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In-Memory Technology Enables Interactive Drug Response Analysis

Matthieu-P. Schapranow™

* Hasso Plattner Institute
Enterprise Platform and Integration Concepts
August—Bebel-Str. 88
14482 Potsdam, Germany
{schapranow/cindy.faehnrich/platiner} @hpi.de

Abstract—Latest medical diagnostics generate in-
creasing amounts of big medical data. Specific soft-
ware tools optimized for the use by healthcare experts
and researchers as well as systematic processes for
data processing and analysis in clinical and research
environments are still missing.

Our work focuses on the integration of high-
throughput next-generation sequencing data and its
systematic processing and its instantaneous analysis
to use them in the course of precision medicine.

‘We share our research results on designing a generic
research process for drug response analysis including
specific software tools built on top of our distributed
in-memory computing platform for processing of big
medical data. Furthermore, we present our technical
foundations as well as process aspects of integrating
and combining heterogeneous data sources, such as
genome, patient, and experimental data.

Keywords-Drug Response Analysis; Genome Data
Analysis; Process Integration; In-Memory Database
Technology; E-Health; Next-Generation Sequencing.

I. INTRODUCTION

The Human Genome (HG) project launched in the
1990s involved thousands of research institutes world-
wide and required more than a decade to sequence
and decode a single full HG [1]. Nowadays, Next-
Generation Sequencing (NGS) technology are used to
process genomes within hours at reduced costs and, thus,
support innovative e-health applications, e.g., in course
of precision medicine [2]. Precision medicine aims at
treating patients specifically based on individual dispo-
sitions, e.g., genetic or environmental factors [3].

The In-Memory Database (IMDB) technology has
proven to have major advances in analyzing big enter-
prise and medical data, e.g., to analyze patient data and
identify pharmaceutical counterfeits in real time [4, 5].

In this work, we present our findings of applying
IMDB technology to enable integration of experiment
results, its real-time analysis, and prediction of drug
response in silico in the course of precision medicine.
We introduce a generic research process for cancer re-
searchers built upon our High-performance In-memory
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Figure 1. Screenshot of the drug response analysis cloud applica-
tion built on our real-time analysis platform.

Genome (HIG) cloud platform, which is online available
at http://we.analyzegenomes.com/. The HIG platform
provides cloud-based Internet services for processing and
analysis of big medical data, such as high-throughput
genome data. Together with cancer researchers, we de-
veloped special purpose software tools to evaluate results
of conducted Xenograft experiments, combine them with
relevant medical knowledge, and to analyze them instan-
taneously [5, 6]. Fig. 1 depicts a screenshot of our drug
response cloud application showing details about genetic
changes of a mama carcinoma tumor sample.

The rest of the paper is structured as follows: In
Sect. II, our work is set in context of related work. We
introduce selected in-memory technology building blocks
in Sect. IIT and our research methodology in Sect. IV.
We present the current drug response process in Sect. V
and define our enhanced research process in Sect. VI. In
Sect. VII, we evaluate our contribution while our work
concludes with an outlook in Sect. VIII.

II. RELATED WORK

Fig. 2 provides a comparison of costs for sequenc-
ing and main memory modules. Both costs follow a
steadily declining trend, which facilitates the increasing
use of NGS for whole genome sequencing and IMDB
technology for its data analysis. Related work in the



2014 |IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)

10000

Main Memory Costs per Megabyte

. Sequencing Costs per Megabase —------—-
1000 F ]

Costs in [USD]

0.001

00T uef -
00T uef -
900T uef -
800T uef -
010z uef -
clozuef
¥10T uef

Date

Figure 2. Costs for next-generation sequencing and main memory
from 2001 to 2014 adapted from [7, §].

field of e-health applications for genome data processing
has increased in the recent years. However, work focus-
ing on implementing end-to-end processes is still rare.
Therefore, we focus on the implementation of innovative
research processes by, amongst others, the integration of
genome data processing and statistical data analysis in
course of drug response analysis.

Sun investigated gene regulations in prostate cancer
samples combining latest sequencing technology and
bioinformatic approaches[9]. We agree that an integrated
data processing and analysis approach is also essential
for other application fields. Thus, we integrate various
heterogeneous data sources to enable multi-modal mod-
eling of diseases. Furthermore, we enable researchers for
the first time to perform data analysis a) in real-time
without any delay and b) without the need to involve
dedicated IT experts, e.g., to prepare analysis reports.

Rossello et al. propose the use of Xenograft models as
sources for preclinical work when primary tumor samples
are rare, e.g., for small cell lung cancer. They share
detailed insights into their methodology using state-
of-the-art alignment and variant calling tools, such as
BWA, GATK, and snpEff [11, 12, 13]. However, they
do not provide a tight integration of their incorporated
genome sequencing and data analysis pipeline, which
consumed major parts of the their experimental time.
Our contribution enables tight integration of experimen-
tal data, such as NGS tumor data, and its real-time
analysis as described in Sect. V.

