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Abstract - In this work, we describe an autonomous mobile 
robotic system for finding and investigating ambient noise 
sources in the environment.  Motivated by the large negative 
effect of ambient noise sources on robot audition, the long-term 
goal is to provide awareness of the auditory scene to a robot, so 
that it may more effectively act to filter out the interference or 
re-position itself to increase the signal-to-noise ratio.  Here, we 
concentrate on the discovery of new sources of sound through 
the use of mobility and directed investigation.  This is 
performed in a two-step process.  In the first step, a mobile 
robot first explores the surrounding acoustical environment, 
creating evidence grid representations to localize the most 
influential sound sources in the auditory scene.  Then in the 
second step, the robot investigates each potential sound source 
location in the environment so as to improve the localization 
result, and identify volume and directionality characteristics of 
the sound source.  Once every source has been investigated, a 
noise map of the entire auditory scene is created for use by the 
robot in avoiding areas of loud ambient noise when performing 
an auditory task. 

Index Terms – Sound Source Localization, Evidence Grid, 
Mobile Robots, Sound Mapping. 

 

I. INTRODUCTION 
In the future, audition is likely to play a large role in 

robotics.  A companion robot will need speech recognition.  
A mechanic robot might need to listen to the machines it is 
fixing.  A security robot will listen for unexpected sounds.  
What all of these scenarios assume, however, is that the 
robot can automatically separate out the signal of interest 
from the myriad of noise sources that fill our daily lives and 
mask the target signal.  Cars, plumbing, air vents, 
computers, etc., are all things that these robots dependent on 
audition must learn to ignore, and possibly work around in 
order to do their job.  But how can the robot filter out this 
excess noise given the complex and dynamic nature of the 
signals to which it is listening?  It is our supposition that 
overcoming this masking noise can be accomplished by 
making the robot aware of its acoustic surroundings, i.e. the 
auditory scene.  If the robot builds models of those ambient 
noise sources that fill an environment, then the robot will 
become aware of the masking sounds present at any 
location.  Then the robot can more effectively filter those 
sounds out, or try to re-position itself where the signal to 
noise ratio is higher. 

In this work, we explore attaining awareness of the 
auditory scene by a mobile robot through exploration and 
discovery.  Tasked with listening for “interesting” auditory 
events, a mobile robot uses a two-step process to build a 
representation of those sound sources that might interfere 
with its acoustic task.  The first step is to move through all 
areas where the robot might need to listen for events, 
recording ambient noise along the way using a microphone 
array.  This recorded data allow localization of pertinent 
sound sources by combining multiple sound source location 
estimates with robot pose in an auditory evidence grid [1].  
The second step is to then investigate detected sources using 
an area-coverage heuristic in the vicinity of each source.  For 
a medium to long duration source, this second set of data 
now allows the robot to construct near-field models of sound 
propagation through the environment, possibly identifying 
secondary weaker sources, and constructing models of 
volume and directionality to predict the effects on the 
auditory scene beyond the sampled area. 

The remainder of this paper is organized as follows.  The 
first section discusses related work in robot audition and 
auditory scene analysis.  The second section describes 
algorithms used in this work for sound source localization, 
mapping, and sound source modeling.  This is followed by a 
description of the robotic implementation, and, finally, 
results of the sound source discovery process.  

II. RELATED WORK 
The goal of building models of the auditory scene is to 

combine movement with sensory information to better 
overcome the effects of noise on auditory processing.  
Models of how this can be accomplished are loosely inspired 
by biological systems.  In animals, the mechanism for 
overcoming noise appears to be a neuronal spatial map of 
the auditory scene, constructed in the inferior colliculus.  
Individual neurons become attached to specific locations in 
the surrounding environment, only firing when a noise is 
detected to originate from that location.  These neuronal 
spatial maps, however, are not being constructed from 
auditory information alone.  Visual [2] and/or body pose [2, 
3] data are equally critical in providing additional spatial 
information to the creation of the map.  Without the extra 
senses, the localization error introduced through just the 
auditory system is simply too large, and the neural maps 
become misaligned over time. 

In robotics, researchers have only recently begun to 
explore these advantages.  Work by Nakadai et al. [4] 
demonstrated the combination of movement with auditory 
information.  By simply rotating the microphone array, they 
could overcome internal noise interference to accurately 
indicate the direction of a source.  Other work, by Huang et. 

