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Abstract

This paper proposes a new affine registration algorithm
for matching two point sets in IR2 or IR3. The input point
sets are represented as probability density functions, using
either Gaussian mixture models or discrete density mod-
els, and the problem of registering the point sets is treated
as aligning the two distributions. Since polynomials trans-
form as symmetric tensors under an affine transformation,
the distributions’ moments, which are the expected values
of polynomials, also transform accordingly. Therefore, in-
stead of solving the harder problem of aligning the two dis-
tributions directly, we solve the softer problem of matching
the distributions’ moments. By formulating a least-squares
problem for matching moments of the two distributions up
to degree three, the resulting cost function is a polynomial
that can be efficiently optimized using techniques originated
from algebraic geometry: the global minimum of this poly-
nomial can be determined by solving a system of polynomial
equations. The algorithm is robust in the presence of noises
and outliers, and we validate the proposed algorithm on a
variety of point sets with varying degrees of deformation
and noise.

1. Introduction

This paper proposes a new affine registration algorithm for

two point sets in IR2 and IR3 based on solving a system

of polynomial equations. Let S = {s1, · · · , sm},T =
{t1, · · · , tn} denote the two point sets for which we seek

an affine transform A that best matches them. Similar to

several recent point registration algorithms (e.g., [20, 11]),

the point sets S,T are assumed to be independently sam-

pled data points according to some probability density func-

tions (PDFs) PS,PT, respectively. The main idea of this

paper is to solve the registration problem by matching the

corresponding moments of the two distributions. Since

the moments are the expected values of polynomials, the

matching cost function will also be a (multivariate) polyno-

mial, for which there exist now efficient and powerful op-

timization techniques for computing the global minimum

(e.g., [5, 14]).

More specifically, any affine transform A in IRk induces

a linear transform A∗ on the (linear) space of multivariate

polynomials on IRk by the familiar rule: if p is a polyno-

mial, its transformation A∗(p) under A∗ is the polynomial

whose value at a point x ∈ IRk is the value of p at the point

A(x),
A∗(p)(x) = p(A(x)).

If the two density functions are related exactly by an affine

transform A1, we have the relation

|det(A)|PT(A(x)) = PS(x), (1)

where |det(A)| is the absolute value of the determinant of

A, which is also the determinant of the Jacobian matrix as-

sociated to the transform A. Note that the presence of the

determinant is required to ensure that the integral of the den-

sity functionPT over IRk is indeed one. For example, a zero

mean and unit variance normal distribution is transformed

under an linear transform A into a zero mean normal distri-

bution with variance AA�, and the determinant |det(A)|
in Equation 1 comes from the normalization constant of the

transformed density function [1].

It then follows directly from the equation above that the

expected values of a polynomial f and its transformation

A∗(f) with respect to their corresponding distributions are

the same:∫
IRk

A∗(f)PS dx =
∫

IRk

f(A(x))PT(A(x))|det(A)| dx

where dx is the volume element in IRk, and a simple change

of variables shows that∫
IRk

A∗(f)PS dx =
∫

IRk

f(y)PT(y) dy.

1For example, in IR2, this means that the two random variables x, y are

subject to the affine transform: x → ax + by + e, y → cx + dy + f .
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If A∗(f) is a linear combination of some basis polynomials

g1, · · · , gl,

A∗(f) = a1 g1 + · · ·+ algl,

we have

∫
IRk

f PTdx =
l∑

i=1

ai

∫
IRk

gi PS dx. (2)

If the basis polynomials gi, 1 ≤ i ≤ l are the monomials,

their integrals above are the moments [1] of the distribu-

tions PS. Furthermore, if f and gi are appropriately chosen,

the coefficients ai, 1 ≤ i ≤ l will be polynomials in the en-

tries of the matrix MA representing the affine transform A,

and the equation above provides one polynomial constraint

for MA. With a collection of h linearly independent poly-

nomials, {f1, · · · , fh}, we have h polynomial constraints,

which can be used to formulate the matching cost function:

E(A) =
h∑

i=1

ωi MM2
fi

, (3)

where

MMfi
(A) =

∫
IRk

fi PTdω −
k∑

j=1

ai
j

∫
IRk

gj PS dω,

and ωi ≥ 0 are the weights. That is, instead of match-

ing points directly, we match the moments, and the affine

transform A is computed as the global minimum of the cost

function E , which is a polynomial.

