
EFFECTIVE COMPONENT TREE COMPUTATION WITH APPLICATION TO
PATTERN RECOGNITION IN ASTRONOMICAL IMAGING

Ch. Berger, Th. Géraud, R. Levillain, N. Widynski

EPITA Research and Development Laboratory
(LRDE) – 14-16 rue Voltaire

F-94276 Le Kremlin-Bicêtre, France

A. Baillard, E. Bertin

Institut d’Astrophysique de Paris, UMR 7095
98 bis boulevard Arago,
F-75014 Paris, France

ABSTRACT

In this paper a new algorithm to compute the component tree
is presented. As compared to the state-of-the-art, this algo-
rithm does not use excessive memory and is able to work effi-
ciently on images whose values are highly quantized or even
with images having floating values. We also describe how it
can be applied to astronomical data to identify relevant ob-
jects.

Index Terms— Morphological operations, Algorithms,
Nonlinear filters, Pattern recognition, Astronomy.

1. INTRODUCTION

The component tree of an image is a convenient and versatile
representation of the image contents. In this representation
a tree node denotes a particular connected component of the
image level sets, and parenthood between nodes maps the re-
lationship of spatial inclusion between components at differ-
ent levels. Numerous applications rely on component trees:
classification, image filtering, segmentation, registration, and
compression (e.g., see [1] for references). However, their
most prominent use remains implementing many morphologi-
cal operators [2], for instance algebraic openings/closings and
levellings, for which several algorithms have been designed
(see [3] for more references).

The context of our work is the identification of some par-
ticular astronomical objects in sky images, namely stars and
galaxies, while dealing with optical effects (halos, diffraction
spikes and saturated stars) and other defects (satellite trails
and cosmic rays). One of the best applications is masking im-
age defects in an automated way. This step is necessary to
allow astronomers to compute reliable statistics. Masking is
currently largely done by hand. It can take hours for a large
field and will become intractable with the next generation of
imaging surveys (several terabytes of images per night). Us-
ing component trees to represent images in this context is
straightforward: the objects to be identified can be described
in terms of attributes. Stars are unresolved and therefore show
up as realizations of the local Point-Spread Function (PSF),
with a given Full-Width at Half-Maximum.

Astronomical images have two main features. To avoid
quantization effects after calibration and averaging, they are
encoded with floating point values. With current wide-field

This work is supported by grant 04-5500 from the French Ministry of
Research (ACI ”Masses de Données” EFIGI).

instruments, mosaiced images weigh several hundreds of mil-
lions of pixels. We then observed that the algorithms pro-
posed in the literature to compute component trees were not
suitable enough. Either execution time is prohibitive or mem-
ory usage is too costly. To address those problems we have
designed an effective algorithm to compute component trees
that offers a good compromise between both efficiency at run-
time and memory usage. As a consequence, this algorithm is
also suitable to more common images.

After introducing the specificities of astronomical data in
Section 2 the algorithm we propose is described in Section 3.
Section 4 compares this algorithm with the state of the art and
Section 5 discuss some applications to object identification in
astronomical images. Last we conclude in Section 6.

2. THE CASE OF ASTRONOMICAL DATA

Astronomical images contain floating values with high range
dynamics. Most pixels correspond to the (noisy) sky back-
ground and thus have very low floating values (darker pixels
in Figure 1); brighter pixels are objects: stars, galaxies, and
some patterns due to optical effects (halos, diffraction spikes,
etc.).

