
 
 

 

  

Abstract—Our sensor selection algorithm targets the 
problem of global self-localization of multi-sensor mobile 
robots. The algorithm builds on the probabilistic reasoning 
using Bayes filters to estimate sensor measurement uncertainty 
and sensor validity in robot localization. For quantifying 
measurement uncertainty we score the Bayesian belief 
probability density using a model selection criterion, and for 
sensor validity, we evaluate belief on pose estimates from 
different sensors as a multi-sample clustering problem. The 
minimization of the combined uncertainty (measurement 
uncertainty score + sensor validity score) allows us to 
intelligently choose a subset of sensors that contribute to 
accurate localization of the mobile robot. We demonstrate the 
capability of our sensor selection algorithm in automatically 
switching pose recovery methods and ignoring non-functional 
sensors for localization on real-world mobile platforms 
equipped with laser scanners, vision cameras, and other 
hardware instrumentation for pose estimation. 

I. INTRODUCTION 
HERE are two types of sensor problems associated with 
position and orientation (pose) uncertainty in localizing 

a mobile robot: (i) the sensor noise and (ii) the validity of 
sensor measurements [1]. In the robotics literature, the 
uncertainty due to the sensor noise is well understood and is 
efficiently handled by using one of several Bayes filters 
summarized in [2] by representing uncertainty using 
probability density functions under bounded noise models. 
However, the second problem of sensor validity attributed to 
the dynamic nature of environments poses a greater 
challenge because uncertainty due to sensor validity extends 
beyond the boundaries of modeling noise. The solution to 
robot localization by modeling and minimizing both types of 
uncertainty in dynamic environments through the fusion of 
multi-sensor information has turned out to be a recent trend 
[3]. We observe such methods of sensor integration in 
various applications spanning autonomous ground vehicles 
operating in deserts [4] to small robots navigating indoor 
environments [5], carrying a suite of sensors for global 
localization and navigation in a dynamic environment. 

In this paper, we target uncertainty minimization for 
robot self-localization by presenting a framework that can 
simultaneously quantify the uncertainty due to noise 
associated with each sensor measurement and also infer 
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evidence about sensor validity using belief estimates from 
multiple sensors. We explain the use of a measure of 
information complexity in constructing a score for both the 
sensor validity and the measurement uncertainty from the 
Bayes filter belief towards choosing a reliable subset of the 
multi-sensor data for robust self-localization. Towards that 
end, this paper describes the capability of a sensor selection 
algorithm with the following contributions to the robot 
localization literature: 

• An information theoretic framework to 
simultaneously score sensor measurement uncertainty 
and sensor validation uncertainty that have thus far 
been considered as distinct and independent problems in 
minimizing total uncertainty. 
• A new algorithm that can automatically eliminate 
failed sensors and recover from bad pose recovery due 
to data association problems in a dynamic environment, 
also guiding the switch to the next available good 
sensor. 
• A method to minimize instantaneous localization 
error leading to lesser global error accumulation while 
considering motion with several degrees of freedom. 

 
In the following section of the paper, we establish the 

theoretical basis of our sensor selection algorithm, deriving 
inspiration from related work in mobile robotics and 
statistical inference using information theory. In Section 3, 
we use a robot simulation environment to demonstrate our 
algorithm and then present results on real world systems that 
use our sensor selection method. We also mention the 
different pose recovery algorithms implemented on our 
mobile robots for feeding the sensor selection algorithm 
with pose estimates. After the discussion of results on real 
systems with laser scanners, vision cameras and other 
hardware instrumentation, we conclude with a brief 
summary in Section 4. 