Manuscript received January 30, 2007.  This research was supported 
by the Office of Naval Research under work order number 
N0001406WX30002. 

E. Martinson is with the Georgia Institute of Technology, Atlanta, 
GA 30332.  (ebeowulf@cc.gatech.edu). 

A. Schultz is with the U.S. Naval  Research Laboratory, 
Washington, D.C. 20375.  (schultz@aic.nrl.navy.mil) 

 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB2.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 435



( )
( )

( )
( )���

�

�
�

�

�

−
=

�
�

�

�

�
�

�

�

− ttyx

ttyx
tt

yx

tt
yx

szSSp

szSSp

szSSp

szSSp

,|1

,|
log

,|1

,|
log

,

,

,

,  

( )
( )���

�

�
�

�

�

−
+ −−

−−

11
,

11
,

,|1

,|
log tt

yx

tt
yx

szSSp

szSSp   (1) 

al. [5], demonstrated a multi-modal approach using sound 
and vision to localize a human in an environment. 

Extending the biological model even further, however, the 
robot can also create maps of the auditory scene.  Using 
recent developments in tracking relative robot position, a 
mobile robot can now capture auditory information from a 
number of positions in the environment and combine these 
data together.  If the collected information are source 
localization estimates, then combining them together 
accurately triangulates upon multiple simultaneously 
operating source locations, despite the presence of robot 
ego-noise (motors, wheels, etc) and echoic environments 
[1,6].  Other work in robotic mapping samples the auditory 
scene over a large area, and interpolates across all data to 
construct a noise contour map of the auditory scene [7].  
These maps can be used to guide the robot in re-positioning 
itself to maximize signal-to-noise ratio.   

The work presented in this paper continues this last line of 
research with a number of specific advances: (1) the sound 
source localization process has been automated, (2) an 
algorithmic approach to extracting the source positions has 
been developed, (3) the resulting source position estimates 
are used to guide a robotic investigation of the source, and 
(4) models of sound source directivity and local noise maps 
are constructed from the investigation results.   

III. MODELING SOUND SOURCES 
In this section, we summarize the three algorithmic tools 

that the robot uses to discover sound sources: (1) Auditory 
Evidence Grids, (2) Volume and Directivity estimation, and 
(3) Noise Contour Maps.  Each of the three serves a purpose 
in identifying how the surrounding area has changed by 
correspondingly localizing the sound source, characterizing 
its acoustic properties, and finally measuring the effects of 
the environment on the flow of sound.  Each of these tools is 
designed to be used in conjunction with guided robotic 
movement to gather the necessary data (Section 4). 

For the remainder of the paper, we will be largely 
focusing on discovering sound sources that are medium to 
long in duration.  Examples of such sources include engine 
and/or machine noise, fan noise, HVAC systems, etc.  Such 
sources are very common in indoor environments, and can 
be measured repeatedly by a robotic system that takes time 
to move from place to place.  While identifying such 
transient noises as speech and alerts is equally important to 
an auditory system, these noises, by necessity, have to be 
treated differently from sound sources that remain stationary 
and relatively constant over time. 

A. Auditory Evidence Grids 
The basic algorithm we use for estimating sound source 

positions from microphone array data are spatial likelihoods 
[8], an algorithm based on the principle of time difference on 
arrival.  As the speed of sound can be assumed constant, and 
the microphones are physically separated in space, the signal 
received by each microphone from a single source will be 
offset by some measurable time.  If the value of these offsets 
can be determined, then the location of the sound source will 
be constrained to all positions in the room whose geometry 
relative to the array corresponds to the measured time 

differences.  Spatial likelihoods are then a maximum 
likelihood approach utilizing these time differences to 
estimate the likelihood associated with every possible 
location in the room.   

In theory, given enough microphones in an array, it should 
be possible to exactly localize the source using spatial 
likelihoods.  In practice, however, given the small distances 
between microphones in an on-robot array, as well as the 
levels of ambient noise and echoes from the environment, 
spatial likelihoods tend to be better at estimating angle to the 
sound source rather than distance.  So to overcome these 
errors in distance estimation, multiple spatial likelihood 
measurements are collected at different points in the 
environment so as to triangulate the source position.  The 
algorithm used for combining the spatial likelihood 
measurements together is that of auditory evidence grids[1]. 