We do not claim that the idea of point registration by

matching moments is new. In fact, this idea was already

implicit in the early work of [16, 17, 2]. In these seminal

work on rigid registration published in the early 90s, the

rigid registration is accomplished by matching principal di-

rections computed from the point sets. This can be easily

shown to be equivalent to matching the quadratic moments

of the discrete density functions associated to the point sets,

PS =
1
m

m∑
i=1

δsi , PT =
1
n

n∑
i=1

δti .

Algebraically, matching quadratic moments was tractable

back in the early 90s because completing squares is rela-

tively easy and global minimization is straightforward. For

moments with degrees greater than two, the coefficients

ai
j and hence the cost function E starts to become cum-

bersome to compute by hand and its optimization requires

more elaborate techniques. Two developments in the in-

terim period have made it possible now to explore the pos-

sibility of matching higher-degree moments for point reg-

istrations. First, software packages such as MAPLE that

do symbolic computations have matured considerably and

become widely available. This makes computing the cost

function E almost effortless. Second and more importantly,

there are now efficient and robust techniques available for

computing the global minimums of polynomials [5, 14].

This is very important because it is difficult to guarantee

the quality of the solution if it is only a local minimum of

the cost function.

Needless to say, affine registration has been studied quite

extensively in vision literature. Most of the published al-

gorithms require some kind of optimization either directly

on IRk or on some relevant Lie group such as SO(k). For

this part, gradient descent has always been the method of

choice. While many of these algorithms perform well most

of the time, it is virtually impossible to guarantee conver-

gence of these algorithms to the global minimum of their

cost functions. However, by formulating a polynomial cost

function, we can indeed guarantee that our solution will be

the global minimum of the cost function. Furthermore, our

approach makes a good intuitive sense because distributions

can be characterized by their moments, and a good affine

transform between the two distributions should match the

moments reasonably well. In particular, compared to mo-

ments of higher-degrees, the first few moments (low-degree

moments) are much more important because they encode

certain global geometric properties of the distributions that

are important for perceptions. For example, the linear mo-

ments are related to the centroid, the quadratic moments are

related to the variance and the cubic moments are related to

skewness [1]. Therefore, even if the affine transform asso-

ciated to the global minimum of our cost function is not the

true affine transform, we can still expect that the true affine

transform should be near our solution because it will most

likely match the moments almost as well as our solution.

2. Affine Registration Algorithm
In this section, we detail the proposed affine registration al-

gorithm. We will first describe how the polynomials trans-

formed under a general affine transformation. This is then

followed by the discussions on how to cast the registration

problem into the form that can be solved using polynomial

optimization.

Let S and T as above denote two point sets in IRk, and

our problem is to estimate an affine transformation A that

best approximates T by the image of S under A2. In the

following discussions, we will consider only point sets in

IR2 since the IR3 case is almost exactly the same except

the algebra is messier because of more variables. For the

moment, we will ignore the translational component of A
and focus on its linear component(

X
Y

)
=

(
a b
c d

) (
x
y

)
. (4)

2k = 2, 3 are the cases of interest.
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2.1. Induced Linear Transformations
As a linear transform of IR2, A induces a family of linear

transformations on the polynomials. Specifically, for each

integer d ≥ 1, A induces a linear transformation A∗d on the

space of polynomials of degree d in x and y. This can be

seen immediately using abstract linear algebra because ho-

mogeneous polynomials of degree d are symmetric tensors

in the d-fold tensor product space3 V ⊗d ≡ V ⊗V ⊗· · ·⊗V ,

where V is the vector space IR2. Any linear transforma-

tion of the base vector space V will induce a linear transfor-

mation for each V ⊗d that maps symmetric tensors to sym-

metric tensors, i.e., linear transformations of homogeneous

polynomials. The important point is that once a matrix rep-

resentation for A is given, all the linear transformations A∗d
can be written down in matrix form such that the entries of

the matrix for A∗d are degree d polynomials in the entries of

the matrix for A.

