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Abstract

Scene text recognition has inspired great interests from
the computer vision community in recent years. In this
paper, we propose a novel scene text recognition method
using part-based tree-structured character detection. Dif-
ferent from conventional multi-scale sliding window char-
acter detection strategy, which does not make use of the
character-specific structure information, we use part-based
tree-structure to model each type of character so as to de-
tect and recognize the characters at the same time. While
for word recognition, we build a Conditional Random Field
model on the potential character locations to incorpo-
rate the detection scores, spatial constraints and linguistic
knowledge into one framework. The final word recognition
result is obtained by minimizing the cost function defined on
the random field. Experimental results on a range of chal-
lenging public datasets (ICDAR 2003, ICDAR 2011, SVT)
demonstrate that the proposed method outperforms state-
of-the-art methods significantly both for character detection
and word recognition.

1. Introduction
With the rapid growth of camera-based applications

readily available on smart phones and portable devices, un-

derstanding the pictures taken by these devices semantical-

ly has gained increasing attention from the computer vision

community in recent years. Among all the information con-

tained in the image, text, which carries semantic informa-

tion, could provide valuable cues about the content of the

image and thus is very important for human as well as com-

puter to understand the scenes. As proved by Judd et al. [7],

given an image containing text and other objects, viewers

tend to fixate on text, suggesting the importance of text to

human. In fact, text recognition is indispensable for a lot of

applications such as automatic sign reading, language trans-

lation, navigation and so on. Thus, understanding scene text

is more important than ever.

Most of the previous work on scene text recognition

could be roughly classified into two categories: tradition-

Figure 1. Summary of the proposed word recognition method.

Given a text image, we first use tree-structured models to get the

character detection results, based on which we get the potential

character locations. We then build the CRF model on the potential

locations. Character detection scores are used to define the unary

cost and language model is used to define the pairwise cost. We

finally infer each label of the node and the word by minimizing the

cost function.

al Optical Character Recognition (OCR) based and objec-

t recognition based. For traditional OCR based method-

s [2, 22, 12], various binarization methods have been pro-

posed to get the binary image which is directly fed into the

off-the-shelf OCR engine. However, since text in natural

images differs from text in traditional scanned document

in terms of resolution, illumination condition, size and font

style, the binarization result is usually unsatisfactory. More-

over, the loss of information during the binarization process

is almost unrecoverable, which means if the binarization re-

sult is poor, the chance of correctly recognizing the text is

quite small. As shown in Figure 2, the binarization result

is very disappointing, making it almost impossible for the

following segmentation and recognition.

On the other hand, object recognition based method-

s assume that scene character recognition is quite simi-
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Figure 2. Some scene text binarization results using Otsu [14]. As

we can see, the binarization results are quite disappointing, making

it difficult for the following segmentation and recognition.

lar to object recognition with a high degree of intraclass

variation. For scene character recognition, these method-

s [4, 13, 19, 18] directly extract features from original im-

age and use various classifiers to recognize the character.

While for scene text recognition, since there are no bina-

rization and segmentation stages, most existing method-

s [19, 18, 11, 10] adopt multi-scale sliding window strategy

to get the candidate character detection results. As sliding

window strategy does not make use of the special structure

information of each character, it will produce many false

positives. Thus, these methods heavily rely on the postpro-

cessing methods such as pictorial structures [19, 18] or CR-

F [11, 10] to choose the final word from piles of candidate

detections.

When humans try to recognize scene characters with dis-

tortions and complex background, the detection of the char-

acter from complex background and the recognition of the

character are somehow interdependent. On one hand, the u-

nique structure of each character helps us to detect the char-

acters from complex background and on the other hand, de-

tecting the character-specific structure from complex back-

ground also helps us to recognize the character. In other

words, humans naturally combine detection and recognition

together when recognizing characters from scene images.

