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Abstract— In this paper we propose an on-line incremental
vision-based topological map learning for AIBO robots. The
topological map is represented through a graph, where the
vertices encode views from the robot’s environment and the
edges the spatial relationship between these views. The views
are represented through their SIFT keypoints. The proposed
map learning method has been successfully applied to a homing
application.

Index Terms- topological maps, visual SLAM, AIBO

I. INTRODUCTION

Navigation is one of the basic tasks an autonomous robot

must be able to perform in an unstructured environment.

In order to do so, there are two requirements to be met:

first, it needs to know its current position (localization) and

second, to know how to get from the current position to

the destination. This is a well-studied problem in robotics,

and is referred as SLAM (Simultaneous Localization And

Mapping). It can be solved by creating and maintaining

models (maps) of the environment where the robot is sup-

posed to move. Building models of an environment is a very

challenging task. There are several factors that put serious

limitations in creating an accurate map, both internal and

external. The internal ones are represented by sensor noise,

odometry errors, perceptual limitation of the sensors (they

have a limited range), etc. As external factors we can mention

the complexity/dynamics of the environment that surrounds

the robot. However, a lot of effort has been dedicated to

overcome these limitations. As a result, two main paradigms

have been proposed for indoor robot mapping: metric (grid-

based) and topological.

Metric maps represent environments by a regular grid.

Each cell of this grid can contain information about the

presence or absence of an obstacle in the area. Successful

SLAM results based on metric mapping of large indoor envi-

ronments obtained using sonars and laser scanners have been

reported in [1],[2],[3] and [4]. Vision-based only approaches

(using either single or stereo system) have been demonstrated
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successfully in case of smaller (room size) environments [5],

[6], [7] and [8].

On the other hand, topological maps are about the repre-

sentation of spatial relations between environment’s regions.

Topological maps have been biologically inspired from ani-

mal behavior [9]. Higher vertebrates appear to construct rep-

resentations (sometimes referred as cognitive maps) which

encode spatial relations between relevant locations in their

environment. Under this assumption, visual sensing plays

a fundamental role. The topological models were induced

by visibility regions associated with landmarks characterized

by affine invariant (local or global) feature descriptors [10],

[11],[12] and [13]. At a more abstract level, a topological

map serves as an example of symbols (different places) and

connections between them [14].

Both approaches have strengths and weaknesses: metric

maps can provide a more accurate and discriminative repre-

sentation of the environment, but their complexity can sup-

pose a serious drawback for efficient planning; on the other

hand, topological maps offer a more compact representation

of the space, but it is not able to disambiguate between

quasi-similar views. A comparative analysis between metric

and topological mapping is beyond the scope of this work,

but a very comprehensive survey can be found in [15].

However, there were some research done on integrating the

two approaches by taking advantage from ”the best from

both worlds” [16].

This paper takes a topological approach on SLAM. We

propose an on-line incremental visual map learning for an

AIBO robot. In our case, we represent the image through

a set of local descriptors (SIFT), which are invariant to

scale, rotation, translation and partial to illumination. The

choice for this approach is motivated by the particularity

of the robot architecture and by the fact that its design

concept is biologically inspired (similar approaches have

been taken in [17],[18]). AIBO (and its successor Genibo

[19]) belongs to a new generation of robots which opened

a new area in the robotic fields: social robotics. They are

designed specifically to support a richer form of interaction

with people, to cohabitate with them and to be part of

their everyday life. For this purpose, they are endowed with

human-like perception capabilities like: vision, hearing and

tact. In consequence, they lack of other sensorial mecha-

nisms (like sonars, laser scanners, etc.) that are common

in general-purposes autonomous systems (such as Pioneer

for instance). AIBO is no exception from this and its main

perceptual capability is represented by a monocular camera.

The existence of two infra-red sensors, one on the nose (just
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above the camera) and the other one on the chest, are used for

obstacle detection at very short range (20-30 cm). With the

proposed method for topological map learning, we developed

a homing application. Preliminary results obtained so far are

very promising and guarantee an ubiquitous dimension for

our approach.

The paper is structured as follows: next section is dedi-

cated to briefly recall the SIFT keypoints and their properties.

In section 3, we describe the algorithm for topological map

learning and its implementation for our problem. In section

4 we report some experimental results and finally, section 5,

contains our conclusions and guiding lines for future work.