III. IN-MEMORY TECHNOLOGY BUILDING BLOCKS

We refer to IMDB technology as a toolbox of IT
artifacts enabling processing of data in real-time in the
main memory of server systems [14]. The combination
of IMDB database technology and analysis of genome
data is driven by declining costs as described in Sect. II.
In the following, we outline selected IMDB technology
building blocks and their relevance for our work.
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Insert-only: It is a data management approach
that stores data changes as new entries. In contrast to
traditional databases, in an insert-only database table
operations that change data, such as update or delete, do
no longer "destroy" the original data. Affected entries are
invalidated instead while keeping the complete history of
value changes accessible [14]. Thus, we guarantee a re-
producible research process by tracing all data changes,
e.g., to retrospectively analyze when experiment results
were taken.

Lightweight Compression: It refers to a data stor-
age representation, which consumes less space than its
original pendant [14]. The columnar storage layout incor-
porated by our IMDB supports transparent lightweight
compression techniques, such as run-length encoding,
dictionary encoding, and difference encoding [15]. Typ-
ically, values of a database attribute are within a very
small subset of the attribute’s domain, e.g., male and
female for the gender type. Lightweight compression
maps all unique values to a uniform format, e.g., male=1
and female=2, consuming the minimum portion of stor-
age to represent the relevant subset of the complete
data domain. Thus, lightweight compression reduces the
amount of required main memory capacity to enable
real-time analysis of big medical data.

Partitioning: We distinguish between vertical and
horizontal partitioning [16]. The former refers to the
arrangement of database columns. It is achieved by
splitting columns of one database table in multiple col-
umn sets wile each set can be distributed on individual
servers [17]. The latter addresses long database tables
and their division into smaller chunks of data. Splitting
data into equally long horizontal partitions supports par-
allel search operations and improves scalability [14]. In
particular, we incorporate inter-chromosome, i.e., store
data chromosome-wise, and intra-chromosome partition-
ing, i.e., store chromosome data in regions, to support
data processing by individual CPU cores.

IV. METHODOLOGY

In the course of this project, we followed the design
science methodology to improve the existing research
process with the help of selected software artifacts [18].
For the development of the software tools, we applied
the Design Thinking (DT) methodology. DT proposes
to work in interdisciplinary teams with members from
different disciplines, e.g., a software developer and a
medical researcher [19]. They can combine their indi-
vidual viewpoints on the problem domain while chances
that important functional aspects are not recognized are
minimized. Additionally, interdisciplinary teams will not
suffer from rivalry between experts of the same field
while having all required expertise to implement the
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Figure 3. Adapted Design Thinking Process as defined by the HPI
School of Design Thinking in Potsdam and Stanford [19].

solution available in the team. Furthermore, DT pro-
vides a process framework as depicted in Fig. 3 asking
for constant communication between developing team,
stakeholders, and targeted end users.

We incorporated DT as follows: we conducted user
interviews with cancer researchers and physicians to
document the existing research process as described in
Sect. V. Furthermore, we designed an enhanced research
process by combining data from heterogeneous sources
and processing steps in a software prototype as described
in Sect. VI. For rapid software development, we fol-
lowed the scrum software development methodology [20].
Based on the constant user feedback, we extended our
prototype iteratively following short development sprints
of one to two weeks and evaluated new functionality
either in workshops at users’ site or telephone interviews
where end users tested the software artifacts via screen
sharing tools. The acquired feedback was incorporated
to plan the next development sprint.

V. CURRENT DRUG RESPONSE ANALYSIS PROCESS

Nowadays, drug response analysis consists of a) con-
ducting drug experiments, e.g., in Xenograft models, and
b) the analysis of the obtained experiment results [21].
We observed that the following categories of data sources
are used for drug response analysis as depicted in Fig. 4:

« Patient Metadata is retrieved from Clinical Infor-
mation Systems (CISs) and contains specific patient
details, such as age, gender, and anamnesis. Its data
volume typically ranges from one to 100 MB exclud-
ing any diagnostic data, such as imaging data,

Genome Data is obtained by sequencing resected
tumor material, e.g., with NGS devices. Its data
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Figure 4. The enhanced drug response analysis process involves
data in heterogeneous formats from different data sources.

volume is in the range of some 100 MB for panel
sequencing and up to 500 GB for NGS.
Experiment Data is obtained by wet laboratory
assistants, e.g., documenting the individual drug
tests in Xenograft experiments. Its data volume is
in the range from 10 MB to 1 GB.