Instead of citing standard references (e.g., [10]) to illus-

trate the above, we will work out one example in detail.

Consider the affine transformation A in Equation 4. Un-

der A, the linear monomials x, y are transformed into the

following two linear monomials:

x→ ax + by, y → cx + dy.

Since these two monomials x, y form a basis for the space

of linear polynomials on IR2, the above two transforma-

tions define a linear transformation A∗1 on the space of lin-

ear polynomials, and the matrix representation for A∗1 using

this basis is the transpose of A in Equation 4. This result

can be extended easily to define transformations for mono-

mials of higher degrees using polynomial multiplications.

For instance, when d = 2, we have the transformations for

the following three monomials:

x2→(ax + by)2 = a2x2 + 2abxy + b2y2,
xy→(ax + by)(cx + dy) = acx2 + (ad + bc)xy + bdy2,
y2→(cx + dy)2 = c2x2 + 2cdxy + d2y2.

Since any quadratic polynomial is a linear combination of

the above three basis monomials, these transformations al-

low us to define a linear transformations A∗2 for the space

of quadratic polynomials as above, and its matrix represen-

tation is (using this basis)

A∗2 ≡
⎛
⎝ a2 ac c2

2ab ad + bc 2cd
b2 bd d2

⎞
⎠ .

For degree three polynomials, the transformations for the

four basis monomials are

x3→a3x3 + 3a2bx2y + 3ab2xy2 + b3y3,
x2y→a2cx3 + (a2d + 2abc)x2y + (2abd + cb2)xy2 + b2dy3,
xy2→ac2x3 + (c2b + 2acd)x2y + (2bcd + ad2)xy2 + bd2y3,
y3→c3x3 + 3c2dx2y + 3cd2xy2 + d3y3,

3These are the rank-d tensors.

and the matrix for A∗3 is

A∗3 ≡

⎛
⎜⎜⎝

a3 a2c ac2 c3

3a2b a2d + 2abc c2b + 2acd 3c2d
3ab2 2abd + cb2 2bcd + ad2 3cd2

b3 b2d bd2 d3

⎞
⎟⎟⎠ .

For any degree d ≥ 1, the space of homogeneous

polynomials of degree d has dimension d + 1 as there

are d + 1 linearly independent degree d monomials

xd xd−1y, · · · , xyd−1, yd. We will denote gi
d for 1 ≤ i ≤

d+1 these d+1 basis monomials of degree d, and the above

discussions can be summarized succinctly by the following

equation

A∗d(g
i
d) =

k∑
j=1

Ai
dj gj

d, (5)

where Ai
dj denote the entries of the matrix for A∗d. Note that

each Ai
dj is indeed a degree d homogeneous polynomial in

the entries of the matrix A (a, b, c and d).

2.2. Matching Moments
Applying Equations 2 and 5, we have

∫
IRk

gi
d PTdx =

k∑
j=1

Ai
dj

∫
IRk

gj
d PS dx. (6)

Each integral in the equation above defines one partic-

ular moment of degree d for its corresponding density

function [1]. Therefore, if we assume that all moments∫
IRk gi

d PS dx,
∫
IRk gi

d PT dx of a given degree exist, the

above equation then provides us with one constraint for A.

In particular, since we assume that the distributions PS,PT

are either the discrete densities or Gaussian mixtures, all

of their moments exist and is finite: for the former, it is

just the average of the values of the polynomial evaluated

at the points and for the latter, the moments can be directly

computed using the moment generating function for a mul-

tivariate normal distribution N(μ; Σ) with mean μ and co-

variance matrix Σ [1]:

M(t) = exp(μ�t +
1
2
t�Σt),

where t is the column vector [x y]�. The specific formula

we need is that the moments of N(μ; Σ) can be computed

by ∫
IRk

xiyj N(μ; Σ) dx =
∂M

∂ix∂jy
(0),

which allows us to quickly compute the moments for a

Gaussian mixture by taking the (weighted) sum of the mo-

ment of each Gaussian component.