An auditory evidence grid is an evidence grid 
representation that combines spatial likelihood 
measurements and robot pose estimates using Bayesian 
updating to estimate the probability of a sound source being 
located in a set of predetermined locations (i.e. a grid cell 
center).  Initially, we assume that every grid cell has a 50% 
probability of containing a sound source.  Then, as each new 
spatial likelihood measurement is added to the evidence grid, 
the likelihood for each grid cell is adjusted.  For simplicity 
in adding measurements together, we use log odds notation 
when updating the evidence grid.  Equation 1 demonstrates 
this additive process: 

In this equation, p(SSx,y|z
t,st) is the probability of 

occupancy given all evidence (sensor measurements z, and 
robot pose s) available at time (t), and p(SSx,y|zt,st) is the 
probability that a single grid cell contains the sound source 
based on a single measurement.  To then actually localize 
sources and extract coordinates, we use an iterative nearest-
neighbor clustering algorithm to identify the centroid of 
those clusters most likely to contain a sound source.  

To prepare the map for clustering, it is first scaled so that 
the most likely grid-cell is no more than 99% likely, and the 
least likely cell is no less than 1% likely.  A threshold of 
75% is then applied to the map (or 0.5 in a log-likelihood 
grid) to eliminate cells unlikely to contain a sound source.  
Nearest neighbor clustering then collects all adjacent cells 
together in a single cluster, calculating a weighted centroid 
of the cluster using the likelihood at each grid cell as the 
weight.  Only those clusters with an area larger than a few 
grid cells are identified as potential sound sources, with their 
centroids used as likely source positions.   

B. Determining Volume and Directionality 
Provided with enough data in the vicinity of the localized 

sound source, the next logical step is to construct a model of 
volume and directivity.  The challenge with this step, 
however, is the difference between the ideal method for 
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constructing such a model and the actual nature of the data 
from which to construct it.  In the ideal method for 
determining source directivity, the sound source would be 
located in an anechoic chamber where the magnitude of any 
reflections is negligible, and the sound could be measured at 
a constant distance from the source.  With the robot, 
however, we are in a real environment where there is a 
substantial reverberant component to measured sound.  
Furthermore, the collection of data gathered comes from an 
arbitrary set of distances and angles to the source.  How do 
we overcome these differences? 

The first step in overcoming these differences is to 
separate the measured signal into each of its component 
parts (direct and reverberant sound), and identify the 
loudness of each component: 

where ps is the rms pressure of the sample (s), pdirect,s is the 
rms pressure due to un-reflected sound, and preverb,s is the rms 
pressure due to reflected sound waves.  The loudness of the 
direct sound is the quantity we are the most interested in, but 
before we can estimate pdirect,s we need to first identify 
preverb,s.   

Estimating the loudness of the reverberant component 
requires making some simplifying assumptions.  The first 
assumption is that the loudness due to reverberant sound will 
remain constant over the entire room.  Since reverberant 
sound describes the contribution of reflected sound waves, 
and sound waves will reflect many times all over the room 
before either decaying to nothing or reaching a receiver, this 
is a good approximation often used by acousticians for 
quickly estimating the reverberant field [9]. 

Even with this simplifying assumption, however, the 
direct sound contribution needs to be further defined before 
the reverberant component can be determined.  As the direct 
field describes the volume of un-reflected sound emanating 
from the source, the energy of the direct field will decay 
with the square of the distance.  So the farther away the 
robot is from the source, the greater the energy coming from 
reverberant sound and the less from direct sound.  Equation 
(3) demonstrates this energy relationship, given a sampled 
distance ds and an arbitrary distance d0. 

Using this same equation as a guide, our second 
simplifying assumption is that after some distance the 
contribution due to the direct field is minimal, and that we 
can estimate SPLreverb as the mean volume of the sampled 
data taken beyond dr meters from the source.  In this work, 
we used 3m as a good approximation, where the volume of 
the direct field will have dropped 9.5dB from the volume at 
1m from the source.   

Now that we have estimated the contribution of the direct 
field, the final step is to combine all of the data collected 
from arbitrary distances and angles into a single model with 
a specified distance and angle.  For this purpose, we first use 
equation (3) to calculate pdirect,d0 at the specified distance d0, 
and then we apply a Gaussian smoothing function centered 

on the desired angle (ω).  After combining the earlier 
equations, the final equation for the model is: 

(ds,θs) is the position of the sample relative to the center of 
the source, and σ is the standard deviation of the applied 
Gaussian.  Figure 1 demonstrates a measured directivity plot 
across all angles, for a distance of 1m from the source. 