Thus, in this paper, we try to imitate human perceptu-

al ability and propose to recognize characters by detecting

character-specific part-based structures, which seamlessly

combine detection and recognition together. As both the

global structure information and the local appearance infor-

mation contribute to the part-based tree-structured models

for characters, the detection results contain less false pos-

itives and thus are more reliable. To recognize the scene

text, we build the CRF model on the potential character lo-

cations. Character detection scores, spatial constraints and

linguistic knowledge are used to define the unary and pair-

wise cost function. The final word recognition result is ac-

quired by minimizing the cost function. We evaluate our

method on a range of challenging datasets (ICDAR 2003,

ICDAR 2011, SVT). Experimental results show that our

method outperforms state-of-the-art methods considerably.

The rest of the paper is organized as follows. Section 2

details the proposed method, including the model for char-

acter detection and word recognition. Experimental results

are given in Section 3 and conclusions are drawn in Section

4.

2. The Proposed Method
2.1. System Overview

Figure 1 shows the flowchart of the proposed method.

First, we use part-based tree-structured models to detect

characters, based on which we get the potential character

locations. Then we build the CRF model on the potential

locations. We use character detection scores, spatial con-

straints and language model to define the unary and pairwise

cost function. Finally we get the word recognition result by

minimizing the cost function. Next, we will detail the char-

acter detection method and word recognition model.

2.2. Character Detection using Part-based Tree-
structured Models

Structure-based model, which captures the local appear-

ance properties and the deformable configuration of an ob-

ject, has inspired great interest from computer vision com-

munity, since Felzenszwalb and Huttenlocher [6] proposed

the pictorial structures framework for object recognition.

Recently, Zhu and Ramanan [20] proposed to jointly ad-

dress the tasks of face detection, pose estimation, and land-

mark localization using mixtures of trees with a shared pool

of parts. Although their model is only trained with hun-

dreds of faces, it compares favorably to commercial systems

trained with billions of examples.

Structure information is even more important to charac-

ters, since characters are designed by human and each type

of character has unique structure representing itself. To uti-

lize the unique structure information of characters, we mod-

el each character as a tree whose nodes correspond to parts

of the character. Thus, both the global structure informa-

tion and the local appearance information are incorporated

into the tree-structured model so as to detect the character-

specific structures. Next, we will give details about the

model, the inference and the learning.

2.2.1 Model

We build a tree-structure based model for each type of char-

acter. Figure 3 shows the models for some characters. Each

rectangle corresponds to a part-based filter of the character

and the red lines illustrate the topological relations of the

parts.

Model for each character: We represent each charac-

ter by a tree Tk = (Vk, Ek), where k is the index of the

model for different structures, Vk represents the nodes and

Ek specifies the topological relations of nodes [20]. Each

node represents a part of the character. Let I represents
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Figure 3. Our tree-structured models for some characters. Red

lines denote the topological relations of the parts and each rectan-

gle corresponds to a part-based filter.

the input image and li = (xi, yi) denotes the location of

part i. Then the score of the configuration of all the parts

L = {li, i ∈ Vk} could be defined as:

S(L, I, k) = SApp(L, I, k) + SStr(L, k) + αk (1)

where

SApp(L, I, k) =
∑
i∈Vk

wk
i · φ(I, li) (2)

and

SStr(L, k) =
∑

ij∈Ek

wk
ij · ψ(li − lj) (3)

As we can see, the total score of a configuration L for

model k consists of the local appearance score in (2), the

structure or shape score in (3), and the bias αk. Next, we

will give details about the appearance model and the shape

model.

Local appearance model: Eq. (2) is the local appear-

ance model which reflects the suitability of putting the part

based models on the corresponding positions. wk
i represents

the filter or the model for part i, structure k, and φ(I, li) de-

notes the feature vector extracted from the location li. Thus,

the score of placing part wk
i on position li is actually the fil-

ter response of template wk
i . We choose HOG [3] as the

local appearance descriptor due to its good performance on

many computer vision tasks.