1 10 100 1000 100001

10

100

1000

10000

1e+05

1e+06

1e+07

Figure 1: Left: a fragment of 20 million pixels (5% of origi-
nal imagea). Right: log-log plot of an image histogram after
linear 16-bit quantization.

aBased on observations obtained with MegaPrime/MegaCam, a joint
project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Tele-
scope (CFHT) which is operated by the National Research Council (NRC)
of Canada, the Institut National des Science de l’Univers of the Centre Na-
tional de la Recherche Scientifique (CNRS) of France, and the University of
Hawaii. This work is based in part on data products produced at TERAPIX
and the Canadian Astronomy Data Centre as part of the Canada-France-
Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

To understand the distribution of floating values in such
images, we have quantized an image on 16 bits with respect

IV - 411-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

to a linear transform of values. The resulting histogram is de-
picted in Figure 1 (right) with a log−log plot. We can observe
that most of the pixels are quantized over the range 0 to 255
(the left half of the diagram) whereas the remaining pixels
are quantized over 256 to 65,535. The slope that appears on
this plot is due to the presence of blur. Precisely, the observed
image is convolved by a point-spread function so intermediate
values correspond to the object’s contours. As a consequence,
to avoid losing precision in identifying objects, we have no
other choice but to perform an optimal image quantization on
16 bits or, better, to handle pixel floating values as is.

In the case of an optimal quantization on 16 bits we end up
with an image having a flat histogram and the relative quan-
tization error is quite low for each quantized value. We can
then expect to rather correctly identify objects, whatever their
range of values (low, intermediate, or high). Yet for a better
accuracy in delineating objects we have to stick to the original
floating values.

3. PROPOSED ALGORITHM

3.1. Canonical Tree Computation

The algorithm we propose to compute the component tree is
based upon the union-find algorithm [4]. It is widely used to
implement connected operators [3]. It is also the cornerstone
of a recent algorithm [1] designed to compute the component
tree (but with a too expensive memory usage as explained in
Section 4).

Let us consider the sample image f given in Figure 2 (top)
associated with the 4-connectivity. Let us consider the total
ordering relationshipR between pixels of f based on decreas-
ing gray levels and, for pixels having the same level, with the
classical video scan order. R is symbolized by the lexico-
graphical naming of points in Figure 2 (bottom): followingR
points are sorted from A to J.

33

3

1

1 12

24

4

A F

G E JIB

C D H

FH

GI J

DC

EB

A
λ=3

C D

I

H

G E

F

J

A

B
λ=4

H

I J

F

G

A

EB

C D
λ=2

H

JI

A

E

F

G

DC

B
λ=1

Figure 2: Left: sample image (top) and the ordering R be-
tween pixels (bottom). Right: level sets for different values
of λ; canonical points are circled.

The level sets defined by Lλ(f) = { p | f(p) ≥ λ } for
decreasing values of λ are depicted in the right part of Fig-
ure 2. Elements of Lλ(f) are printed in slanted gray if they
also belong to Lλ+1(f). The image level sets can be repre-
sented by the component tree shown in Figure 3 (left) where
node parenthood maps component inclusion. A more com-
pact representation of a component tree is the max-tree shown
in Figure 3 (right). In the max-tree, nodes only store the
points of Lλ(f)− Lλ+1(f), so data redundancy is avoided.

To construct the max-tree corresponding to a given im-
age, we use the most compact tree representation of images:
a rooted tree defined by a parenthood function, named parent
and encoded as a 2D image. This function is such as parent(p)
is a 2D point. When a node of the max-tree contains sev-
eral points, we choose its last point (with respect to R) as
the representative for this node. This canonical element is

{B, C, D}

{B, C, D}

{B}

{A, E}

{A}

{A, E, F, G}

{H, I, J}

{E}

{A}

{F, G}

{C, D}

{B}
λ=4

λ=3

λ=2

λ=1 {A, B, C, D, E, F, G, H, I, J}

Figure 3: Component tree (left) and max-tree (right).

also called “level root” in the literature. Such elements are
depicted within circles in Figures 2 and 4. The canonical ele-
ment corresponding to the root node of the max-tree is called
the “root element”. We display this element, J in our example,
within a double circle.