II. SENSOR SELECTION ALGORITHM 
Let us consider the  general case of a mobile robot with 

N sensors (N > 2) and let Si refer to the ith sensor or pose 
recovery instrument providing position and orientation 
estimates Pi

t  of d-state dimensions at time t. By feeding in 
apriori NMi noise model associated with the pose 
measurement using sensor Si to a Bayes filter [2] (Kalman 
filters if NMi can be assumed to be normal), we are able to 
associate a belief distribution, and hence a likely pose μi

t and 
the uncertainty Σi

t about that pose for each sensor Si. Each 
one of these estimates μi

t contribute to the most likely pose 
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of the robot with the Σi
t quantifying the doubt in that 

position. If not using the Kalman filter, both μi
t and Σi

t can 
be computed as the first two moments of the belief 
probability density function. We start with these belief 
estimates as input to our algorithm as shown in Fig. 1 and 
then estimate the measurement uncertainty and sensor 
validity from these estimates using an information theoretic 
formulation.  

Quantifying sensor measurement uncertainty: Based on 
the belief estimates alone, if we were to choose the best 
sensor in the system, we would pick the sensor that is 
indicative of maximum likelihood with minimum 
uncertainty. This can be mathematically expressed as the 
minimizer of the criterion (1) that simultaneously considers 
the likelihood and also penalizes the uncertainty associated 
with the likelihood.  This model selection criterion in the 
statistics literature [6] is popularly known as information 
complexity (ICOMP) and derives from the Kullback-Liebler 
(KL) distance between estimates and unknown underlying 
probability density. Quantifying the uncertainty in self-
localization from competing belief distributions from 
different sensors is an analogous selection problem that the 
ICOMP can be reformulated and applied. We denote the 
score on the belief density functions of each sensor as the 
sensor measurement uncertainty Mi.  
 
Mi =   Lack of fit + Profusion of uncertainty 
      = -2 log (Likelihood of μi

t) + 2 C1 (F-1(Σi
t)),                 (1) 

 
where F -1 is the inverse Fisher information matrix 
 
                                                                               ,            (2) 
 
with s being the rank of F -1, |.| refers to the determinant and 
tr refers to the trace of the matrix. F -1 is computed as 
 
                                                                        ,                   (3) 
 
with D+

p being the Moore-Penrose inverse of vectorized Σi
t , 

⊗  represents the Kronecker product. The C1 measure for 
penalizing uncertainty is obtained by maximizing mutual 
information in d-dimensions [11, 12]. 

Though these equations appear complex, a 
distributional assumption, such as a Gaussian, reduces (1) to 
a much simpler finite sampling distributional form as shown 
in (4). We do note that (1) does not make assumptions on 
the functional form of the density and can be used on belief 
estimates from extended Kalman or even particle filters. 
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where d is the dimensionality of the state vector and yj are 
the fi measurements of sensor Si used for estimating belief. 

Quantifying sensor validity: Our idea to approximate 
sensor validity or reliability is based on the argument that 
the best that we can learn from multi-sensor measurements 
is by grouping sensors that tell us the same information. The 
more sensors that provide the same information, the higher 
the sensor validity we attach to each sensor and its 
measurements. Though the logical argument sounds very 
easy, converting it into a mathematical form involves more 
work. We need a method that can parsimoniously group 
these distributions associated with the robots pose from 
different sensors to quantify a measure that indicates optimal 
clustering in the probability space. For the N-sensor system, 
this unwinds to a computationally prohibitive hypothesis 
testing problem and requires a fuzzy estimator as 
demonstrated in [7]. Our approach is inspired by methods 
described in the survey in [8] and information theoretic 
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Fig. 1.  Flow diagram to illustrate our sensor selection algorithm in the 
d=1 case. 
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methods in [9, 10] to formulate sensor validity in a novel 
information theoretic sense. 

For the N-sensor system, we consider combinatorial 
sensor clusters and evaluate which cluster among the 
grouping of sensors is parsimonious and believable. We 
treat the belief distributions D1, D2…, Dn in Fig. 1, as 
random variables and use the information theoretic approach 
[13] to score each of the hypotheses listed below and choose 
the one that is minimal in an entropic sense.  Following 
Bozdogan [13] in using Akaike’s information criterion 
(AIC) as shown in (5) to perform the clustering of 
distributions, we begin by first associating the beliefs with 
one of the three hypotheses.  

 
1. Case of  ‘κ sensor’ cluster reliability: Not all μi

t are 
equal and not all Σi

t are equal with m = 
κ d+κ d(d+1)/2 parameters to consider. 