C. Noise Contour Map 
Once a set of sources has been identified, the method for 

estimating their combined effect on the auditory scene is the 
Noise Contour Map.  In general, noise maps are a graphical 
tool commonly employed by acousticians to plot the average 
levels of noise found throughout an environment.  In mobile 
robotics, a noise map provides a robot with a guide to the 
auditory scene.  In previous work[7], noise maps were used 
to build gradient fields that a mobile robot could follow to 
decrease the level of ambient noise to which it is exposed.   
In this work, we focus on the creation of the noise map using 
the provided source location and directivity models   
discovered by the mobile robot. 

Given a set of known sources with coordinates {xs,ys}i and 
known directivity models, the theory of super positioning 
says that the total rms pressure squared at a given location 
(p2

x,y) can be estimated as the sum of the reverberant 
pressure (p2

reverb) plus the sum of the direct sound due to 
each sound source (i) on that location: 

where n is the number of known sources, and {dx,y,i,ωx,y,i} are 
the distance and angle from location [x,y] to source (i).  
Using this equation, a map estimating the loudness due to 
ambient noise can be constructed for the entire area traveled 
by the robot, creating a gradient for the robot to follow when 
it needs to escape a noisy area.  Figure 2 demonstrates an 
example noise map for two sources. 
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Fig 1.  Directivity plot showing angle vs. volume for the direct sound 

coming from a pc-speaker.   This plot is centered on the speaker 
coordinates, and the volume is estimated at a distance of 1m. 

WeB2.5

437



IV. ROBOTIC DISCOVERY 
Now that the robot is equipped with a set of tools for 

modeling sound sources and mapping environmental sound 
flow, the robotic discovery process still needs a movement 
strategy for collecting the necessary data.  For this purpose, 
we propose a two-step process.  In the first step, the robot 
patrols the environment, collecting data while following a 
waypoint path through areas where knowledge of the 
auditory scene is necessary.  These data are then used in an 
auditory evidence grid to extract sound source positions.  
The second movement step is then a guided investigation of 
the detected sound sources using an area-coverage heuristic.  
The data collected from the second step can then be used to 
refine localization estimates and build models of directivity. 

A. Experimental Setup 
This work was tested on two different indoor robots: (1) a 

Pioneer-2dxe robot over a 10m x 15m area, and (2) an 
iRobot B21R over a 12m x 12m area.  Both robots can be 
seen in Figure 3.  The sensor suite used for this task was the 
same on both robots: odometric position sensors, a SICK 
laser measurement system and a 4-element (Audio-Technica 
ATR35S lavalier mics) microphone array attached to 
battery-powered preamps and an 8-channel data acquisition 
board.  Robot pose was then calculated by comparing laser 
range finder and odometric readings to a robot created 
obstacle map.   

On the Pioneer robot, robot control was implemented 
using the Player/Stage [10] robot control software. Built in 
drivers provided obstacle avoidance and path planning.  An 
adaptive monte-carlo localization algorithm (amcl), also 
native to Player/Stage, then provided robot pose estimates by 
comparing laser range finder results to a robot created 
obstacle map.  Due to processor limitations, the path-
planning and amcl algorithms were run on a desktop Linux 
machine over a wireless network.  Also because of 
computational limitations, all auditory processing was 
performed on a separate laptop mounted beneath the 
microphone array.   

On the B21R, an NRL proprietary implementation of 
continuous localization [11] provided robot pose estimates, 
while a Trulla path-planner [12] guided the robot from 
location to location.  As with the Pioneer, auditory 
processing was performed on a separate laptop mounted on 
top of the robot base, below the monitor.  However, 
localization and path planning was performed on internal 
machines so the wireless network was not required for 
testing the discovery process.  

B. Patrol Task 
The first phase of autonomous movement is the patrol 

task, described by a set of ordered waypoints in the 
environment for the robot to visit.  The purpose of this phase 
is to expose the robot to as much of its environment as 
possible so that it will be able to detect any significant 
ambient noise sources.  In our implementation, spatial 
likelihoods are only calculated for each sample over a 3m 
radius so we selected a set of waypoints that should bring the 
robot within 3m of every location in the environment.  This 
3m requirement was selected empirically based on the 
requisite loudness of a source being detected.  Beyond 3m, 
sources less than 60dB are not reliably detected using spatial 
likelihoods.   

