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Abstract. Although the correlation filter-based trackers achieve the
competitive results both on accuracy and robustness, there is still a need
to improve the overall tracking capability. In this paper, we present-
ed a very appealing tracker based on the correlation filter framework.
To tackle the problem of the fixed template size in kernel correlation
filter tracker, we suggest an effective scale adaptive scheme. Moreover,
the powerful features including HoG and color-naming are integrated to-
gether to further boost the overall tracking performance. The extensive
empirical evaluations on the benchmark videos and VOT 2014 dataset
demonstrate that the proposed tracker is very promising for the vari-
ous challenging scenarios. Our method successfully tracked the targets
in about 72% videos and outperformed the state-of-the-art trackers on
the benchmark dataset with 51 sequences.
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1 Introduction

Visual tracking is one of the fundamental research problem in computer vision
community for its various applications in video surveillance, robotics, human
computer interaction and driverless vehicle. Although great progress has been
made in the past decade, the model-free tracking is still a tough problem due
to illumination changes, geometric deformations, partial occlusions, fast motions
and background clutters.

Recently, correlation filter is introduced into visual community, which has
already been applied in many applications [2] [10] [13] [27]. As described in Con-
volution Theorem, the correlation in time domain corresponds to an element-wise
multiplication in Fourier domain. Thus, the intrinsic idea of correlation filter is
that the correlation can be calculated in Fourier domain in order to avoid the
time-consuming convolution operation. Meanwhile, the correlation filter is treat-
ed as similarity measure between the two signals in signal processing, which gives
a reliable distance metric and explains the reason of the promising performance
achieved by the previous approaches. Bolme et al. [7] and Henriques et al. [13]
introduce the correlation filter into the tracking application. Although achieved
the appealing results both in accuracy and robustness, these correlation filter-
based trackers employ the template with the fixed size, which is not able to
handle the scale changes of a target.
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In this paper, we propose a novel scale adaptive kernelized correlation filter
tracker with multiple feature integration. The proposed approach overcomes the
limitations of the conventional correlation filter trackers by a multiple scales
searching strategy. To solve the scale change issue in object tracking, we sample
the target with different scales, and resize the samples into a fixed size to compare
with the leant model at each frame. Meanwhile, we adopt a multiple feature
integration scheme, which employs the raw pixel, Histogram of Gradient [9]
and color-naming [32] to further enhance the proposed tracker for dealing with
the more challenge scenarios. Our experimental evaluation demonstrates that
the proposed scale adaptive and multiple feature integration method achieves a
significant performance gain (over 10%) comparing the state-of-the-art approach.
Moreover, our method successfully tracks the targets in almost 72% sequences
in the benchmark [33] with 51 videos in total.

The main contributions of this paper can be summarized as follows. Firstly,
we extend the correlation filter-based tracker with the capability of handling
scale changes, which obtains an impressive performance gain in accuracy. Sec-
ondly, we conduct the extensive experiments to compare the previous studies of
the correlation filter-based trackers [14] [4] [12] with our proposed method that
includes multiple features integration, scale adaptive scheme and a full system.
These experiments reveals the underline clues on the importance of the different
components for a modern tracking-by-detection tracker. Finally, the proposed
tracker achieved a very appealing performance both in accuracy and robustness
against the state-of-the-art trackers.

2 Related Works

Tracking-by-detection trackers [11] [1] [16] [34] are very popular due to its high
performance and efficiency. As these methods usually employ the binary clas-
sifier to distinguish the tracked object from the background, which are usually
denoted as the discriminative methods. Struck [11] is one the most representa-
tive discriminative trackers, which employs the structured Support Vector Ma-
chine(SVM) to directly link the target’s location space with the training samples.
It achieves the appealing result in the recent benchmark [33]. TLD [16] exploits
a set of structural constraints with a sampling strategy using boosting classifier.
The re-detection function makes the TLD method more robust in the challenge
videos. Inspired by the compressive sensing techniques, Zhang et al. [34] train a
Naive Bayes classifier with the compressive features projected from the original
space. MIL [1] explores the idea of a bag of positive samples with a boosting
variant algorithm to construct the tracker. Meanwhile, generative model-based
trackers [22] [15] [21][29] [3] [30] [24] aim to build the metric model to search the
most similar patches for the tracked object. SCM [36] combines the discrimina-
tive classifier and generative model to achieve the high accuracy and robustness.
However, it involves with the heavy computational cost, which hinders its capa-
bility on real-time applications. Additionally, some trackers [5] [35] employ the
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structure information in the scene to enhance the tracking performance while
others [31] exploits the deep learning techniques in the object tracking task.