Global structure model: Eq. (3) is the structure

or shape model which scores the character-specific glob-

al structure arrangement of configuration L. Here we set

ψ(li − lj) = [dx dx2 dy dy2], where dx = xi − xj and

dy = yi − yj are the relative distance from part i to part

j. Each term in the sum acts as a spring that constrains

the relative spatial positions between a pair of parts. The

parameters wk
ij , which are learned in the training process,

could control the location of each part relative to its parent

and the rigidity of each spring. By incorporating the elas-

tic structure information, the model could detect characters

with contamination or deformation as shown in Figure 4(a).

Figure 4. Some detection and recognition results. The red rectan-

gle labels the position of the root node of the tree while the blue

ones label other parts. The character in the green rectangle labels

the type of the sturcture. (a) Detection results of characters with

contamination and deformation. (b) Detection results of text im-

ages after applying NMS.

2.2.2 Inference

Inferring the character-specific structure corresponds to

maximizing S(L, I, k) in (1) over L and k. Since the mod-

els are independent from each other, we could maximize

S(L, I) for all the structures in parallel. Thus, for each

structure, we need to maximize S(I, L) over L:

S∗(I) = max
L

S(I, L) (4)

Since each structure Tk = (Vk, Ek) is a tree, the maxi-

mization for each structure could be done efficiently with

dynamic programming [20]. We omit the message passing

equations for a lack of space.

Re-scoring: Apart from unique structure, different parts

of a character tend to have similar intensity, which we could

utilize to further improve the performance. Thus, we re-

score each model by considering the intensity consistency

of each part to the root part:

Snew(L, I, k) = S(L, I, k) +
N∑
i=2

δ · γdisi,1, (5)

where N refers to the number of parts, disi,1 is the feature

distance between part i and root part. γ is set to 0.2 by cross-

validation. When disi,1 is above a certain value (set to 1.1),

δ = 1 if part i is designed to be different from the root part

and δ = −1 otherwise. We choose histogram feature to

reflect intensity consistency.

2.2.3 Learning

For each type of character, we construct a tree-structured

model. To learn the model, we assume a fully-supervised

paradigm, where we are provided positive images with char-

acters as well as part labels, and negative images with-
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out characters. Both the shape and appearance parameter-

s are discriminatively learned using a structured prediction

framework. First we need to define the topological struc-

ture Ek for each model. We design the tree-structure for

each type of character by our experience and the experi-

mental results show that they perform quite well. We give

more details in the supplementary material.

For a certain type of structure k, given labeled positive

examples {In, Ln, kn} and negative examples {In}, we de-

fine a structured prediction objective function similar to the

one proposed in [21]. Let’s write zn = (Ln, kn). Note

that the scoring function in (1) is linear in model parame-

ters (w,α). Concatenating these parameters into a single

vector β, then we could write the score as:

S(I, z) = β · Φ(I, z) (6)

Now we would learn a model of the following form:

arg min
β,ξn≥0

1

2
β · β + C

∑
n

ξn

s.t. ∀n ∈ pos β · Φ(In, zn) ≥ 1− ξn
∀n ∈ neg, ∀z β · Φ(In, z) ≤ −1 + ξn

(7)

The above constraint states that positive examples should

score better than 1 (the margin), while negative examples,

for all configurations of part positions and structures, should

score less than −1. The objective function penalizes viola-

tions of these constraints using slack variable ξn. The opti-

mization of the above objective function is a quadratic pro-

gram (QP). We use the dual coordinate descent solver [5] to

solve the problem.

2.3. The Word Recognition Model

Although the character detection step provides us with a

set of windows containing characters with high confidence

as shown in Figure 4(b), inevitably it also produces some

false positives and ambiguities between similar character-

s. Thus, we need to make use of other information, such

as language model and spatial constraints to eliminate these

ambiguities. To this end, we build a CRF model on these

detection windows. We make use of character detection s-

cores, spatial constraints, and linguistic knowledge to define

the cost function. Finally, the word recognition result is ac-

quired by minimizing the cost function.

