thus the analytic
form f̃ may not be the right inversion. One can use f̃ , however, as an initial guess for the
original surface, thereby better initializing the reconstruction-by-optimization problem.

Reconstruction Examples. To explain the inversion problem further, we present re-
sults on reconstructing a synthetic surface in Fig. 1. In this experiment, the target surface
is fo which serves as the ground truth. We compute qo = Q(fo) and the goal is to re-
cover the target surface fo with only qo known. A surface computed using the analytic
inversion in Eqn. 9 is shown as f̃ . Using the unit sphere as initialization, the numerical
solution to the optimization problem is shown as f∗ . In order to check the convergence
of the optimization problem, the energy plotted against iterations is shown in the bot-
tom left panel. The energies, E(f̃ ; qo) and E(f∗; qo) are shown below the respective
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surfaces and compared to E(fo; qo) = 0 if we get a perfect reconstruction. The pix-
elwise errors, |f̃(s) − fo(s)| and |f∗(s) − fo(s)| are also shown for the analytic and
the numerical solutions in that order. The surface from analytic inversion is very close
to the targeted ground truth surface with an energy on the order of 10−4; the numer-
ical method then brings the energy down further towards zero. The two reconstructed
surfaces have very small pointwise errors with respect to the ground truth surface.

We also show results on inverting anatomical surfaces in Fig. 2. For these the exper-
iments, all the energies converge to a small value and the constructed surfaces resemble
the ground truth surfaces very well.

Ground Truth (fo) Analytic Inversion (f̃ ) Numerical Solution (f∗)

E(fo; qo) = 0 E(f̃ ; qo) = 5.7E-4 E(f∗; qo) = .9E-4
Energy Errors on Surface

100 200 300
0

0.05

0.1

0.15

0.2

0.25

Fig. 1. Reconstructing a surface from its SRNF. A target surface (fo) is numerically reconstructed
as f∗ with initialization as the unit sphere. The energy plot shows the evolution of energies against
iterations with initialization as a unit sphere. The analytically inverted surface f̃ is shown for
comparison. The energies E(f̃ ; qo) and E(f∗; qo) are shown correpondingly. The errors between
the reconstructed surfaces and the ground truth are shown on the ground truth surface with colors
representing the magnitudes, i.e. |f∗(s)− fo(s)| for all s ∈ S2.

4 Statistical Analysis of Surfaces under Inversion

The ability to invert Q enormously simplifies the algorithms used for various analyses.
Compared to the previous framework [27], where analysis is performed on a Rieman-
nian manifold, the new framework performs analysis in the L

2 space of SRNFs, and
only brings the results to the shape space at the very end (Fig. 3).

The basic algorithms for computing the Karcher mean shape, for parallel transport,
and for transferring deformations from one shape to another are described in Table 1.
Here, we elaborate on the list of target analyses and the mechanisms under inversion.

1. Geodesic Path Reconstruction: Given two surfaces f1 and f2, one wants to con-
struct a geodesic path α(t) s.t. α(0) = f1 and α(1) = f2. Let qi = Q(fi), i = 1, 2
be the SRNFs of the given surfaces f1 and f2. Let β : [0, 1] → L

2(S2,R3) de-
note the geodesic path, obtained via a straight line connecting q1 and q2. Then, for
any arbitrary point β(τ) ∈ L

2(S2,R3), we want to find a surface α(τ) such that
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Thalamus, E = 9.0E-4 Putamen, E = 8.1E-4

Pallidum, E = 6.9E-4 Caudate, 4.4E-4

Fig. 2. Four examples of reconstructing anatomical surfaces. In each cell, the surface on the left
is the ground truth (fo) while the reconstruction (f∗) is on the right. The corresponding energies
‖Q(f∗)−Q(fo)‖2 are shown at the top.

Previous Framework Proposed Framework

Fig. 3. Inversion from SRNF space to shape space gives an alternative way to analyze shapes.
Previous methods require pulling back the metric and working with the Riemannian metric on F
(left). The proposed method performs analysis in L

2 space (right) and pulls back the results onto
the shape space (left) by inversion.