2. Case of confusion: μi
t‘s are unequal and Σi

t’s are 
equal with m = N d+ d (d+1)/2. 

3. Case of maximal validity: μi
t‘s are equal and Σi

t’s 
are equal with m = d+ d (d+1)/2. 

 
This initial hypothesis verification can avoid the 2N 

evaluations when all sensors are accurate and operational. 
By identifying the sensors not converging on the robot’s 
pose, we immediately infer the possibility that there might 
be pose recovery problems or non-functional sensors on the 
robot. 

The three competing models of the initial hypothesis is 
the three cases with the number of parameters m to use in 
(5). The computation of L for each of these cases involves 
considering the κ (varying from 1 to N) clusters as one 
distribution and how this assumption reduces the overall 
complexity compared to considering all the distributions D1, 
D2…Dn as individual cases without too much information 
leakage.We direct the reader to a detailed discussion in [13] 
for further implementation details on evaluating the 
likelihood function L. 

 

m  L 

AIC titi

2log2                           
model clusteredfor  parametersin Parsimony                           

 cluster)sensor  of Likelihood( ),,(
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+−=∑ κμ

 

(5) 

We illustrate a simple example with uncertainty ellipses in 
Fig. 2 for a three sensor system to understand the three cases 
better. We see that Case 3 refers to the possibility when all 
sensors are essentially indicating the same localization 
result. Case 2 points to ambiguity in the localization as 
sensors are indicating different robot pose with the same 
belief. In Case 1, when a smaller group of sensors are 
considered, we notice that a particular pose estimate appears 
more likely. Our interest is to find these group of sensors 
that are maximising a particular likelihood and use the AIC 
values that capture this essence as the sensor validity score. 
In our implementation, as soon as we infer one of the cases 
to minimize AIC, we assign all the sensors the AIC value of 
case hypothesis to be the sensor validity score. Then, for 

Case 1 and Case 2 alone, we perform the sensor clustering 
and evaluate all cluster combinations. Table 1 is an example 
of competing sensor clusters in a 3-sensor system. The 
minimizer of the AIC points us to the optimal clustering of κ 
valid sensors. We assign this minimized AIC value for only 
the sensors within the maximal sensor cluster as their 
corresponding sensor validity scores Vi. Since AIC is an 
asymptotic estimate of the KL distance between competing 
distributions, our sensor clustering is based on information 
distances between belief distributions. 
 In other words, sensor validity score is a measure of 
significant information gain in considering competing sensor 
data to localize a robot. For example, if s1 samples of Sensor 
1 and s2 samples from Sensor 2 are considered for 
construction of D1 and D2, AIC tries to measure the 
information distance in probability space by considering 
s1+s2 samples to construct another belief distribution D12 for 
localization. The information distance between D12 and D1 
or D2 that we measure using AIC quantifies the significant 
new information gained after fusing data from both the 
sensors. Extending this simple example to an N-sensor 
system, we are able to understand that the minimizer of the 
AIC after evaluating all the combinatorial clusters of sensors 
indicates the maximal group of sensors that essentially 
converge on the state vector. We use this information 
distance as the sensor validity score to differentiate sensors 
that agree and the sensors that do not. 
 

TABLE I 
COMPETING SENSOR CLUSTERS IN A 3-SENSOR SYSTEM 

 

κ Sensor clusters (N =3) 
Case 1 and 2: κ = 1 [(1) (2) (3)]  

Case 1 and 2: κ = 2 [(1) (2, 3) ] [(1,2) (3) ]  [(1,3) (2)] 

Case 3: κ = 3 [(1,2,3)] 

 
Both the ICOMP and the AIC values being normalized 

information measures of complexity in our implementation, 
we use the sum of the two measures of sensor measurement 
uncertainty Mi and sensor validity Vi and hence choose the 
sensors with minimum total uncertainty. We implement a 
simple weighted scheme [14] based on the total uncertainty 
values Uj for fusing localization information only from the k 
selected sensors. In the following section, we demonstrate 
this implementation of the proposed algorithm on our robot 
simulator and then discuss results on real systems. 