B A

ED
C

D

B

H
I

F
G

C

J

F

A

E

G

I H

J

λ=4

λ=3

λ=2

λ=1

Figure 4: Correct tree (left) and its canonical form (right).
The parenthood between points is denoted by arrows; for in-
stance, parent(C) = D.

Let Γ denote a component corresponding to a node of the
max-tree, pΓ its canonical element, and pr the root element.
The parent function that we want to construct should verify
the following four properties:

1. parent(pr) = pr

2. ∀ p �= pr, p R parent(p)
therefore ∀ p �= pr, p R pr

and ∀ p, f(pr) ≤ f(parent(p)) ≤ f(p)
3. p is canonical iff p = pr ∨ f(parent(p)) < f(p)
4. ∀ p, p ∈ Γ ⇔ f(p) = f(pΓ) ∧ ∃ i, parent i(p) = pΓ

(where parent i is the ith application of parent)
therefore ∀ p ∈ Γ, p = pΓ ∨ p R pΓ.

The algorithm COMPUTE-TREE given in Figure 5 computes a
“correct” parent function, that is, a function that fulfills those
properties. Both trees of this figure depict a correct parent
function but the one on the right verifies an extra property:

5. ∀p, parent(p) is a canonical element.

The algorithm CANONIZE-TREE in Figure 5 transforms
any correct parent function so that the last property is ver-
ified. The resulting tree has now the simplest form that we
can expect. Furthermore we have an isomorphism between
images and their canonical representations.

The key feature of the algorithm we propose is to rely
on an uncompressed version of the union-find algorithm to
compute the parent function. However, the function resulting
of COMPUTE-TREE, as it is correct, somehow “includes” the
max-tree, such as it is observable in the left tree of Figure 4.
Getting a simple and compressed representation of the max-
tree is postponed to the routine CANONIZE-TREE. For the

IV - 42

FIND-ROOT(x)
1 if zpar(x) = x then return x
2 else { zpar(x)← FIND-ROOT(zpar(x)) ; return zpar(x) }

COMPUTE-TREE(f)
1 for each p, zpar(p)← undef
2 R← REVERSE-SORT(f) // maps R into an array
3 for each p ∈ R in direct order
4 parent(p)← p ; zpar(p)← p
5 for each n ∈ N (p) such as zpar(n) �= undef
6 r ← FIND-ROOT(n)
7 if r �= p then { parent(r)← p ; zpar(r)← p }
8 DEALLOCATE(zpar)
9 return pair(R, parent) // a ‘‘correct’’ function

CANONIZE-TREE(parent, f)
1 for each p ∈ R in reverse order
2 q ← parent(p)
3 if f(parent(q)) = f(q) then parent(p)← parent(q)
4 return parent // a ‘‘canonized’’ function

Figure 5: Proposed algorithm.

parent computation to be efficient, we need a fast access to
temporary root elements (canonical elements of the connected
components of the set of already processed points). This fast
access is provided thanks to an auxiliary compressed union-
find structure, namely zpar.

3.2. Attributes Computation and Node Labeling

The result of the algorithm is the array R of sorted points (fol-
lowingR) and the parent image. As compared to other imple-
mentations of component trees, we do not store the childhood
relationship. Yet one can compute attributes. To that aim,
the mechanism consists in pushing information from children
to their parent. Figure 6 displays it with the classical “area”
attribute.

COMPUTE-AREA(f, R, parent)
1 for each p ∈ R, area(p)← 1 // initialization
2 for each p ∈ R in direct order
3 area(parent(p))← area(parent(p)) + area(p) // update

Figure 6: Sample attribute computation.

At the end each canonical element pΓ stores the correct at-
tribute value. Our strategy is thus a three-step process: 1. com-
pute the component tree; 2. compute attributes for each node
of the tree; 3. label the nodes with respect to some criteria
computed on attributes. Dissociating these three steps enables
an interactive processing: separating the construction of the
component tree from the computation of attributes allows the
user to select the set of attributes to be computed, in accor-
dance with the form of the expected result, at a very low cost.
Likewise, a separate labeling step allows the modification of
the parameters used for criteria (e.g., a maximum area when
searching for tiny objects) with immediate visualization.