Finally, we denote ISd , ITd the vector of degree d moments

of PS,PT, respectively. These vectors are obtained by ver-

tically stacking the d + 1 moments formed by integrating
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the d + 1 basis monomials gi
d, and accordingly, ISd , ITd are

vectors of length d + 1. Equation 6 can now be put into a

very succinct form

ITd = A∗dI
S
d (7)

for all d > 0. Therefore, for a point registration problem,

once the PDFs PS,PT have been computed, we can try to

minimize the following cost function

E(A) =
D∑

d=1

ωd ‖ITd − A∗d ISd‖2, (8)

where ωd > 0 are the weights, and D gives the upper bound

on the degrees of the moments used in the matching. Note

that all the vectors ISd , ITd are known and their dimensions

depend on the degree d. For a fixed D, Equation 8 is a

polynomial of degree 2D in the entries of A.

We remark that in general we can assume that all the lin-

ear moments vanish, and this corresponds to centering the

point set with respect to it own centroid. In IRk, there are

C(k + 1, 2) = k(k + 1)/2 quadratic basis moments. This

number is smaller than the dimension of GL(k), which is

k2. In particular, if we match only up to quadratic mo-

ments in Equation 8, the resulting optimization problem

will not have finite number of solutions but a continuous

family of solutions. In terms of linear algebra, this corre-

sponds to the fact that given two covariance (symmetric and

positive-definite) matrices, we can always match the two

matrices using affine transformations in GL(k). Therefore,

this shows that it is not enough to match only quadratic mo-

ments. In the experiments below, we will match the mo-

ments up to degree three, and a simple dimension counting

will show that for a general pair of point sets, the solution

(global minimum of E) will be finite in number.

2.3. Polynomial Optimization
Given a multivariate polynomial P (x1, · · · , xn), a direct

method for computing its global minimum is to enumerate

all possible critical points of P , and the global minimum

would be among these critical points. The critical points of

P are the points at which the gradient of P vanishes

∇P = (
∂P

∂x1
, · · · ,

∂P

∂xn
) = 0.

This provides us with a system of n polynomial equations

with degree one less than the degree of P . This system

of equations can be solved by computing a Gröbner basis

for the polynomial ideal generated by the n polynomials
∂P
∂x1

, · · · , ∂P
∂xn

[5]. In order to compute the Gröbner basis

efficiently, we need to define a monomial order carefully

(details omitted), and there exist several software packages

(e.g. MAPLE) that can efficiently compute the Gröbner ba-

sis given polynomial inputs and the monomial order. The

same method for solving polynomial equations has been

applied previously to solve other vision problems such as

triangulation and camera calibration (e.g. [19, 13]). How-

ever, we remark that our problem is significantly easier than

theirs because there is no “denominators” in our cost func-

tion and the application of the Gröbner basis here is much

more straightforward.

3. Related Work
Using probability distributions in point set registration has

become quite popular in recent years, e.g., [4, 20, 11, 8].

Replacing the point sets with their associated distributions

provides a more robust and principled way of dealing with

outliers and noises. While these cited papers deal with the

more general non-rigid registration, the affine registration is

nevertheless an important component in these algorithms as

it is typically the crucial first step in aligning the point sets.

In [20], the matching cost function is the KL-divergence be-

tween the two distributions and in [11], it is the L2-distance

between the distributions. Affine registration is handled us-

ing gradient descent in these papers, and in [11], the closed-

form formula for the gradient is known and this makes the

optimization more efficient when compared with the case

(e.g., [20]), where the gradients have to be computed nu-

merically.

There are registration algorithms that do not require min-

imization using gradient descent. As mentioned in the in-

troduction, the methods proposed in [16, 17, 2] are basi-

cally equivalent to matching quadratic moments. To the best

of our knowledge, there does not seem to have been any

significant follow-up of these works that tackles the point

set registration problem using higher-degree moments, ex-

cept perhaps [9]. However, the algorithm proposed in [9]

requires complex multiplications and this limits its appli-

cability to point sets in IR2. Furthermore, the invariants

matched there are generated by evaluating elementary sym-

metric functions on the points, which, although similar, can-

not be interpreted as (discrete) moments. Iterative closest

point (ICP) (e.g., [15, 18, 7]) is another class of registra-

tion algorithms that does not require continuous optimiza-

tion (the optimization can be solved quickly using linear

algebra once the correspondences are known). While this

algorithm has been adopted widely and in many cases per-

form brilliantly, it is difficult to prove the algorithm’s con-

vergence and at the same time, nothing much can be said

about the quality of its solution in general.