Fig. 2: Uncertainty ellipses to show how sensor clustering can help 
build sensor validity confidence in localization. 
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Fig. 3.  Localization in a simulation environment. (a) Example 1: 
Detecting intermediate failure. (b) Example 2: Self-localization 
when sensors are converging on a believable pose. (c) Example 3: 
Guiding the sensor switch when the belief in particular sensor 
pose deteriorates. 

III. EXPERIMENTAL RESULTS 
To demonstrate the capability of the algorithm, we start with 
results from a simulation environment by considering a three 
sensor system with sensors H, R and V and 2-dimensional 
state vector in different synthetically generated cases as 
shown in Fig. 3. The noise models for the simulator being 
Gaussian, our choice of the noise-variance minimization 
algorithm was a Kalman filter [15] that takes in Gaussian 
prior and outputs Gaussian posterior beliefs. 

Figure 3 shows three different cases that help 
understand and appreciate our algorithm. We have plotted 
the Kalman filter outputs of different sensor measurements. 
The ellipses seen in these figures are based on the 
uncertainty estimate from the Kalman filters. In some cases, 
these ellipses are not visible because of the high degree of 
certainty they encapsulate. We interpret the output of our 
sensor selection algorithm in two forms: (i) which sensor to 
believe (bottom inset) and (ii) the number of sensors 
contributing to that belief (top inset).  

Figure 3a shows the case where the robot tries to stay 
on a sigmoid path with sensor H being more accurate at the 
first few samples (the red ellipses are not visible because of 
the high belief), while the other sensors converge on the 
localization information over time. Our sensor selection 
algorithm correctly picks up sensor H, switches to the next 
available sensor R, and also is able to infer that all three 
sensors are converging after the first few samples. In Fig. 
3b, sensors H, R and V are essentially indicating us to the 
same localization information that our algorithm is able to 
infer. The third example, in Figure 3c, is the closest to 
reality where some sensors can fail suddenly forcing the 
need to switch to a better sensor. We observe the likely pose 
estimate from the sensor H consistent and believable to 
begin with but deteriorating over time. Our sensor selection 
result automatically detects the deteriorating belief on sensor 
H, guiding the switch to sensor V as a better option. 

We compare sensor selection with sensor fusion for 
localizing the mobile robot in Fig. 4a. We show the sum-
squared error of the pose vector from the intended path in 
each of the three examples considered in Fig. 3. The time 
required for both these approaches is plotted in Fig. 4b. We 
observe that the sensor selection performs better by 
minimizing localization error at each instant. However, the 
accuracy appears to come at the expense of a few extra 
computations compared to covariance weighted-fusion [14]. 
The extra computations that consume a few milliseconds 
more do not seem to impose a problem for real-time 
operation. Another interesting aspect to note from the error 
analysis graph is that sensor selection can only perform as 
well as the best sensor. This means that our method deals 
with possibly invalid data not compromising the best case 
performance, though it does promise improvement as 
expected out of fusion. On Example 2, when all sensors 
were essentially telling the same information, we see that 
sensor selection is not able to perform better than the 
covariance-weighted fusion while on cases with varying 
beliefs over time, sensor selection leads to more accurate 
localization. 
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(b) 

Fig. 4.  Error and timing analysis for sensor selection for the three 
examples presented in Fig. 3. (a) Plot of sum-squared error over the 
entire intended path localized using the covariance weighted fusion 
method and our sensor selection method. (b) Timing analysis to 
compare fusion with selection. Execution time for selection in 
Example 2 is lesser than the other examples because, most of the time, 
Case 3 hypothesis was detected avoiding cluster evaluations. The 
timing analysis was performed on a Pentium IV machine with 1 GB of 
memory on 20 pose estimates from 3 sensors. 
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Fig. 5.  Localization in urban environments. (a) Our mobile platform 
with laser range scanners, video cameras, GPS and inertial 
measurement units. (b) Intended path (blue curve) in the city. (c) Pose 
recovery from hardware instrumentation (red curve), range scanner 
(green curve) and the video camera (blue curve). (d) Sensor selection 
result. 
 