3.3. Handling Floating Values

When values are not quantized but floating values such as in
original astronomical images, almost every point is a canoni-
cal element. Put differently, there are no flat zones so most of

the nodes of the max-tree only contain a single point. An in-
teresting property of the algorithm given in the previous sec-
tion is that it just applies as is. Proceeding to the tree canon-
ization step then however becomes useless.

4. RELATED WORK AND COMPARISON

Several approaches have been used to compute the compo-
nent tree of an image, divided in two main categories: pri-
ority queue-based algorithms, building the tree by accumula-
tion; and union-find based algorithms, generating disjoint set
forests.

Jones [5] proposed an algorithm of the first category, as a
generalization of Vincent’s algorithm [6]. Another fast queue-
based method was proposed by Salembier et al. [7]. Both
methods are penalized by images with a high quantization,
because of the cost of the updates (insertion and removal of
pixels) in the queue data structure. The union-find approaches
are based on Tarjan’s disjoint set forest computation [4]. Mei-
jster [8] exposed the first method to accelerate the FIND-ROOT

procedure using a FIND-LEVEL-ROOT routine (per-level path
compression). However, this approach is intractable with highly
quantized images such as astronomical pictures, as they con-
tain too many different levels for the compression to be useful.
Najman and Couprie [1] also defined an “emergence process”
using two disjoint set forests (node and tree) to prevent the
creation of degenerated (unbalanced) trees. While having ex-
ecution time comparable with our proposition, this method
requires too much memory on today’s computers (about five
times the size of the input) to be used with high resolution
images.

The following results were obtained on a 3 Ghz Bi-Xeon-
based computer with 2×1 MB cache memory and 4 GB RAM
running GNU/Linux. The implementations of the algorithms
don’t make use of the parallel capabilities of the processor.
The first series of tests was made on 16-bit images, downsam-
pled and equalized from float images (see Figure 7). Both Na-
jman and Couprie’s algorithm and our algorithm outperform
Salembier et al. algorithm, whose curve grows faster than the
two other algorithms. Our algorithm obtains the best results
in the 16-bit case.

Salembier et al. algorithm was never designed for highly
quantized images. Though we have used the original algo-
rithm for the 16-bit case, we have written an adapted version
to suit the floating point case, avoiding structures allocating
as many “slots” as the number of levels in the image.

The floating point value case shows new issues that were
not yet observed in component tree computations. In particu-
lar, the fact that a level is rarely seen twice in a (natural) float
image affects Salembier et al. algorithm insomuch as its ex-
ecution time is beyond comparison with the other algorithms
on images of floating point values, e.g. about two days for
a 5 million pixel image (these results were not represented in
Figure 7). The cost of the updates within the queue is presum-
ably too high when it has to store many more levels than in
an image with a much lower quantization. Najman and Cou-
prie’s algorithm performs better than ours, showing that the
ranking technique is relevant on float images.

The structure used in Najman and Couprie’s algorithm
and ours encodes only points, so the memory used depends
only on the number of points of the input image (and the way
these points are represented), not the size of the value carried

IV - 43

0

50

100

150

200

250

300

350

5040302010

E
x
ec

u
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

Size of the input image (millions of pixels)

Salembier et al. (16-bit)
Our proposal (float)

Najman and Couprie (float)
Najman and Couprie (16-bit)

Our proposal (16-bit)

Figure 7: Execution time on 16-bit and float images.