Finally, the polynomial optimization algorithms used in

this paper have already made their appearances in several

important vision papers published in the past few years,

e.g., [12, 19, 13]. Polynomial cost functions abound in

multi-view geometry problems, ranging from three-view

triangulation, 2D homography estimation to camera calibra-

tion (with radial distortion). We note however that our con-
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text is different from theirs in that the point correspondences

are known in these works and their algorithms output the

optimal transformations according to the known correspon-

dences. In our case, the correspondences are not known

on the point-level (we are trying to compute the correspon-

dences) but on the moment-level. That is, the moment vec-

tors ITd , ISd of the same degree correspond under the induced

linear transform A∗d (Equation 7).

4. Experiments
For lack of space, we will report only two sets of exper-

imental results. More (including 3D) results are available

online 4. Our goal in these two experiments is to demon-

strate that the proposed algorithm is indeed robust against

noises and outliers. In the first set of experiments, we ran-

domly generate point sets and affine transformations in IR2.

Various different amounts of noise are added to the point

sets and we study the behavior of the algorithm under dif-

ferent noise settings. Second, we apply the algorithm to 2D

point sets that are extracted from MPEG shape database,

and we show several affine registration results between pairs

of similar (but not the same) shapes. We have implemented

the algorithm using MATLAB and MAPLE without any op-

timization. The sizes of the point sets in the experiments

range from 100 to more than 4000, and both experiments

were run on a DELL desktop with a single 3.1GHz proces-

sor.

4.1. Affine Registration in IR2

In this set of experiments, our aim is to give a qualitative

as well as quantitative analysis on the accuracy and robust-

ness of the proposed method. We report our experimen-

tal results on synthetic data using point sets of different

sizes with various different noise settings. Tables 1 sum-

marizes the experimental results. The algorithm is tested

in four different sizes, 100, 200, 500 and 1000, and five

different noise settings, 0%, 1%, 2%, 5%, 10%. For each

pair of point set size and noise setting, we ran 100 trials,

each with a randomly generated non-singular matrix A and

a point set of the given size. In trials with x% noise setting,

we add a uniform random noise (±x%) to each coordinate

of every point independently. Let A′ denote the estimated

matrix. A point s ∈ S is matched to the point t ∈ T if

t = minti∈T dist(A′s, ti). For each trial, we report the

percentage of mismatched points and the relative error of

the estimated matrix A′: ‖A′−A‖F

‖A‖F
, using the Frobenius

norm.

As the point sets are randomly generated in this exper-

iment, Gaussian mixtures are clearly not suited for mod-

elling these point sets, and we use the discrete densities in-

stead. We use moments up to degree three, and the match-

ing cost function E(A) is a degree six polynomial with four

4http://www.cise.ufl.edu/˜jho/AffineRegistration/

variables. The Gröbner basis method is used to solve for the

affine transformation.

4.2. Matching Shapes in IR2

In the second set of experiments, we work with shapes from

the MPEG shape database. In this shape database, there

are seventy different shape categories and each category has

twenty different shapes. We apply the proposed algorithm

to affine register shapes in the same category. In this ex-

periment, the shapes are represented as point sets with sizes

ranging from 2000 to about 5000 points. A Gaussian mix-

ture model is estimated for each shape using Expectation

Maximization algorithm [6, 3] with the number of mixture

components ranging from 15 to 33. The matching cost func-

tion E is a polynomial with degree six (using all the mo-

ments up to degree three), and the Gröbner basis method is

used to solve for the affine registration. Figure 1 displays

several examples of successful affine registrations using the

proposed algorithm.

5. Conclusion
We have proposed a new affine registration algorithm for

two point sets in IR2 or IR3 based on matching the mo-

ments of two probability density functions. The matching

cost function turns out to be a polynomial, and its global

minimum can be efficiently determined by solving a system

of polynomial equations. Experimental results have demon-

strated that this new approach is indeed viable, and the al-

gorithm is capable of producing good solutions even in the

presence of significant amount of noises and outliers.
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