 
Moving away from simulations, the first real-world 

application that we discuss is on a mobile platform with 
laser scanners, video cameras, global positioning systems 
(GPS) and inertial equipment mounted on a van as shown in 
Fig. 5a. The noise models for these systems were built 
through extensive apriori characterization of each of the 
sensors. With the van, though not completely autonomous in 
its operation in urban environments, we use the position 
information from the GPS, orientation from the inertial 
measurement unit, recover pose from the 3D profile data 
[16] and video data [17], and use these datasets to 
automatically detect a GPS outage which is common in 
urban environments and switch to the next reliable sensor. 
We show our mobile scanning system along with the 
intended path overlaid on the aerial map of the city. The test 
course in Fig. 5 is approximately 400 meters long. Figure 5c 
shows the result of pose recovery from several sensors 
indicating areas that have error in the order of a few 
centimeters that later builds to the order of a few meters. 
Figure 5d is the result of our sensor selection algorithm 
indicating reliable pose recovery methods along the total 
path. We are able to see the areas in which pose from video 
was not a reliable method compared to pose recovery using 
hardware and range sensors. 

The next set of experiments we conduct uses a small 
mobile robot navigating a corridor. The robot in the corridor 
shown in Fig. 6 has five cameras. The idea is that one 
camera looks ahead in the path and avoids obstacles, while 
the other four look at different fields of view for 

localization. Our test environment has doors, windows, and 
objects like chairs, book shelves etc. in the path on either 
side. We use multiple cameras to accommodate for lack of 
features on painted walls and also for a larger coverage in 
the corridor looking for trackable features. A pose from 
video algorithm similar to [17] provides the robot’s pose for 
localization using apriori calibration information. The 
uncertainty in pose is determined by estimating the 
confusion in converging to optimal relative pose as 
discussed in [18]. Our sensor selection algorithm operated 
on these values in successfully localizing the robot through 
the entire intended path that we show in Fig. 6b. 

 
We use this environment as a test bed for localization 

where we know that there may not be enough trackable 
features for all sensors over the entire intended path. We 
expect that when one sensor is tracking features on doors 
and windows, the others might be struggling to even locate 
interesting features on plain walls. We plot the number of 
oriented matches between successive frames in pose 
recovery using the images from these cameras in Fig. 6c. 
We are able to see that our sensor selection algorithm 
automatically switched to the available next best sensor, 
when the pose recovery was not within acceptable levels 
minimizing the overall uncertainty in position. This 
emphasizes the capability of our method in automatically 
switching to a good sensor while navigating in a dynamic 
environment where pose recovery methods can fail due to 
data association problems or lack of features. 

FrC9.2

4162



 
 

 

IV. SUMMARY 
This paper presented a sensor selection algorithm based on 
information theoretic model selection criteria for robotic 
localization. Our approach to bring together measurement 
uncertainty and reliability using information measures for 
uncertainty minimization in localization is able to efficiently 
work on real and synthetic robot environments. Our results 
further encourage implementation on unmanned ground 
vehicles in following a well defined path where localization 
is necessary feedback due to the dynamic nature of the 
environment. An example of such a scenario is urban traffic, 
where an unmanned vehicle in addition to maneuvering 
amidst traffic should be able to switch sensors managing 
sudden unexpected GPS outage to stay on course towards 
the intended destination. Our method is particularly suited 
for such applications involving multi-modality sensors for 
navigation and localization. However, we also note that our 

method can only perform as good as the best sensor in the 
system and not better than the best sensor as expected in an 
ideal case of information fusion discussed in [19]. 
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Fig. 6.  Localization of a mobile robot with multiple cameras in an 
indoor environment. (a) Our mobile platform with five cameras (b) 
Intended path (blue curve) in the corridor and the localized path (red 
dotted curve). (c) Number of mutual matches between successive 
frames in the video that can be loosely related to the confidence with 
pose recovery along with the sensor selection result. 
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