Our proposed approach is closely related to the correlation filter-based track-
ers [14] [4] [12] [7] [6], which adopt the correlation filter in traditional signal pro-
cessing technique into the tracking applications. CSK [12] is proposed to explore
the structure of the circulant patch to enhance the classifier by the augmenta-
tion of negative samples, which employs the kernel correlation filter to achieve
the high efficiency. Based on CSK [12], KCF [14] adopts the HoG feature [9]
instead of raw pixel to improve both the accuracy and robustness of the tracker.
To further boost the performance of CSK tracker, Danelljan et al. [4] adopt the
color-naming feature into the object tracking task, which is a powerful feature
for the color objects [17] [19] [18]. Meanwhile, MOSSE [7] formulates the problem
in the view of learning a filter .

3 The Tracker

In this section, we firstly review the kernelized correlation filter (KCF) track-
er [14], and then introduce the powerful features used in our approach. More-
over, a scale adaptive scheme is presented to improve the correlation filter-based
trackers.

3.1 The KCF Tracker

Our approach is built on KCF tracker [14], which achieves very impressive re-
sults on Visual Tracker Benchmark [33]. Although the idea of KCF tracker is
very simple, it achieves the fastest and highest performance among the recen-
t top-performing trackers. The key of KCF tracker is that the augmentation
of negative samples are employed to enhance the discriminative ability of the
track-by-detector scheme while exploring the structure of the circulant matrix
for the high efficiency. In the following, we briefly review the main idea of KCF
tracker [14].

In KCF [14], Henriques et al. assume that the cyclic shifts version of base
sample is able to approximate the dense samples over the base sample. Suppose
that we have a one-dimensional data x = [x1, x2, ..., xn], a cyclic shift of x
is Px = [xn, x1, x2, ..., xn−1]. The experiments show that such assumption is
held reasonably in most of cases. Therefore, all the cyclic shift visual samples,
{Pux|u = 0...n − 1}, are concatenated to form the data matrix X = C(x). As
the data matrix is purely generated by the cyclic shifts of x, it is called circulant
matrix. It has an intriguing property [28] that all the circulant matrices can be
expressed as below:

X = FHdiag(Fx)F (1)

where F is known as the DFT matrix, which transforms the data into Fourier
domain, and FH is the Hermitian transpose of F. The decomposition of circu-
lant matrix can be employed to simplify the solution of linear regression. The
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objective function of linear ridge regression can be formulated as follows:

min
w

n∑
i

(f(xi)− yi)2 + λ||w|| (2)

where the function f can be written as the linear combination of basis samples:
f(x) = wTx. The ridge regression has the close-form solution, w = (XTX +

λI)−1XTy. Substituted by Eqn.1, we have the solution ŵ∗ = x̂∗�ŷ
x̂∗�x̂+λ , where

x̂ = Fx denotes the DFT of x, and x̂∗ denotes the complex-conjugate of x̂. Com-
pared with the prevalent method, this solution saves the computational cost of
both extracting patches explicitly and solving a general regression problem [14].
In the case of no-linear regression, kernel trick, f(z) = wT z =

∑n
i=1 αiK(z,xi),

is applied to allow more powerful classifier. For the most commonly used ker-
nel functions, the circulant matrix trick can also be used [14]. The dual space
coefficients α can be learnt as below

α̂∗ =
ŷ

k̂xx + λ
(3)

where kxx is defined as kernel correlation in [14]. Similar to the linear case, the
dual coefficients are learnt in Fourier domain. The inference is valid for the case
that kernel function treats each dimension of the data equally [14]. In this paper,
we adopt the Gaussian kernel which can be applied the circulant matrix trick as
below:

kxx′ = exp(− 1

σ2
(||x||2 + ||x′||2)− 2F−1(x̂� x̂′∗)) (4)