The time consumed for preparation and laboratory
work can range from days to weeks depending on
the conducted experiments. Although the data analysis
phase is already assisted by software, it still takes days
up to weeks to perform complex data analysis, such as
correlation or cohort analysis. As a result, processing and
analysis of data is the most time-consuming aspect of
the research process after laboratory work. The reasons
are many-fold, e.g., the absence of optimized tools for
data analyses, analysis tools only tested for a small
subset of required data sources, and time-consuming
transformation of relevant data.

Manual or semi-manual time-consuming process steps,
such as using spreadsheets for conducting complex data
analysis, characterize all phases of the existing process.
From a software engineering perspective, we focus on all
process steps that involve digital data processing and
analysis. Thus, our work focuses on the data processing
and analysis of the existing research process to optimize
the overall process performance and acceptance.

VI. ENABLING REAL-TIME DATA ANALYSIS USING
IN-MEMORY TECHNOLOGY

Fig. 4 depicts our enhanced research process and the
involved data sources. We applied in-memory technology
for all data processing and analysis to improve the over-
all process performance. Our enhanced research process
is divided in the following steps:

« Computational biology performs data process-

ing, e.g., alignment of raw DNA,

« Visual data exploration supports verification of

hypotheses by researchers, and

o Clustering of tumor data enables real-time clas-

sification of results.
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A. Computational Biology

In the following, we share selected insights on enabling
real-time computational processing of DNA data by
incorporating IMDB technology.

1) Open Reading Frame Detection: Detecting new
Open Reading Frames (ORFs) helps to find potential
gene locations on the DNA [22].

Our ORF detection is two-divided: Firstly, we detect
start and end codons in all reading frames. Secondly,
pairs of start and end codons of the reading frame are
analyzed to obtain ORFs of a minimum length.

We process the forward and the backward strand in
parallel, e.g., when searching for the start codon "ATG"
on the DNA’s forward strand, the reserve-inverted triplet
"CAT" to detect the start codon on the backward strand
is also checked. The result consists of reading frame,
position of the codon, and its type. These results are
grouped by reading frame to identify the corresponding
pairs of start and stop codons.

We implemented the ORF detection algorithm within
the IMDB using SQLScript and L [23, 24]. Thus, we
incorporate advances of in-memory computing, such as
processing genome data directly within the IDMB elim-
inating former data transfer or transformations.

2) Detection of Genetic Functional Changes: For each
genetic variant, its potential impact on the Amino Acid
(AA), which is built from the genetic code, needs to be
analyzed. Changes in the AA affect the proteins built
from it, which might result in harmful mutations [25].

We implemented the detection of functional genetic
changes as a stored procedure in the IMDB as follows:
We join the variant’s locus, i.e., chromosome and posi-
tion, with a database table of known genes to determine
whether the variant is located on a known gene [26]. If
the variant is not located on a known gene, we consider
its impact as minor since the current medical knowledge
about variants not located on genes is very limited. If
the variant is located on a gene, all splicing variants of
the gene are processed in parallel to evaluate its impact
per splicing variant.

We document an AA change using the expected fol-
lowed by the detected AA including the position of the
affected triplet, e.g., V60OE describes an AA change of
valine to glutamic acid at triplet 600.

B. Visual Data Ezxploration

We developed interactive visualization tools to enable
researchers to perform interactive graphical exploration
of data, wich are outlined in the following.

Hierarchical clustering creates a hierarchy of clusters
by iteratively merging closest data points to a clus-
ter (agglomerative hierarchical clustering). Thus, the
clustering algorithm needs a measure of dissimilarity
between sets of observations.
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Figure 5. Clustered heat map using hierarchical clustering compar-
ing mutation count, a subset of genes, and tumor samples.

Fig. 5 shows our clustered heat map visualizing the
results of a hierarchical clustering.

For hierarchical clustering, the measure is formed by
combining an appropriate metric for distance calculation
between data points and a linkage criterion for calculat-
ing the distance between merged data points [32]. Rows
and columns of the heat map are individually cluster
using using row- and column-wise vectors. We used the
Euclidean distance function to calculate the distance
between vectors and singly linked as the linkage criteria.

Hierarchical clustering results in dendrograms, which
represents nested clusters at certain levels of similarity.
We use the dendrogram to rearrange/reorder the heat
map, e.g., to mark gaps within the heat map.

C. Clustering of Tumor Data

In the following, we share our process enhancements
to enable interactive classification of research data.

1) Tumor Data Association Rules: Association Rules
Mining (ARM) requires a set S of item sets S; as its
data basis: S = {S1,..., Sm}. Every item set S; consists
of several items 4; from the list I of distinct items:
I = {i1,...,7n}. Item sets are processed to detect rules
of type: A = B where A I A B < I, while A is called
prior and B is called posterior.

