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Abstract— In this paper, simultaneous localisation and map-
ping (SLAM) is combined with landmark recognition to close
large loops in unstructured, outdoor environments. Camera
and laser information are fused to recognise and create ap-
pearance models for landmarks. The representation is obtained
through a non-linear probabilistic regression model encoding
a neighbourhood preserving dimensionality reduction. A new
data association algorithm is proposed where landmarks are
associated based on both position and appearance. The resulting
system is more robust and able to recover from possible
misassociations. Experiments demonstrate the benefits of this
approach in challenging problems involving mapping with large
loop closings in irregular terrain, and with dynamic objects.

I. INTRODUCTION

Simultaneous localisation and map building (SLAM) has
been a long-standing problem in robotics. Although the
computational complexity has been addressed in previous
work [1], [2], [3], [4], reliable operation in unstructured
environments is still difficult in practice. In SLAM, the
robot must identify and associate landmarks with current
observations to close loops correctly. For large loops, as
the uncertainty in vehicle and landmark position increases
quickly, a data association algorithm based entirely on po-
sition estimates is likely to fail. A further difficulty when
operating in natural environments is the existence of extra-
neous people and moving objects. If the robot erroneously
considers one of these moving objects as a landmark, the
map and the trajectory estimates can become inconsistent
and the localisation algorithm will fail.

In this paper, landmark recognition is incorporated into
SLAM to address these two issues. Recognition of landmarks
is performed using both camera and laser, two of the most
common sensors used in robotic platforms. The system is
trained to recognise common static outdoor landmarks, such
as trees, which directly eliminates the problem of operating
in dynamic environments. Trees are common objects in both
urban and rural areas which makes the system flexible for
operation in many different environments. As trees differ in
their shape, texture or colour they make excellent landmarks
for appearance-based association. Once recognised, land-
marks are used to build probabilistic models for further data
association. Experimental results in a complex environment
show that the new approach significantly improves over
conventional data association approaches based entirely on
poses.
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The use of visual clues in identifying features has been
previously investigated in [5]. In their work, visually salient
features are extracted from images and used in combination
with laser scans for loop-closing. The use of feature rep-
resentations improves data association but does not provide
meaningful representations of the objects in the scene. In this
sense, it is unlikely that feature-based approaches would cope
with dynamic environments. Se et al. [6] have proposed an
entirely image-based SLAM with SIFT features and stereo
camera. The approach was tested in an office environment
over a trajectory of few metres. Feature selection for pose
estimation was addressed in [7]. Landmark tracking was per-
formed using principal component analysis over a sequence
of frames in a laboratory environment, but no map was
constructed.

Recent results from Moreels and Perona [8] have shown
that no feature detector-descriptor combination performs well
for viewpoint changes of more than 25 − 30o. However, in
outdoor environments, landmarks can be observed at a much
wider viewpoint range. Richer and more robust representa-
tions of landmarks are thus investigated in this work. These
representations must also be general, not relying on ad-hoc
features, to be applicable to different field robotics tasks,
in aerial, underwater and all terrain domains. The solution
adopted involves dimensionality reduction techniques and,
especially, non-linear methods. Several manifold learning
approaches have been proposed in recent years [9], [10],
[11], [12]. Due to its isometric and convergence properties
with the landmark extension [13], which enables it to process
large datasets, Isomap [9] is used to create landmark repre-
sentations. Out-of-sample points from Isomap are obtained
by fitting a mixture of linear models from the input and
output sets of Isomap. This probabilistic model also provides
uncertainty measures to perform compatibility tests for data
association.

The novelty and importance of the work described is
the introduction of landmark recognition and modelling into
SLAM. The approach is demonstrated in a large and complex
unstructured environment where current SLAM implemen-
tations fail. The vehicle trajectory includes multiple loops
with up to 400 metres in length. The illumination changes
from direct sunlight in a partly cloudy day to dark areas
where the vehicle is underneath foliage and trees. The total
trajectory length is approximately 1.5 kilometre with the
vehicle travelling up to 25 km/h. The environment also
includes moving objects such as cars, buses and people.
Around 120 different landmarks are detected and mapped.
Some of these are observed from viewpoint changes of 180o.
Experimental results show that some loops are not correctly
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closed with conventional SLAM algorithms due to incorrect
data association. However, when the proposed algorithm is
applied to the same data, misassociations are much reduced
and when they do occur the system is still able to recover.
Recognition and representation of landmarks significantly
improved robustness of the SLAM method.