Provided with this waypoint path, the robot then uses a 
path-planner to guide it from its current position to each 
waypoint in turn while dynamically avoiding obstacles.  
Upon arriving within some threshold distance (0.4m) of the 
desired waypoint, the robot selects the next waypoint in the 
specified order as a target, and the cycle repeats.  To account 
for inconsistencies between the real world and the map, a 
timeout mechanism monitors the robot progress and forces it 
to move on to the next waypoint after 3 minutes.  The task is 
finished when the robot has successfully visited or tried to 
visit all specified waypoints.  An example waypoint path can 
be seen as a solid line in Figure 4. 

After completing one loop through the environment, the 
robot then processes its auditory data using the auditory 

Obstacles

Air Filter

Radio

Obstacles

Air Filter

Radio

 
Fig 2.  A predicted noise map created from the models of two sound 
sources: an air filter and a radio.  In this map, white depicts areas of 

higher ambient noise volume 

 

 
 

Fig 3.  Robots used in the robotic 
discovery process. (left) B21R 

robot used with overhead 
microphone array, and SICK laser 

mounted in the base.  (top) 
Pioneer-2dxe with microphone 

array mounted in the rear. 
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evidence grid and clustering process to search for likely 
source position candidates.  Given the scarcity of data over 
any given area, the resulting source localization estimate can 
have relatively high error.  So the next step is to investigate 
this source and refine that localization result. 

C. Robotic Investigation of a Source 
The second phase of autonomous movement begins after 

the robot has successfully completed a patrol loop, and has 
identified one or more areas potentially containing a sound 
source.  The purpose of this phase is to actively investigate 
each of those identified areas in order to determine whether 
a sound source is actually located there, where exactly it is 
located, and what is the directivity of that source.   

Provided with a target set of coordinates to investigate, a 
set of unobstructed locations is identified within a 3.5m 
radius of the target using the obstacle map of the 
environment.  These unobstructed locations become 
waypoints for the robot to visit, effectively performing an 
area coverage task in the vicinity of the suspected sound 
source.  Unlike the waypoint task, however, visiting these 
waypoints does not need to be done in any particular order, 
and so the robot will always travel to the nearest waypoint.  
The circles in Figure 4 show a set of waypoints to be used 
for investigating a single source.  

When investigating a source, a different sample collection 
strategy is utilized.  During the patrol task, the robot 
collected samples while moving along its route.  Movement, 
however, is both acoustically and algorithmically noisy, 
resulting in poorer accuracy when localizing a source.  
When identifying possible locations that need further 
investigation, such as during the patrol phase, lower 
accuracy is fine.  But during the investigation phase, the 
robot needs to use a pause and sample methodology to 
achieve higher accuracy.  By stopping the robot to sample 
the auditory scene whenever it reaches a waypoint, the 
volume of robot ego-noise is reduced.  Additionally, position 
error is reduced as more data are available from which to 
accurately estimate position. 

After completing the investigation of a single source, the 
robot now has enough data to re-fine the position of the 
source and determine its directivity.  To refine the position, 
an auditory evidence grid is constructed using just the data 
collected from the area-coverage task, and the clustering 
algorithm is reapplied.  Discarding smaller clusters, the 
coordinates of the largest cluster’s centroid are used as the 
global location of the source when estimating directivity of 
the source.  This value is necessary for determining the 
position of the sample relative to source center (ds,θs).  

Following the completion of investigatory phase for a 
single source, the robot then repeats this phase for all other 
sources detected during the patrol phase.  Only after all 
suspected sources have been detected is a noise map 
constructed to predict the sound flow in the area beyond the 
investigated areas. 

V. RESULTS 
Testing the discovery process was divided into three 

stages.  In the first stage, we tested the accuracy of the 
directivity model by investigating one source with known 

{x,y} but unknown θ.  In the second stage, we tested the 
entire discovery process for a single source of unknown 
{x,y,θ}.  Finally, in the third stage, we tested the ability of 
the discovery process to localize multiple simultaneously 
operating sources of unknown {x,y,θ}. 

During each of these three stages, we applied a 10th order 
highpass FIR filter (300Hz cutoff frequency) to every 
sample before analyzing the data.  Since the ambient noise 
sources being measured had significant high frequency 
components, this had little effect on the auditory evidence 
grid creation.  What the filter did do, however, is reduce the 
impact of robot motor noise on determining directivity.  
Since the robot’s motor was in close proximity to the 
microphone array, it could overpower the weak volumes 
measured farther away from the source. 