As the algorithm only requires dot-product and DFT/IDFT, the computa-
tional cost is in O(n log n) time. The training label y is a Gaussian function,
which decays smoothly from the value of one for the centered target to zero for
other shifts. As zero means the negative sample, we need to enlarge the original
target bounding box to enclose the negative samples. In this paper, we employ
the window with the size of 2.5 times larger than its original target box for
training. Although the cyclic shift lost lots of information on the original frame,
the classifier obtains the dense samples to fit the model more precisely.

The circulant matrix trick can also be applied in detection to speed up the
whole process. The patch z at the same location in the next frame is treated as
the base sample to compute the response in Fourier domain,

f̂(z) = (k̂x̃z)∗ � α̂ (5)

where x̃ denotes the data to be learnt in the model. When we transform f̂(z)
back into the spatial domain, the translation with respect to the maximum
response is considered as the movement of the tracked target. The motion model
implied that the searching range is the window size for the base patch. Although
the whole model follows the tracking-by-detection scheme, there are only two
samples in the process, both at the same position sampled in the last frame and
current frame. Intuitively, it is more like a similarity metric in Fourier domain.
In addition, Bolme et al. [7] give another interpretation on the whole process.
For the more detailed formulation, please refer to [14] [7].



A Scale Adaptive Kernel Correlation Filter Tracker 5

3.2 Multiple Feature Integration

Since the kernel correlation function only needs to calculate the dot-product and
vector norm, multiple channels can be applied for the image features. Suppose
the multiple channels of the data representation are concatenated into a vector
x = [x1,x2, ...,xC ]. Eqn. 4 can be rewritten as follows:

kxx′ = exp

(
− 1

σ2
(||x||2 + ||x′||2)− 2F−1

(∑
C

x̂c � x̂′∗c

))
(6)

which allows us to use the more strong features rather than the raw greyscale
pixels. Moreover, we can employ various powerful features to exploit the advan-
tages of feature fusion. There are three types of features used in our proposed
tracker. Besides the raw greyscale pixel of the original image, we adopt two
commonly used features in visual tasks.

Histogram of Gradient (HoG) is one of the most popular visual features in
vision community, since it is very effective in practical applications and can be
computed very efficiently. The feature extracts the gradient information from a
cell, which is a range of pixels. HoG counts the discrete orientation to form the
histogram. As in [9], we employ the 31 gradient orientation bins variant in our
method.

Color-naming or color attributes, is a perspective space, which is the linguistic
color label assigned by human to describe the color. Being better than the RGB
space, the distance in color label space is more similar to human sense. As
achieved the promising results in other visual tasks such as object recognition,
object detection and action recognition [17] [19] [18], we employ the mapping
method described in [32] to transform the RGB space into the color names
space, which is an 11 dimensional color representation. Color names provide the
perception of object color, which usually contains the important information on
the target.

The two features are complementary to each other. HoG puts emphasis on
the image gradient while color naming focuses on the color information. In sec-
tion 4.2, we will testify the efficacy of these features separately. Although the
idea is quite straightforward, the performance gain is very promising. Note that
the feature sizes do not consist with each other at first and alignment should be
applied for the features data for the correlation filter.

3.3 Multiple Scale Kernelized Correlation Filter

As described in Section 3.1, the whole process is straightforward. Moreover, KCF
is unable to deal with the scale changes in videos. To this end, we propose a scale
adaptive method to enable the naive correlation filter tracker to deal with the
scale variations.
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In Section 3.1, the searching strategy is implied in the kernel correlation
filter. We employ the bilinear interpolation to enlarge the image representation
space from the countable integer space into the uncountable float space. We fix
the template size as sT = (sx, sy), and define a scaling pool S = {t1, t2, ..., tk}.
Suppose that the target window size is st in the original image space. For the
current frame, we sample k sizes in {tist|ti ∈ S} to find the proper target. Note
that the dot-product in kernel correlation function needs the data with the fixed
size. In this paper, we employ bilinear-interpolation to resize the samples into
the fixed template size sT, and the final response is calculated by

arg max F−1f̂(zti) (7)

where zti is the sample patch with the size of tist, which is resized to sT. Since
the response function obtains a vector, the max operation is employed to find its
maximum scalar. As the target movement is implied in the response map, the
final displacement needs to be tuned by t to get the real movement bias.