For a given scene text image, there are several potential

character locations. Let n be the total number of potential

locations. Each position, which might have several char-

acter detection results, is represented by a random variable

Xi. Since the potential locations might not have any char-

acter, we introduce a non-character label ε to represent these

false positives. Thus, each random variable Xi takes a label

xi ∈ Cε = C ∪ {ε}. We use Cn
ε to represent the set of all

possible labeling assignments to all the random variables.

Then we define a cost function E : Cn
ε → R, to map any

labeling to a real numberE(·). The functionE(·) is defined

as a sum of unary and pairwise terms as follows:

E(x) =
n∑

i=1

Ei(xi) + λ
∑

{i,j}∈N

Eij(xi, xj), (8)

where x = {x1, x2, ..., xn} represents the set of al-

l the random variables, Ei(xi) is the unary cost function,

Eij(xi, xj) denotes the pairwise cost, and N represents the

set of all the neighboring pairs of nodes, which is deter-

mined by the structure of the graphical model defined upon

them. λ is a tradeoff parameter between the unary and pair-

wise cost and is set to 0.8 by cross-validation in the experi-

ment.

2.3.1 Graph Construction

After applying Non-Maximum Suppression (NMS) [20] on

the original character detection results, the left detection

windows constitute the potential locations. We set the over-

lap parameter for NMS to 0.4 in the experiment. Then, for

each location, we choose those detection windows which

are close to this location as the candidate characters for this

location. We add one node for each potential location se-

quentially from left to right. The nodes are connected by

edges. Since nodes which are spatially distant from each

other would not be directly related, we only connect nodes

which are close to each other. Figure 1 shows the process.

2.3.2 Cost Function

The unary cost E(xi) represents the penalty of assigning

label cj to node xi. In this case, if the detection score for

a certain type of character model cj is very high, the cost

of labeling the node cj should be small and vise versa. If

the scores of all the candidate detections are very low, it is

likely for the node to take a null label ε. To this end, we

define the unary cost as follows:

Ei(xi = cj) =

{
1− p(cj |xi) if cj �= ε
maxj p(cj |xi) otherwise

, (9)

where p(cj |xi) is the probability for node xi to take label cj .

Here we use the detection scores to reflect the confidence

for the class. If some character models, e.g., the models for

classes {ck, cm}, do not detect the character-specific struc-

tures at the position, we set the cost of labeling the node

{ck, cm} to a constant 10.

We use the pairwise cost function E(xi, xj) to incorpo-

rate linguistic knowledge and spatial constraints. The pair-

wise cost of two neighboring nodes (xi, xj) taking labels
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(ci, cj) is defined as:

Eij(xi, xj) =

⎧⎪⎪⎨
⎪⎪⎩

1− P (ci, cj) if ci �= ε ∧ cj �= ε
Dij + μ · Si if ci = ε ∧ cj �= ε
Dij + μ · Sj if ci �= ε ∧ cj = ε
Dij + μ · Si,j if ci = ε ∧ cj = ε

,

(10)

where P (ci, cj) refers to the bi-gram language model learnt

from the lexicon, Dij is the relative distance of the two n-

odes, Si and Sj represent the maximum character detection

scores at the corresponding locations, Si,j is the larger one

of Si and Sj , and μ is set to 1.5 in the experiment. We use

the SRI Language Modeling Toolkit [17] to learn the prob-

ability of joint occurrences of characters in a large English

dictionary with around 0.5 million words provided by au-

thors of [10]. The pairwise cost function means that if the

probability of joint occurrence of a character pair (ci, cj) is

large, the cost of nodes (xi, xj) taking labels (ci, cj) should

be small. Moreover, if the relative distance of the two nodes

is small, and the maximum score of the node is low, the cost

of the node taking a null label should be small.

2.3.3 Inference

After computing the unary and pairwise cost, we use the

sequential tree-reweighted message passing (TRW-S) algo-

rithm [8] to minimize the cost function in (8), due to its

efficiency and accuracy on our recognition problem. The

TRW-S algorithm maximizes a concave lower bound on the

energy. It begins by considering a set of trees from the ran-

dom field and computes probability distributions over each

tree, which are then used to reweight the messages being

passed during loopy BP [15] on each tree. The algorithm

terminates when the lower bound cannot be increased fur-

ther, or the maximum number of iterations has reached.