II. LANDMARK RECOGNITION

To recognise landmarks far from the robot, a high-
resolution camera is necessary to provide a sufficient number
of pixels for processing. However, real-time recognition in
high-resolution images remains a cumbersome task even for
speed-optimised algorithms such as [14]. In the proposed
approach, a laser scan is used to select regions of interest
(ROI) in the image. Only these regions are processed which
allows the algorithm to recognise landmarks in real-time.
Laser is thus responsible for allocating visual attention to
landmark recognition.

The recognition process has four steps to be described as
follows: laser clustering, sub-image processing, dimension-
ality reduction and classification.

A. Laser Clustering and Feature Extraction

In outdoor environments, a typical laser scan is charac-
terised by the existence of clusters of laser points sparsely
distributed. Thus, the first step of the algorithm is to identify
and associate points belonging to the same cluster. This
clustering operation is unsupervised in the number of clusters
and must be performed in real-time. The solution adopted
uses a simple recursive algorithm that cluster laser points
whenever the distance of a point to its nearest neighbour in
a particular cluster is smaller than a defined value - 1 metre
is used in the experiments.

To extract shape information from identified clusters,
points are first translated to the origin by subtracting the
cluster mean. They are then rotated by the angular position
of the cluster centre with respect to the robot orientation.
This operation tries to make laser points invariant to affine
transformations. A second-order polynomial is fitted to the
points and the coefficients are the final features used for
recognition. This shape descriptor is very simple when
compared to spline, Fourier or snakes descriptors used in
computer vision. However, it is very efficient and can be
computed with only three or more laser points in the same
cluster.

B. Defining ROI with Laser

Given a calibrated camera with intrinsic parameters K , the
corresponding pixel coordinates p = [u, v]T of points in the
world coordinate system P = [X, Y, Z]T can be computed
as p ∼ K(RP + t), where R is a 3×3 rotation matrix and t
is a 3D-vector representing translation. Assuming that Pl is
a point in the laser coordinate system and Pc in the camera,
the equation Pl = ΦPc + ∆ represents their transformation,
where Φ and ∆ are rotation and translation parameters for the
laser-camera calibration. To compute Φ and ∆, the method
described in [15] is used. The outputs are the optimised

parameters Φ and ∆ that, in conjunction with the intrinsic
parameters K of the camera, allow the projection of laser
points into images.

Laser points belonging to the same cluster are used to
define a ROI of size W × H , where W is set to twice the
distance between the projected laser points at the extremes
of the cluster. H is set to twice the size of W . The width
of the ROI is larger than the size of the object to account
for no-cylindrical shapes and misalignments between camera
and laser readings when obtained at slightly different time.
The ROI is then resized to 75×150. This process also makes
the ROI less sensitive to scale variations since the actual size
of the object obtained from laser is used to define the size
of the ROI.

C. Dimensionality Reduction and Classification

ROI are then convolved with Gabor wavelets at 2 scales
and 2 orientations to introduce texture information. Similar
results can be obtained with steerable pyramids [16]. The
RGB values are converted to HSV and histogram equal-
isation is applied to the intensity values to account for
illumination changes.

The resulting patch is a point in a 78753-dimensional
space (75 × 150 × 7 + 3) which includes HSV colour
information, texture and laser shape coefficients. This high-
dimensional observation is used for both object recognition
and data association. Classification of ROI is obtained using
an extension to the Fisherfaces [17] which is described
below. This approach performed better than [14] in our tests
at no significant additional computational cost. One reason
for that is the inclusion of colour and texture information
which enables the system to distinguish between objects of
similar shape such as tree trunks and light posts.

Classification of patches is performed in two steps. First,
high-dimensional points are projected to a lower dimensional
space where classes are more distinguishable. Then, logistic
regression is applied. In Fisherfaces a linear projection
of high-dimensional points is obtained by first applying
principal component analysis to the data to reduce the
dimensionality to N − c, where N is the number of points
and c the number of classes. This process avoids the problem
of computing Fisher discriminant analysis (FDA) with an
always singular within-class scatter matrix SW which has
more dimensions than samples. The resulting points are then
mapped to a low-dimensional space with c − 1 dimensions
with normal FDA. Formally, the problem is defined as the
computation of WT

opt with

WT
opt = WT

fdaWT
pca, (1)

where

Wpca = argmax
W

∣∣WT ST W
∣∣ (2)

and

Wfda = arg max
W

∣∣∣∣∣
WT WT

pcaSBWpcaW

WT WT
pcaSW WpcaW

∣∣∣∣∣ . (3)
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Fig. 1. Recognised landmarks mapped during SLAM.