by each pixel – in the present cases, 2 bytes (16-bit images)
or 4 bytes (float images). For this space complexity analy-
sis, we consider that each point is encoded as a 32-bit index
(i.e., an offset from the beginning of the image). As for space
requirements, Najman and Couprie’s algorithm is the one us-
ing the most memory. A rough estimation for an image of n
points is that it uses n points for theR relationship, 2n points
to store the Qtree relationship (for the tree itself and the rank
structure), 2n points for theQtree as well, and n pixels or more
to store the actual component tree as the children structure,
which ends in 6 times the size of the input in the float case.
(We do not take the lowestNode array into account, since the
algorithm can be adjusted to get rid of it, according to the au-
thors.) Our proposal requires 3 times the size of the input in
the float case (forR, the parent and zpar images), i.e. half as
much as the previous algorithm. The memory used by Salem-
bier et al. algorithm is more difficult to evaluate, since the
maximum size of the hierarchical FIFO queue depends on the
nature of the data. However, the time complexity of the al-
gorithm images goes hand in hand with a space complexity,
since the algorithm ran out of memory while processing an
8.9 million pixel float image.

5. APPLICATION TO ASTRONOMICAL DATA

We have only sketched some criteria used to recognize objects
in this section. The component tree representation is versatile
enough so that objects and defects can be identified. First, to
restrict this identification to some parts of the tree, we discard
the branches that are not significant; in practice, flat regions of
the sky background are spotted as not having their isomagni-

tude at fmax

2 twice as great as the one of the surrounding region

{p|f(p) ∈ [fmax

4 ; fmax

4]}. For instance in the identification pro-
cess, stars are recognized as tiny components (i.e. having a
small area) that follow the PSF.

For example, satellite trails are long and thin objects with-
out uniform brightness (unlike “centered” objects). They are
identified as large enough components (width (w) + height

(h) greater than threshold), so that var x + var y > (w+h)2

14 ,
where var x and var y are respectively the spatial variance on
the component along the X- and Y-axis.

Figure 8: Left: Satellite trail.

Right: Contours of components at fmax

2 , fmax

4 and fmax

10 .

6. CONCLUSION

In this paper we have presented a new algorithm to compute
the component tree. Its advantages are manifold. First it is
effective for images with high quantization and with no quan-
tization. It is about as efficient as the fastest known algorithm.
In addition, it saves half of memory usage as compared with
its competitor algorithm, which is a crucial point when deal-
ing with large data. We have also presented how to apply this
algorithm in order to identify objects of interest in astronom-
ical images.

7. REFERENCES

[1] L. Najman and M. Couprie, “Building the component tree
in quasi-linear time,” IEEE Trans. Image Processing, vol.
15, no. 11, pp. 3531–3539, November 2006.

[2] A. Meijster and M. H. F. Wilkinson, “A comparison of al-
gorithms for connected set openings and closings,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 24, no. 4, pp.
484–494, 2002.

[3] Th. Géraud, “Ruminations on Tarjan’s Union-Find algo-
rithm and connected operators,” in Mathematical Mor-
phology: 40 Years On (Proc. of ISMM), Paris, France,
April 2005, vol. 30 of Computational Imaging and Vi-
sion, pp. 105–116, Springer.

[4] R. E. Tarjan, “Efficiency of a good but not linear set union
algorithm,” Journal of the ACM, vol. 22, no. 2, pp. 215–
225, 1975.

[5] R. Jones, “Component trees for image filtering and seg-
mentation,” in IEEE Workshop on Nonlinear Signal
and Image Processing, E. Coyle, Ed., Mackinac Island,
September 1997.

[6] L. Vincent, “Grayscale area openings and closings: their
applications and efficient implementation,” in Intl. Sym-
posium on Mathematical Morphology, 1993, pp. 22–27.

[7] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive
connected operators for image and sequence processing,”
IEEE Trans. Image Processing, vol. 7, no. 4, pp. 555–
570, 1998.

[8] A. Meijster, Efficient Sequential and Parallel Algorithms
for Morphological Image Processing, Ph.D. thesis, Uni-
versity of Groningen, the Netherlands, March 2004.

IV - 44