To conclude, given a scene text image, we first (1) use

the tree-structured model for each type of character to de-

tect possible characters; (2) then use these detection win-

dows to decide the potential character locations on which

the CRF model is defined; (3) compute the unary and pair-

wise cost function based on the detection scores, the spatial

constraints and the language model; and (4) finally infer the

most likely word using the TRW-S algorithm.

3. Experimental Results
In this section, we give detailed evaluation of the pro-

posed character detection and word recognition method. We

compare the detection based character recognition method

with conventional HOG+NN. We also compare the pro-

posed character detection method with conventional slid-

ing window strategy, SYNTH+FERNS proposed by Wang

et al. [18]. For word recognition task, we compare our re-

sults with state-of-the-art methods [19, 18, 10, 11] as well

as commercial OCR engines ABBYY FineReader 9.0 [1].

3.1. Datasets

Character recognition datasets. To evaluate the per-

formance of the proposed detection based character recog-

nition method, we test the recognition rate on two public

datasets: Chars74k [4] and ICDAR 2003 robust character

recognition dataset (ICDAR03-CH) [9]. However, since we

focus on detecting and recognizing characters with certain

structures, characters with similar structures such as, ’0’,

’O’ and ’o’, ’P’ and ’p’, ’K’ and ’k’, ’X’ and ’x’, should

belong to the same class. Thus, in total, we have 49 types

of structures to detect and recognize. To make full use of

the whole test set which contains 62 classes, we combine

the samples from classes with similar structures to form a

new class. We choose training samples for all the struc-

tures from Chars74k dataset. The number of training sam-

ples varies from 10 to 30 and once the final structure based

model for each class is trained, they are used on all the tasks.

For chars74k dataset, all the remaining images except those

chosen as training samples comprise the test set. While for

ICDAR03-CH dataset, since we do not use the training set

to learn the model parameters, we evaluate the performance

on both the training and test sets. In total, we have 6148,

5835, and 5245 test samples for Chars74k, ICDAR03-CH-

Train and ICDAR03-CH-Test respectively.

Word recognition datasets. We use the challenging

public datasets Street View Text (SVT) [19], ICDAR 2003

robust word recognition [9] and ICDAR 2011 word recogni-

tion datasets [16] to evaluate the performance of the overall

word recognition method. The SVT dataset contains images

taken from Google View Street. Since we focus on the word

recognition task, we use the SVT-WORD dataset following

the experimental protocol of [19, 18]. For ICDAR 2003 and

ICDAR 2011 datasets, similar to [18], we ignore words with

less than two characters or with non-alphanumeric charac-

ters.

3.2. Detection Based Character Recognition

To recognize characters using the detection model, we

apply each character-specific tree-structured model (TSM)

on the image and choose the structure with the highest s-

core as the recognition result. Apart from the recognition

results of the first candidate, we also evaluate recognition

results with candidate number varying from 2 to 5. Simi-

lar to most methods [13, 19, 18], we choose “HOG+KNN

”as the benchmark method. Concretely, each image is par-

titioned into 4 × 3 blocks, from which we extract HOG [3]

features, and KNN is used to recognize the character. The

recognition results on Chars74k, ICDAR03-CH-Train and

ICDAR03-CH-Test are shown in Figure 5.

The results show that the proposed TSM outperform-

s HOG+KNN more than 10% on ICDAR03-CH dataset,

when only considering the first candidate. When increasing

the candidate number to 2, we find that the performance of
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(a) Chars74k dataset(%) (b) ICDAR03-CH-Train dataset(%) (c) ICDAR03-CH-Test dataset(%)

Figure 5. Character recognition results with different candidate number on different datasets. Since we focus on detecting characters with

unique structures, we only train 49 types of character model whose structures are different from each other. Thus the recognition results

are reported on 49 classes.