The within-class scatter matrix is defined as

SW =
c∑

i=1

∑
xk∈Xi

(xk − µi) (xk − µi)
T (4)

and the between-class as

SB =
∑

Ni (µi − µ) (µi − µ)T , (5)

where µi is the mean of class Xi, and Ni is the number
of samples in class Xi. The total scatter matrix is thus
ST = SB + SW . The problem is solved by first computing
a singular value decomposition for PCA and a generalised
eigenvalue problem for FDA.

Landmark recognition involves the classification of obser-
vations into two classes, with or without a landmark. Conse-
quently, the resulting dimensionality of the projected points
after Fisherfaces would be just one (c − 1). Experiments
demonstrate, however, that incorporating more dimensions
through the projection of the scatter matrices SB and SW into
orthonormal sub-spaces of the initial Fisher dimension results
in classification improvement. Therefore, the approach of
[18] is used to include 4 more dimensions into the projected
points, where orthonormalisation is obtained through the
Gram-Schmidt procedure. The number of dimensions is
obtained with cross-validation.

The final classification is performed with logistic re-
gression [19]. The classifier is trained with 129 labelled
observations containing images and laser scans. The average
detection performance is approximately 95% (area under the
receiver-operator curve) for a 10-fold cross-validation. Figure
1 shows some of the landmarks detected and mapped during
SLAM.

III. LANDMARK REPRESENTATION

For each new landmark detected, an appearance model
is created. Each model is defined using a low-dimensional
representation provided by Isomap. Initially, Isomap [9] is
applied to a set of landmark images and shape coefficients
from a training dataset obtained from previous missions.
The choice for Isomap over other non-linear techniques
is due to its isometric property, which is important for
computing distance comparisons in the feature-space for data

association. Also, the landmark extension [13] reduces the
computational complexity considerably, making it suitable
for large datasets.

Isomap is a deterministic technique that does not di-
rectly provide out-of-sample embeddings nor uncertainty
measurements. To cope with that the resulting high and low-
dimensional points are used to learn a mixture of linear
models through EM in a procedure similar to [20]. The
mixture is used to compute out-of-sample embeddings of
new landmarks and to estimate covariances for compatibility
tests. Inferences in a mixture of linear models result in
mixtures of Gaussians that can be computed faster than out-
of-samples extensions to Isomap [21], with the additional
advantage of providing uncertainty estimation. Besides, ex-
periments using the out-of-sample extension for Isomap
provided poor approximations for our dataset. This might
be due to insufficient number of samples - 330 points - for a
high-dimensional space of 78753. The dimensionality of the
training dataset was 10, estimated from Isomap by evaluating
residuals. Hence, each landmark is represented by a mixture
of Gaussians in a low-dimensional space obtained by Isomap
and approximated by the mixture of linear models.

When a landmark is re-observed, its appearance model
is updated. This is performed by updating the sufficient
statistics in a conventional manner,

π̂ω =
Mπe

ω + π̄ω

M + 1
, (6)

µ̂ω =
Mµe

ω + µ̄ω

M + 1
, (7)

Σ̂ω =
MΣe

ω + Σ̄ω

M + 1
(8)

and M = M + 1, where π̂ω, µ̂ω and Σ̂ω are the expected
weights, means and covariances of the mixture, and M is the
number of past observations of the landmark. The number
of components of the mixture of linear models is estimated
by learning models with different number of components
and comparing them with the Bayesian information criterion
[19].

IV. DATA ASSOCIATION

Data association is performed using both pose estimation
of the landmarks from SLAM and their appearance informa-
tion. The gated nearest neighbour (NN) [22] is applied to
choose the best hypothesis for association. This method is
probably the simplest and most widely used data association
algorithm. However, if formulated with pose and appearance
representations of landmarks, it can be successful even for
difficult problems involving large loop closings.