Note that all the templates are registered to the same size. Thus, the update
procedure is straightforward. There are two sets of coefficients should be updat-
ed. One is the dual space coefficients α, and another is the base data template
x̃. As in [14], we linearly combine the new filter with the old one as below:

T̄ = θTnew + (1− θ)T̄ (8)

where T = [αT , x̃T ]T is the template to be updated. With the scale adaptive
scheme, the proposed tracker is able to deal with the size changes. The overall
algorithm is summarized into Algorithm 1.

4 Experiments

We conduct three experiments to evaluate the efficacy of our proposed tracker.
Firstly, we implemented three trackers with various settings, including Multi-
ple Features tracker (MF), Scale Adaptive tracker (SA) and the proposed Scale
Adaptive with Multiple Features tracker (SAMF). We compare them with oth-
er correlation filter-based trackers. Secondly, we evaluate our proposed tracker
against the state-of-the-art trackers to show the effectiveness of our proposed
SAMF tracker. Additionally, we report the detailed evaluation on VOT 2014
dataset.

4.1 Experimental Setup and Methodology

We implemented the proposed tracker by native Matlab without optimization.
All the experiments are conducted on an Intel i5-760 CPU (2.80 GHz) PC with
16 GB memory. Our proposed SAMF tracker runs at about 7 fps. The σ used in
Gaussian function is set to 0.5. The cell size of HoG is 4× 4 and the orientation
bin number of HoG is 9. The learning rate θ is set to 0.01. We use the scaling
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Algorithm 1 Overall algorithm of SAMF

Require:
The template for the tracked target, x̃;
The dual space coefficient, α;
The newly arrived observation, y;
The last frame position, pold;

Ensure:
The updated template for the tracked target, x̃;
The updated dual space coefficient, α;
The new position, pnew;

1: for every ti in S do
2: Sample the new patch zti based on size tist and resize it to sT with multiple

features.
3: calculate the response f̂(zti) with Equation 5 and 6.
4: end for
5: Get final position pnew and size tist according to Equation 7
6: Get x̃new based on new position pnew and size tist, and calculate αnew with

Equation 3.
7: Use Equation 8 to update x̃ and α with x̃new and αnew.
8: return updated x̃ and α;

pool S = {0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015}. All parameters are same for
all following experiments.

In all the experiments, two evaluation criteria are used. The first one is mean
center location error (CLE). CLE is the difference between the center of tracked
results and the ground truth, where the smaller value means the more accurate
result. The second criteria is the Pascal VOC overlap ratio (VOR) [8]. It is

defined as V OR = Area(BT∩BG)
Area(BT∪BG) , where BT is the tracking bounding box, and

BG is the ground truth bounding box. The larger value means the more accurate
result.

To make comprehensive evaluation on the proposed approach, we employ
the whole 51 video sequence in the benchmark [33] for the first two experiments.
Moreover, we run the proposed tracker on VOT 2014 dataset containing 25
sequences. In VOT 2014 challenge, the accuracy is measured by the VOR score.
The robustness indicates the failing time for a tracker on the sequence.