Q(α(τ)) = β(τ). In practice, we will accomplish this sequentially. For any ε > 0,
we start by solving for f(ε). Since our search is gradient-based, we need a good
initial condition for starting the search. In this case α(0) = f1 provides such an
initial condition. For the next shape, f(2ε), we can use the previous step f(ε) to
initialize the search, and so on.
Figure 4 shows results of computing a geodesic connecting two known endpoints
given by synthetic surfaces. The path of shapes is initialized by linear interpolation
of SRNFs and then optimized numerically to form a geodesic path. An arbitrary
path is shown to the right for comparison. Paths of energies are shown in the bot-
tom panel. The energy paths of the arbitrary path, the linear path and the numer-
ically computed geodesic path are shown in green, blue and red, respectively. We
observe that the analytically inverted path has low energy and is close to the solu-
tion. The computed geodesic is shown in the left panel: it smoothly deforms one
shape into the other. Similar experiments are performed with anatomical surfaces;
the geodesics are shown in Fig. 5.
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Geodesic: α(t) s.t. α(0) = f1, α(1) = f2 Arbitrary Path

Energy Paths

Fig. 4. Constructing geodesic paths connecting two shapes. The computed geodesic path is shown
to the left compared to an arbitrary path to the right. In the bottom plot, the energy path along the
geodesic is shown as the dash-dot line with circles (red), while that of the initialized linear path
is the dashed line with triangles (blue). The energy along the arbitrary path is shown as a solid
line with squares (green) as a comparison.

α(0) = f1 α(1/4) α(2/4) α(3/4) α(1) = f2

Fig. 5. Two geodesics computed for anatomical surfaces. Geodesics connecting the given two
endpoint surfaces, f1 and f2, are shown as α(t) at discrete time stamps for the thalamus and the
pallidum.

2. Shooting Geodesics: Given a surface f and a tangent vector v0 at f , one wants to
construct a geodesic path α(t) s.t. α(0) = f and α̇(0) = v. Here α̇ = dα/dt. Note
that shooting a geodesic is essentially evaluating the exponential map expf (tv0) =
α(t), t = [0, 1] numerically. Let β : [0, 1] → L

2(S2,R3) denote a straight line, i.e.
β(t) = Q(f) + tQ∗,f(v0), where Q∗,f is the differential of Q at f as previously
mentioned. Then the desired geodesic path α(t) is of the form Q(α(t)) = β(t).
This path α(t) is computed sequentially similarly to the first case. Some statistical
analyses computed using shooting geodesics are shown in Fig. 6 and 7.

3. Statistical Summaries of Shapes: When given a sample of observed surfaces
f1, . . . , fn, one wants to estimate the mean shape and principal directions of varia-
tion.
The mean shape μf is computed as shown in Table 1. Let qi, i = 1, . . . , n, be
the SRNFs of the registered surfaces in the sample and uk

q be the k-th principal
component of q1, . . . , qn. The k-th principal mode of variation for the SRNFs is
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given by μq ± λuk
q , λ ∈ R

+. In order to visualize the principal directions in the
shape space, we need to find fk such that Q(fk) = μq ± λuk

q . This is essentially a
shooting geodesic type of problem.
We generated two groups of synthetic surfaces, each with 8 observations, as shown
in Fig. 6. Within each group, we computed the mean shape and performed princi-
pal component analysis. The first three principal directions (PD) are shown on the
mean shapes of each group as their local magnitudes. Computed mean shapes and
modes of variation on anatomical surfaces are presented in Fig. 7. Under the pro-
posed framework, to compute the Karcher mean, computational cost per iteration
(Algorithm 2 in Table 1) is 174 seconds comparing to 397 seconds in the previous
method (Algorifhm 1 in Table 1) using the PCA basis (8 of them, see [27]) and
more than 4 hours using 200 spherical harmonic basis. Inverting the μq takes 6
seconds.

4. Random Sampling from Shape Models: When given a sample of observed sur-
faces f1, . . . , fn, one wants to fit a probability model to the data and generate
random samples from it. Let q1, . . . , qn be the SRNFs of the registered surfaces

Sample 1

Sample 2

Sample 1 Sample 2

PD1 PD2 PD3 PD1 PD2 PD3
Random Samples

Fig. 6. Statistical analysis of synthetic data sets. Each sample has eight observations. The first
three principal directions (PD) are shown plotted on the corresponding mean shapes for both
samples (middle). Deformation magnitude is shown by color (blue small, red large). Random
samples from Gaussian models are shown at the bottom.
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Left Putamen Left Thalamus
PD1 PD2 PD3 PD1 PD2 PD3

Fig. 7. Plots of mean shape and principal directions (PD) for medical surfaces. Deformation mag-
nitude is shown by color (blue small, red large) and plotted on mean shapes.