From the Kalman filter equations, on the arrival of a
new observation, the state-vector estimation x̂ (k | k − 1)
and covariance P (k | k − 1) are updated as:

x̂ (k | k) = x̂ (k | k − 1) + W (k) ν (k) and
P (k | k) = P (k | k − 1) − W (k)S (k)W (k)T

,
(9)

where W (k) is the Kalman gain, ν (k) is the innovation
vector and S (k) is the innovation covariance matrix at
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Fig. 2. Utilitary car used in the experiments. For the results re-
ported, the top laser and the high-resolution camera were employed.

time k. The gated NN evaluates Mahalanobis distances
on the innovation vector νij and accepts a hypothesis ij
when D2

ij = νT
ijS

−1νij < χ2
d,α, where d is the feature

dimensionality and α the desired confidence level of the χ2

distribution.
The combined appearance-position version of NN works

in two steps. First, the compatibility test is applied to position
only. An association hypothesis is accepted whenever the
best D2

ij is within the gate with 95% of confidence. This
saves computation as only when there is no trivial association
- for example when closing loops - the appearance model is
used.

In the second step, the innovation is augmented with
appearance. The new innovation is νI = [νP , νA]T with

innovation covariance SI =
[

SP 0
0 SA

]
, where P is used

to indicate position and A appearance. νA is obtained by
computing the difference between the appearance model
for the landmark and the low-dimensional embedding of
the observation, computed from the learnt mixture of lin-
ear models. The mixtures are collapsed using the moment
matching technique that provides the best approximation
in a KL-divergence sense. Experiments have shown that
this procedure is faster than computing more sophisticated
associations from mixtures at no major cost on accuracy.
This can be explained by the fact that most inferences result
in mixtures with one and occasionally two components only.
The innovation covariance for appearance SA is obtained in
the same manner, from the appearance modes. A hypothesis
is accepted if the smallest augmented distance D2

I,ij is
within the pose-appearance gate with 95% confidence. A new
landmark is included in the map if the shortest distance is
larger than five times the gate.

V. EXPERIMENTS

Experiments are conducted with the utilitary car shown
in Figure 2. The vehicle is equipped with a laser scan, a
high-resolution colour camera (1134 × 756), GPS for pose
ground truth and odometry sensors for steering and wheels.
An embedded PC104 running QNX is used to collect time
stamps for each of the sensors and to trigger the camera1.
The car is driven for approximately 15 minutes, travelling

1The real-time software used was developed by
J. Guivant and F. Masson and is described at
“http://www.acfr.usyd.edu.au/people/academic/jguivant/PAATV/Paatv.html”
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Fig. 3. (Top) Estimated trajectory using odometry only. (Bottom)
Estimated trajectory and landmarks position with conventional
EKF-SLAM. For comparison, the estimated trajectory with GPS is
represented with the green line. The EKF-SLAM becomes incon-
sistent after the first large loop which is not closed properly. The
error in landmarks pose and vehicle trajectory is thus propagated to
the rest of the map. The numbers in the graph indicate successive
positions of the trajectory, starting with position 1 at (0,0). Note
that the GPS signal is not available in some areas of the park.

a total distance of about 1.5 kilometre. The speed ranges
from 0 to 25 km/h. Images and laser scans are grabbed at
5 Hz which causes a maximum possible disynchronisation
of 100 ms2. Multiple loops were executed during the data
acquisition ranging from few metres up to 400 metres. The
environment is an urban park in a partly cloudy day. The
park has dark areas under trees and open areas with direct
sunlight. The car was driven most of the time on an uneven
terrain covered by grass.

Estimation of the trajectory using only odometry is de-
picted in Figure 3 (top). As expected, odometry by itself
does not provide an accurate trajectory estimation especially

2The maximum framerate for the camera, at the resolution required, is 5
Hz. The laser is thus set up to scan at the same speed, and the camera is
triggered at the reception of a new laser scan. This method tries to minimise
the disynchronisation between the two sensors, however, in practice, time
differences of up to 80 ms do occur occasionally.
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for the irregular terrain where the dataset is collected. The
trajectory and the map obtained using standard EKF-SLAM
with pose-based data association is depicted in Figure 3
(bottom). The trajectory is closer to the GPS estimation
but the system fails to close large loops due to incorrect
associations. The result of that propagates throughout the
map, causing large pose errors and an inconsistent filter.
Another source of problems is the false identification of
landmarks caused by people or cars that were erroneously
included in the map.