4.2 Experiment 1: Comparison between Correlation Filter-based
Trackers

To evaluate the performance gain of our proposed scale adaptive scheme with
multiple features, we run six variants of trackers on the benchmark [33], includ-
ing SAMF, MF, SA, KCF, CN and CSK. All of these trackers takes advantage
of the circulant matrix or kernel correlation filter. Table 1 summarizes the dif-
ference for these trackers. Figure 2 shows the CEL curves and VOR curves for
those trackers. Although their ideas are very similar, the tracking performances
are quite different. This indicates that the visual features and search strategy
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Table 1. The difference among six trackers

name Features Scale adaptive

SAMF raw pixel, HoG, Color label Yes

SA HoG Yes

MF raw pixel, HoG, Color label No

KCF [14] HoG No

CN [4] raw pixel, Color label No

CSK [12] raw pixel No

are essentially important to the visual tracking tasks. CSK only employs the raw
pixel, whose rank is the lowest one among the compared trackers. CN adopts
both color names and raw pixel as features, and achieves a few improvement up-
on CSK. MF outperforms the KCF by augmenting the features space with color
information and raw pixel. As shown in VOR curve, SA obtains a large improve-
ment in accuracy shows. However, the robustness is decayed in the CEL curve.
This demonstrates that expanding the search range will lead to the problem of
local maximum. By taking advantage of the fusion features and the proposed
scale adaptive scheme, SAMF tracker achieved the best performance in both
VOR and CEL metrics.

The results from our experiment shows that our proposed tracker is very
promising both in robustness and accuracy. The experiment also suggests that
the feature and search strategy play very important role in visual tracking. Com-
paring to KCF, the VOR performance gains of SA and MF are 3.8% and 2.7%
respectively while the SAMF gets a 10.6% improvement upon KCF. This in-
dicates that the SAMF is not just the simple combination of the MF and SA,
which can effectively capture the color information while accurately estimating
the size of object.
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Fig. 1. The benchmark overall plot of the six kernel correlation filter based trackers.
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4.3 Experiment 2: Comparison with the State-of-art Trackers

Table 2 illustrates the overall performance for the six trackers compared with
the top two trackers reported in benchmark [33]. In the experiments, we observe
that the mean VOR score will be below 50% when the tracker loses the tar-
get in the sequence. Therefore, we define the successfully tracked sequence for
a given tracker when the mean overlap of the whole sequence is above 0.5. The
total number of the successfully tracked sequences can be viewed as a compre-
hensive metric of the tracker. The trackers with HoG feature achieved the very
appealing performance compared against SCM and Struck in all the methods.
SAMF achieves the best performance in terms of both mean CLE and mean
VOR. Impressively, our approach achieves 57.4% in mean VOR overall, which
is 10% improvement over the KCF tracker. In addition, the proposed tracker
successfully tracked 37 of 51 sequences in the benchmark. This demonstrates
that 72.5% of the sequences in the benchmark can be tracked, which is a big
improvement for the visual object trackers.

Table 2. Overall comprehensive evaluation

SAMF SA MF KCF CN CSK SCM Struck

mean CEL 30.09 39.91 34.55 35.49 64.68 88.78 54.13 50.57
mean VOR 0.574 0.539 0.533 0.519 0.448 0.401 0.505 0.478

Passed Num. 37 32 32 31 23 18 28 28
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Fig. 2. The plot curves for the proposed tracker compared with 9 state-of-art trackers
in the benchmark. (a)-(h) indicate the VOR and CEL of overall, deformation, occlusion
and out-of-plane rotation, respectively.
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Figure 2 shows the detailed report of SAMF compared with the top rank
trackers, KCF [14], SCM [36], Struck [11], CN [4], TLD [16], ASLA [15], CX-
T [5], VTS [20], DFT [29], CPF [26], LSK [23], LOT [25] and VTD [21] in
the benchmark. SAMF ranks the first with a large margin comparing to other
trackers. Although the SAMF is not specially designed for occlusions, deforma-
tions and out-of-plane rotations, surprisingly, the proposed tracker obtains very
appealing performances on these challenging video sequences. These promising
results suggest that the effective features and proper search strategy are more
effective than the complicated models for deformations and occlusions.

4.4 Experiment 3: VOT 2014

Finally, we evaluate our proposed tracker on VOT 2014 dataset. The results are
summarized into Table 3. Compared against KCF [14] and the baseline NCC
tracker provided by the VOT organizer 1, SAMF achieves the higher performance
both in accuracy and robustness. NCC performs quite well in accuracy but poor
in the robustness. This is because NCC obtains more ground truth labels when
it fails to track the target. Benefited from the correlation filter, KCF achieves
an appealing score in robustness, however, it ranks at the last place in the
accuracy due to the template with the fixed size. The proposed SAMF achieves
the best results on both the accuracy and robustness. It can be seen that our
proposed SAMF tracker performs especially well in case of robustness meanwhile
it maintains the highest accuracy compared with other two trackers. This consists
with the experimental results illustrated in Section 4.3.