In our use case, items are all distinct functional ge-
netic changes found in the library of available tumors.
Item sets correspond to the set of functional changes
of a single tumor and drug response classes obtained
in Xenograft experiments. We are searching for rules
A = B, where A is a set of functional changes and B
is a specific drug response class. Our model focuses only
on the impact of single functional changes to limit the
problem space, i.e., we restrict |A| = 1.

We applied the Apriori algorithm for ARM using the
Predictive Analysis Library (PAL), which is integrated
in the IMDB, and the implementation provided by the
R package arules [27, 28, 29].

For classification of drug responses, either the Tu-
mor/Control (T/C) value or the Response Evaluation
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Criteria in Solid Tumors (RECIST) value can be incor-
porated. In order to use Apriori ARM for classification,
we defined the following drug response classes for each
item set: Partial Response (PR), Stable Disease (SD),
and Partial Disease (PD). The thresholds for the classes
can be configured for each analysis individually by can-
cer researchers.

2) Classification of Tumor Data: Classification of tu-
mor data can bring up hidden similarities in the data set,
e.g., to generate hypotheses about new tumors subtypes.
We provide the platform for execution of prediction
models, but its concrete specification is provided by
involved clinical researchers.

We use Support Vector Machine (SVM), which is
available in many statistical frameworks, such as R [27].
It uses a regression mode also known as Support Vec-
tor Regression (SVR) to estimate correlation between
attributes of the training data to re-apply them for
prediction [30]. Our SVM implementation is part of PAL,
which is executed directly in the IMDB and performs
faster than existing alternatives due to incorporated
technology advances, e.g., eliminated disk I/O and elim-
inating the need for exporting/importing data from/to
the database.

In the following, we share details of our tumor clas-
sification. Firstly, the researcher configures SVM pa-
rameters through an interactive, web-based wizard, e.g.,
drug responses to predict or experiment data to use for
training of the statistical model. The results depend on
the configured parameters, e.g., a concrete T/C or a
RECIST value for a specific pharmaceutical based on the
selected tumor attributes. SVM in classification mode
results in response class probabilities instead of concrete
drug efficiency values as introduced in Sect. VI-C1 [31].
We define the response classes as follows:

00<PR<0.7< 5D <12<PD, with

« PR defining a reduction in tumor growth,

o SD defining no significant change, and

o PD defining a negative drug response or a growth
of the tumor.

)

The train formula in the R procedure is "drug ~."’,
which defines the drug attribute as the depending and
the remaining database attributes as deciding variables
indicated by the dot. Executing SVM for multiple drugs
reuses the configuration to achieve a high level of parallel
data processing.

VII. EVALUATION AND DISCUSSION

Together with cancer researchers, we have been able to
apply our enhanced research process. Major advantages
are summarized in the following.
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Integration of heterogeneous data sources: Instead of
integrating latest data, e.g., genetic annotations, from
international research databases manually, researchers
can build on always up-to-date data maintained by the
updater framework of the HIG platform [5].

Eliminated media breaks: By providing required sta-
tistical algorithms, e.g., clustering, as an integrated com-
ponent of our IMDB platform, we reduced media breaks
and required data transformations. Once raw data, e.g.,
experiment and genomic data, is stored in the IMDB,
data processing is performed within the database. As
a result, processing and analysis of data as the time
most time-consuming operations are streamlined and the
overall process time is significantly reduced.

Flexible and instantaneous data analysis: We build
on the latest IMDB technology since it enables interac-
tive analysis of big medical data due to its performance
advances in data processing. Furthermore, it leverages
flexibility in data analysis, i.e., user-configured parame-
ters and aspects to analyze instead of having only access
to a limited amount of optimized, but predefined and
static analysis reports. Thus, interactive graphical data
exploration supports researchers to identify and verify
new hypotheses instantly without excessive delay.

Integrated statistical tools: We support the use of
statistical tools directly within the IMDB. Thus, we
were able together with cancer researchers to design and
implement clinical models to predict Xenograft results
based on obtained experiment data using SVM.

VIII. CONCLUSION AND OUTLOOK

In our contribution, we shared details about our en-
hanced research process for drug response analysis. We
showed how latest IMDB technology acts as the key
enabler for real-time data analysis, exploration of exper-
iment data, and the integration of heterogeneous data
sources. Thus, our HIG platform enabling processing
and analysis of big medical data, is a foundation for
implementation of the specific drug response analysis ap-
plication while optimizing the existing research processes
in this specific field of cancer research. Furthermore, we
shared detailed insights in our applied research method-
ology, which constantly involves the feedback of experts
from interdisciplinary teams.

Our future work will focus on applying the research
process to additional fields of cancer research in course
of precision medicine. Furthermore, we will investigate
how a huge library of tumor samples can be used as
training data to create more stable prediction models to
discover new medical insights also for well-understood
tumor types, such as breast or lung cancer.
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