The starting point is indicated as position 1 (0,0) in Figure
3. After starting, the vehicle goes straight and begins the
first loop which passes through position 2 and finishes at
position 3. Two other small loops are then performed next
to position 4. The vehicle goes back to the starting point
(position 5) and turns right for the largest loop. Next to
position 5 and heading to 6, the vehicle navigates in an area
with few trees. Thus, localisation relies mostly on odometry
which introduces the largest error in the trajectory estimation.
Another loop is performed at position 6 and the largest loop
passes through position 7 and finishes at 8. The vehicle goes
back to position 9 and at 10 performs the last loop in a region
with traffic and buildings (see Figure 4 (bottom right)). To
the best of the authors’ knowledge, this dataset is one of
the most complex and challenging outdoor dataset where
SLAM was ever applied in terms of both the trajectory (with
multiple loops), velocity of the vehicle, dynamic objects,
uneven terrain and illumination conditions.

Extended Kalman filter (EKF) is used for SLAM due
to its convergence properties and accuracy in uncertainty
estimation [23]. The techniques presented here are, however,
independent of a particular filter and are beneficial to all
of them. Map and trajectory obtained using the proposed
approach are depicted in Figure 4. The system is able to
close all loops correctly resulting in a much more accurate
map. The number of landmarks detected is smaller than
conventional SLAM demonstrating that the algorithm is able
to eliminate dynamic objects from the map. This can be
particularly seen from the area next to the road (position
10), where conventional SLAM included cars and buses in
the map. The left part of the map is slightly rotated from
the GPS ground truth due to the reduced number of trees
between poses 5 and 6, causing the vehicle to rely only on
odometry when turning. Some straight lines represent points
where the system is adjusting its position when re-observing
landmarks (loop next to pose 6, closing the large loop next
to 8). The images next to the graph show the landmark
recognition algorithm performing in the environment. In the
bottom-left image, three trees are recognised as landmarks
while the person and the post are correctly assigned as non-
landmarks. In the bottom-right image, buses are correctly
classified as non-landmarks but the algorithm misclassified
the pile. The reason for this is the partial occlusion of the pile
with a branch of a tree. Occlusions by tree parts are indeed
responsible for most of the misclassifications encountered.
Quantitatively, the RMS error for the estimated trajectory
using conventional EKF-SLAM was 20.5 metres. With our

Fig. 5. Multiple views of one of the landmarks acquired during
SLAM. As with this particular landmark, during outdoor explo-
ration, the vehicle observes landmarks at completely different
viewpoints. The yellow crosses represent laser points projected on
the object. As laser scans and images are not perfectly synchronised,
misalignment exists especially when the vehicle is turning (last
image on the right).

approach the RMS error was 8.6 metres. The error was
calculated using GPS measurements in areas where it was
available. This represents a significant improvement over the
conventional approach. The result is also close to the GPS
error itself which is around 5 metres.

The capability to associate landmarks observed at different
viewpoints is one of the main properties of the algorithm.
Figure 5 illustrates this for a landmark observed 411 times
at multiple viewpoints during exploration. When appearance
is not enough for association, the estimated position from
SLAM can compensate, improving the robustness of the
algorithm. With an observation from a different viewpoint
correctly associated, the appearance model for the landmark
is updated to account for the new information.

VI. DISCUSSION

The proposed algorithm improves significantly the perfor-
mance of outdoor SLAM. This improvement results in the
additional computational cost of detecting and creating ap-
pearance models of landmarks. Although the computational
complexity has been taken into account in the design of
the algorithms, the system is still not real-time. The current
implementation can process about 1 frame per second where
most of the computation is spent in performing inferences
on the mixture of linear models for dimensionality reduction.
Current research tries to reduce this time by using specific
processor instructions for vector operations.

The approach was tested in a very challenging urban
environment with dynamic objects, irregular terrain and
different illumination conditions. The system performs better
than pose-based data association and is able to correctly
close loops of more than 400 metres while recognising and
associating 120 different landmarks. An interesting property
of the algorithm is the capacity to recover from occasional
misassociations. This is possible with the help of the ap-
pearance models that can compensate from incorrect position
estimates.

In addition to the map and trajectory estimation, our
approach also provides images of landmarks with the relative
positions where they are obtained. Given a calibrated camera,
this information can be combined to create 3D models of
landmarks. We plan to investigate techniques for landmark
3D modelling in future work.
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Fig. 4. Map and vehicle trajectory obtained using the proposed approach. Results overlay an aerial picture of the area. The images next
to the map are screenshots taken from the indicated positions. The white boxes define regions where landmarks were detected.
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