5 Conclusions

This paper presented a very effective tracker based on the framework of correla-
tion filter. We proposed the scale adaptive scheme to deal with the problem of
the fixed template size in the conventional kernel correlation filter tracker. More-
over, the powerful features including HoG and color naming are fused together
to further boost the overall performance for the proposed tracker. The extensive
empirical evaluations on the benchmark videos and VOT 2014 dataset demon-
strate that the proposed method is very promising for the various challenging
scenarios. Our method successfully tracked the targets in about 72% videos and
outperformed the state-of-the-art trackers on the benchmark dataset with 51
sequences.
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Table 3. The results of VOT 2014

accuracy robustness

SAMF KCF NCC SAMFn KCFn NCCn SAMF KCF NCC SAMFn KCFn NCCn

ball 0.772 0.702 0.740 0.738 0.640 0.633 1 1 30 0.47 1 26.1
basketball 0.748 0.574 0.573 0.640 0.562 0.577 0 2 30 0 2 30.7
bicycle 0.613 0.454 0.717 0.659 0.516 0.678 0 1 9 0.13 0.4 9.93
bolt 0.562 0.522 0.206 0.555 0.510 0.447 2 3 33 1.93 2.6 32.7
car 0.508 0.421 0.708 0.521 0.402 0.646 0 0 6 0.07 0 6.07
david 0.817 0.746 0.691 0.763 0.691 0.623 0 0 16 0 0 14.9
diving 0.245 0.233 0.269 0.209 0.226 0.233 4 5 8 4.4 4.8 6.87
drunk 0.568 0.434 0.364 0.542 0.481 0.423 0 0 4 0 0.53 4.07
fernando 0.394 0.402 0.575 0.393 0.393 0.331 1 1 15 1 1.13 13.3
fish1 0.495 0.438 0.564 0.472 0.445 0.541 3 3 16 2.73 3.27 16.5
fish2 0.296 0.299 0.265 0.294 0.257 0.189 5 4 14 4.80 5.47 12.4
gymnastics 0.536 0.528 0.663 0.467 0.489 0.402 2 3 8 2.47 2.2 7.4
hand1 0.544 0.389 0.515 0.417 0.408 0.378 3 6 13 5.33 4.8 14.8
hand2 0.462 0.438 0.275 0.400 0.443 0.230 5 8 15 7.07 7.87 16.8
jogging 0.819 0.760 0.795 0.674 0.655 0.696 1 1 3 0.93 1.07 3.33
motocross 0.400 0.372 0.326 0.351 0.349 0.208 4 5 9 3.4 4 9.07
polarbear 0.708 0.662 0.750 0.672 0.649 0.620 0 0 3 0 0 2.6
skating 0.452 0.488 0.675 0.526 0.530 0.563 0 0 26 0.07 0.4 26.7
sphere 0.879 0.713 0.643 0.796 0.664 0.674 0 0 1 0 0 2.27
sunshade 0.758 0.761 0.775 0.684 0.718 0.723 0 0 5 0 0 5.33
surfing 0.800 0.797 0.889 0.728 0.738 0.793 0 0 0 0 0 0
torus 0.840 0.757 0.507 0.752 0.687 0.376 0 0 17 0.07 0.27 15.9
trellis 0.814 0.546 0.600 0.732 0.506 0.525 0 0 29 0 0 27.5
tunnel 0.545 0.318 0.719 0.494 0.292 0.639 0 0 10 0 0 9.33
woman 0.758 0.755 0.745 0.734 0.687 0.611 1 2 23 1 2.07 21.5

Mean 0.613 0.540 0.582 0.569 0.518 0.510 1.28 1.80 13.72 1.43 1.75 13.44
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