TSM improves more quickly with an increase of about 8%

whereas the recognition rate of HOG+KNN only increases

3%-5%. The great improvement suggests (1) the effective-

ness of the tree-structured models, as they tend to detect and

recognize characters with certain structures, and thus (2) the

high possibility of achieving better recognition result if we

postprocess the result to deal with similar structures. When

we consider the recognition rates of the first 5 candidates,

the result is quite encouraging, reaching 86.38%, 91.88%,

89.74% on Chars74k, ICDAR03-CH-Train and ICDAR03-

CH-Test respectively. Since all the training samples are

chosen from Chars74k dataset, the results further demon-

strate that, for the proposed method, the model trained on

one dataset could generalize well on other datasets.

3.3. Character Detection

To evaluate the superiority of the proposed character de-

tection method over conventional multi-scale sliding win-

dow detection strategy for word recognition, we test the

word recognition result using the word spotting strategy

PLEX from [18]. In this case, based on the character detec-

tion results of the proposed TSM and the SYNTH+FERNS

proposed by Wang et al. [18], same postprocessing strate-

gy PLEX is used to find the final word. Similar to [18], for

ICDAR 2003, we measure performance using a lexicon cre-

ated from all the words that appear in the test set (we call

this ICDAR03(FULL)), and with lexicons consisting of the

ground truth words for that image plus 50 random words

added from the test set (we call this ICDAR03(50)). In the

SVT-WD case, a lexicon of about 50 words is provided with

each image as part of the dataset. The word recognition re-

sults are shown in Table 1.

The results demonstrate that TSM+PLEX outperform-

s FERNS+PLEX considerably on all the tasks. Since we

use the same word spotting strategy PLEX, the only differ-

ence between the two methods lies in the character detection

method. Wang et al. [18] used multi-scale sliding window

Method FERNS+PLEX [18] TSM+PLEX

ICDAR03(FULL) 62 70.47

ICDAR03(50) 76 80.70

SVT 57 69.51
Table 1. Word recognition results using word spotting strategy

PLEX. For FERNS+PLEX, multi-scale sliding window strategy

is used to detect characters and FERNS classifier is used to rec-

ognize the characters. While for TSM, tree-structured models are

used to detect and recognize the characters at the same time. Both

methods adopt the same postprocessing strategy PLEX.

strategy to detect and recognize characters, which does not

make use of the character-specific global structure informa-

tion. Thus, there are many false positives, which would dis-

turb the word spotting stage. While for the proposed char-

acter detection method, since we make use of both global

structure information and local appearance information, the

detection results are more reliable and representative.

3.4. Word Recognition

To recognize the word, we build the CRF model on the

character detection results as discussed in Section 2.3. We

add one node for each potential location and nodes are

connected based on their horizonal spatial distance. We

use ICDAR 2003, ICDAR 2011 and SVT datasets to e-

valuate the proposed word recognition method. Same bi-

gram language model learnt from the lexicon with 0.5 mil-

lion words is used on all the datasets. Similar to the e-

valuation scheme in [18] and [11], we use the inferred re-

sult to retrieve the word with the smallest edit distance

in the lexicon. For ICDAR datasets, we measure perfor-

mance using a lexicon created from all the words in the test

set (ICDAR03(FULL), ICDAR11(FULL)), and with lexi-

con consisting of the ground truth words plus 50 random

words from the test set (ICDAR03(50), ICDAR11(50)).

For SVT dataset, we use the lexicon provided by Wang

et al. [18]. We compare our methods with state-of-the-art
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Figure 6. Examples of word recognition results of the proposed method. Our method could recognize scene text with low resolution,

different fonts and distortions.

Method ICDAR03(FULL) ICDAR03(50) ICDAR11(FULL) ICDAR11(50) SVT

ABBYY9.0 [1] 55 56 - - 35

SYNTH+PLEX [18] 62 76 - - 57

TSM+PLEX 70.47 80.70 74.23 80.25 69.51

Method in [11] - 81.78 - - 73.26

Method in [10] 67.79 81.78 - - 73.26

Our method 79.30 87.44 82.87 87.04 73.51
Table 2. Word recognition rates of the proposed method and recent state-of-the-art methods on ICDAR 2003, ICDAR 2011 and SVT. The

results on ICDAR03(50), ICDAR11(50), SVT are acquired by retrieving the ones with the smallest edit distance in the lexicon of 50 words

whereas for ICDAR03(FULL) and ICDAR11(FULL), the lexicon contains all the ground truth words in the test set.

methods [18, 11, 10] and the results are shown in Table 2.