(a) f1 → h1 (b) f2 → h2

Fig. 8. Transfer of a deformation across shapes. Surfaces f1, h1 and f2 are given. Deformation
from f1 to h1 is learnt and used to deform f2 to get the new surface h2.

from the last step and G(q) be the model probability distribution. A random sam-
ple can be generated from G and we denote it as qs. We want to find fs such
that Q(fs) = qs and it will be a randomly sampled shape. Using the registered
SRNFs from Fig. 6, we used the principal components and estimated a multivariate
Gaussian model for each group. Random samples of SRNFs are generated from the
corresponding models and random shapes from both models are shown in the shape
space by inversion in the bottom row of Fig. 6.

5. Transferring Deformation between Shapes: Given surfaces f1, h1 and f2, one
wants to find h2 such that f2 deforms to it in a similar way f1 deforms to h1. In
this case we are interested in estimating deformations between two shapes and then
applying the deformations to new test shapes. The task can be decomposed into
three components: (1) to learn the deformation from f1 to h1 as v, (2) to transfer
v at f1 to f2 resulting v|| and (3) to deform f2 into h2 using v||. Steps (1) and
(3) are achieved by constructing geodesics while step (2) needs the tool of parallel
transport. The detailed algorithm is described in Table 1. Figure 8 shows an example
of transferring a deformation from one surface to another in the shape space.

5 ADHD Classification

In this section we apply our approach to an important problem in medical image analy-
sis: the diagnosis of attention deficit hyperactivity disorder (ADHD) using MRI scans.
The surfaces of brain structures used here were extracted from T1 weighted brain mag-
netic resonance images of young adults aged between 18 and 21. These subjects were
recruited from the Detroit Fetal Alcohol and Drug Exposure Cohort [15,14,6]. Among
the 34 subjects studied, 19 were diagnosed with ADHD and the remaining 15 were
controls (non-ADHD). Some examples of left structures are displayed in Fig. 9. First
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Thalamus Pallidus Putamen Caudate

Fig. 9. Left anatomical structures in the brain

Table 2. Classification Performance for Five Different Techniques

Method SRNF Gauss SRM Gauss SRM NN Harmonic ICP SPHARM PDM
Structure (%) Proposed [19] [18] [3] [24]
L. Caudate 67.7 - 41.2 64.7 32.4 61.8
L. Pallidus 85.3 88.2 76.5 79.4 67.7 44.1
L. Putamen 94.1 82.4 82.4 70.6 61.8 50.0
L. Thalamus 67.7 - 58.8 67.7 35.5 52.9
R. Caudate 55.9 - 50.0 44.1 50.0 70.6
R. Pallidus 76.5 67.6 61.8 67.7 55.9 52.9
R. Putamen 67.7 82.4 67.7 55.9 47.2 55.9
R. Thalamus 67.7 - 58.8 52.9 64.7 64.7

we register the extracted surfaces as described in [16] and map them into the L
2 space

of SRNFs using Q. In order to distinguish ADHD and control samples, we use the
Gaussian classifier on principal components as defined in Section 4.

Table 2 shows the single structure, LOO nearest neighbor classification rate in %.
The best performance is attained using the proposed SRNF Gaussian classifier between
left putamen surfaces. We compare our results to those obtained using: the SRM Gaus-
sian classifier; the SRM NN classifier; the iterative closest point (ICP) algorithm; an
approach using fixed surface parametrization and L

2 distance between the surfaces;
and the SPHARM-PDM approach. The performance measures for these approaches
were taken from Kurtek et al. [19] and other previously published papers. The results
suggest that the parametrization-invariant metric and the probability models in our ap-
proach provides improved matching and modeling of the surfaces, resulting in a su-
perior ADHD classification. In summary, our method is not only more efficient: the
computational cost is an order of magnitude less than SRM and related ideas; but also
provides significantly improved classification.

6 Conclusions

The SRNF representation is potentially an important tool in statistical shape analysis of
parameterized surfaces. Previous methods built tools for analysis directly in the surface
space, which is computationally inefficient. We have introduced methods for approxi-
mating the inverse mapping Q−1. This map can be used to convert results computed in
SRNF space back to the shape space. Since the SRNF space is a vector space with L

2-
metric, the cost of statistical analysis in this space is very low, thus simplifying typical
shape analysis tasks. In general, by adopting the proposed framework, computational
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cost of algorithms for various analyses can be reduced by an order of magnitude. Ex-
perimental results show that the same analyses can be performed under the simplified
framework, and that the method achieves state-of-the-art performance on the classifica-
tion of ADHD data.
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2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: Reconstruction and
parameterization from range scans. ACM Transactions on Graphics 22(3), 587–594 (2003)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

4. Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using me-
dial surfaces. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp.
33–40. Springer, Heidelberg (2001)
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