A. Stage 1 - Known {x,y}, Unknown θ 
In this testing stage, a single source of known centroid 

position was rotated through 7 different angles in 45° 
increments.  One angle was not tested due to the source 
pointing at a solid pillar where the robot could not 
investigate.  The sound source was a pc-speaker playing 
nature sounds (rain) measured as being 65 dB 1-m from the 
source (including both direct and reverberant sound).  
Provided with the ground truth source location, the B21r was 
used to investigate the source once for each angle using just 
the area-coverage algorithm with a 3.5m range.  Over 7 
trials, the mean error of peak directivity was 0.2rad of 
ground truth with a maximum error of 0.5rad.  Given that the 
source itself is a pc-speaker with a wide frontal lobe, this 
approximation should be adequate to guide the robot away 
from the loudest areas surrounding the source. 

B. Stage 2 – Unknown {x,y,θ} 
In the second stage testing, the B21r was used to localize 

each of three pc-speakers with unknown {x,y,θ} 5 times.  
During any one test, only one speaker was playing and all 

 
 
 
 
 

Fig 4.  Screen capture of an obstacle map used by the pioneer for 
navigation in an environment with two sources.  The black line 

shows the waypoint path followed during a patrol, while the circles 
illustrate a set of targets reached by the robot to complete an 

investigative task for a single source. 

Patrol Loop 
Area Coverage Waypoints 
Sound Source 
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speakers played the same nature sounds track (rain) at a 
65dB volume.  For each test, the robot first moved along the 
same patrol route, localizing the active source.  Then it 
would dynamically choose where to center its investigation.  
After investigating the area, the sound source position was 
re-estimated along with the map of the surrounding 
environment and the source orientation.  Table 1 shows the 
mean error for each source.   

These results demonstrate the reliability of the discovery 
process in accurately finding and modeling sources.  Sources 
1 and 2 were located in areas where the robot could 
completely encircle the source, and therefore gather data 
from all directions.  Source 3, however, was against a wall, 
so the robot was limited to gathering data in the 180° 
foreground.  Due to this limited area, as well as the 
proximity to the wall and its echoic effects, the orientation 
error is highest for this third source. 

C. Stage 3 – Multiple Sources 
The final stage of robotic testing demonstrated the ability 

of the robot to detect multiple simultaneously operating 
sources.  Two sources, an air filter (0.5m x 0.3m x 0.3m) and 
a two-speaker radio generating static noise, were placed 
5.8m from each other.  Figure 4 shows their relative 
placement.  The pioneer-2dxe robot was then used to 
localize and model each source.  Following the initial patrol 
phase, the robot identified two potential clusters, 
corresponding to each of the two sources.  Both initial 
clusters were within 1m of the actual source location.  Upon 
further investigation, the robot improved the localization 
accuracy for the air vent to within 0.2m, and to 0.4m for the 
radio.  The orientation accuracy for each source was 0.64rad 
and 0.4 radians respectively.  Using these source locations 
and their directivity models, a noise map was created to 
estimate their combined effect on the environment (Figure 
2).  Despite some inaccuracy in the orientation estimates, 
likely due to the simplifying assumption regarding constant 
reverberant sound levels over such a large area, this resulting 
noise map can still easily guide a robot away from 
interfering ambient noise sources.   

VI. CONCLUSION 
What this work has demonstrated is the ability of a robot 

to construct models of the interfering ambient noise in the 
auditory scene.  By first listening for sources, and then 
actively investigating possible locations, a robot gradually 
discovers where the sources are located and how the sources 

are oriented.  The same process has been demonstrated to 
work on very different robotic platforms, and work in the 
presence of simultaneously operating sources.  Once the 
knowledge has been collected, a robot can then extrapolate 
from the models to the shape of the auditory scene as a 
whole. 

In future work, equipped with these general processes for 
mapping and modeling ambient noise sources in the auditory 
scene, the next step of the robotic discovery process is to 
take advantage of these tools to improve the signal-to-noise 
ratio in a surveillance operation.  Given a robot that is 
listening either for a particular sound, or trying to determine 
what sound is new to the environment, knowledge of where 
the ambient noise is coming from is critical to task 
performance.  
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