The results show that our method constantly performs

better than state-of-the-art methods on all the tasks. The

proposed method outperforms TSM+PLEX by 6%-9%,

showing the effectiveness of the CRF model which incor-

porates detection scores, linguistic knowledge and spatial

constraints, since both methods adopt the same character

detection method. Our method also outperforms the ap-

proach proposed by Mishra et al. [11, 10] by more than

10% on ICDAR03(FULL). Note that Mishra et al. also

used the CRF model to encode character detection result-

s and language model. However, they used the multi-scale

sliding window strategy to get the candidate character lo-

cations and SVM to classify these characters. The detec-

tion method is not as good as the proposed tree-structured

character detection method which makes use of the intrin-

sic global structure information. Furthermore, they built the

CRF model on all the detection windows as long as their

spatial distance and overlap ratio satisfy a certain condition,

which makes the CRF model more complex than ours s-

ince we only use the potential character locations to define

the nodes. What’s more, Mishra et al. [11] computed the

node-specific lexicon prior for each text image from their

corresponding lexicon, which means (1) the lexicon priors

heavily rely on the lexicon for that image and (2) the com-

putation cost is increased since the lexicon prior should be

recomputed for each image. On the contrary, we use the

same bi-gram language model learnt from a large dictio-

nary with 0.5 million words on all the tasks. This further

demonstrates the generalization ability and the adaptivity

Figure 7. Examples from SVT that our method failed to recognize.

of the proposed method. Compared to [11], the recognition

rates on SVT do not improve a lot, mainly because some

of the scene text images in SVT are difficult to recognize

even for human as shown in Figure 7. We also report recog-

nition results on ICDAR11 dataset (ICDAR11(FULL) and

ICDAR11(50)) for future comparison. Some of the recog-

nition results from ICDAR and SVT are shown in Figure 6.

As we can see, our method could recognize scene text with

low resolution, different fonts and distortions.

The reasons that our method achieves an increase in

recognition rates of more than 10% on ICDAR03(FULL)

and 6% on ICDAR03(50) mainly lie in: (1) the part-based

tree-structured character detection model makes use of the

global structure information and the local appearance in-

formation, seamlessly combining character detection and

recognition together; and (2) we integrate the detection s-

cores, spatial constraints and language model into the care-

fully designed CRF model so that different types of infor-

mation could be optimally balanced.

Both the character detection and word recognition are

implemented in Matlab. The average processing time to

recognize a scene text image is about 3 seconds on an In-
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tel(R) Core(TM) i7-2600 CPU 3.40GHZ processor. Since

the character detectors are independent from each other, the

implementation could be much faster using parallel process-

ing.

4. Conclusion

In this paper, we propose an effective scene text recog-

nition method using the CRF model to incorporate tree-

structure based character detection and linguistic knowl-

edge into one framework. Different from the convention-

al multi-scale sliding window character detection strategy,

which does not make use of the intrinsic global structure in-

formation, we propose to learn a part-based tree-structured

model for each type of character to detect and recognize the

characters simultaneously. Based on these detection results,

we build a CRF model on the potential character location-

s to integrate detection scores, spatial constraints and lan-

guage model. We report results on three of the most chal-

lenging datasets and the results show that our method not

only outperforms the most popular work published at ICCV

2011 [18] significantly but also improves the latest results

published by Mishra et al. [11, 10] considerably. The exper-

imental results show that our method could recognize text

in unconstrained scene images with a high accuracy. This

could greatly help us in building systems, such as scene un-

derstanding, automatic sign reading, language translation,

navigation and so on.
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