II. IMAGE FEATURE EXTRACTION

The scale invariant feature descriptor (SIFT) has been

introduced by D. Lowe [13]. The SIFT features correspond

to highly discriminative image locations which present an

increased robustness against changes in scale, orientation

and illumination. The candidate features are selected among

the local extrema of the difference between two images (at

consecutive scales) in a gaussian scale-space. Let be I the

input image and Lσ the result of its convolution with a

gaussian kernel at scale σ, i.e.:

D(x, y) = Lσ+1(x, y) − Lσ(x, y) (1)

where

Lσ(x, y) = (I ∗ Gσ)(x, y) (2)

Then the image is down sampled by a factor of 2 to produce

the next level (called octave) in an image pyramid. This is

repeated until the image size is so small that it is impossible

to detect interest points. The candidate points are searched

for in the set:

S = Emin{D} ∪ Emin{D} (3)

where Emin{D} and Emax{D} represent the set of local

minima and maxima, respectively, calculated by comparing

a center pixel with its eight neighbors at its own scale and

the nine neighbors at the scale above and below (see figure

1).

In the next stage, the local extrema with low contrast

or poor localization are discarded. The keypoint descriptor

is then formed by computing local orientation histograms

(with 8 bin resolution) for each element of a 4x4 grid

overlayed over 16x16 neighborhood of the point. This yields

128 dimensional feature vector which is normalized to unit

length in order to reduce the sensitivity to image contrast

and brightness changes in the matching stage. A match

between two interest points is calculated by the squared

distance between them and a similarity criteria is calculated

as the ratio between the best and second best match. The

similarity measure is used for selection of unique interest

points, i.e. a large distance between the best and second best

match. Note that the detected SIFT features correspond to

distinguishable image regions and include both point features

as well as regions along line segments. An example of

keypoints matching is showing in figure 2.

Fig. 1. Detecting the maxima and minima of the difference of gaussian
images

Fig. 2. Visual representation of correspondences between keypoints: 178
matches have been found

III. A HOMING APPLICATION

A. Problem Description

AIBO is a biologically inspired robot. Its behavioral

patterns will develop as it learns and grows. It matures

through a continuous interaction with the environment and

the people it cohabitates with. For this reason, each AIBO

is unique. Its human-like behavior is implemented through

series of instincts and senses (affective, curiosity, movement

instincts and touch, hearing, sight and balance senses).

Among them, one of the most crucial for its existence is

the ”survival” instinct. Whenever it feels the battery level

is below a certain value it starts searching the recharging

station. However, some limits are imposed on this built-in

behavior: the charging station has to be in the field of view

(not occluded by other objects) of the robot and not further

than 1 meter. Given this limitation, our approach offers a

general capability for the robot to reach the charging station

from any given position (and despite of the existence of

obstacles).

The application block diagram is depicted in figure 3
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Fig. 3. Block diagram of our application

and consists of two parts. The left part corresponds to the

incremental map building used for visual SLAM. While its

battery is full, the robot is wandering in the environment,

learning the map (view graph) of the surroundings. The right

part corresponds to the route planning. When the battery

level is below a certain threshold, the robot needs to go

to recharge. It uses the previous built map in order to find

the shortest path to its destination (recharging station). Both

aspects will be detailed in the next sections.

B. Graph Learning

A view graph G = (V,E) is defined as a topological

representation consisting of local views (vertices) and their

spatial relationship (edges). The local views are represented

through the set of associate SIFT features (keypoints): Vk =
S(Ik), where k = 1, 2, ..N represents the vertex index and Ik

the corresponding image. Initially, the graph is empty. When

a new image Q is acquired (and the number of keypoints

is greater than a certain threshold), the algorithm first tries

to match this view with any other view in the graph. In

other words, we try to find a correspondence between the

keypoints of the new image S(Q) and the keypoints of any

of the images previously stored in the graph S(Ik). This

is achieved by choosing the nearest neighbor based on the

euclidean distance between two descriptors. The match is

then declared as the maximum number of correspondences

found:

M = max
k

|d(S(Ik), S(Q))| (4)

where |A| represents the cardinality of the set A. If the

value of this distance is below a certain threshold (i.e. no

match has been found), we connect this new view to the

latest recorded view in the graph, E(IN , Q), where N is

the current number of views in the graph. Thus, the systems

records chains of snapshots, or routes. These routes can be

used to find a way back to the start position by homing

to each intermediate snapshot in inverted order. The views

must be distinguishable, because otherwise the representation

could not be used for finding a specific location. Since

our map-learning algorithm is exclusively based on visual

information, we must guarantee that the recorded views are

sufficiently distinct. Additionally, each edge between two

vertices P and R has assigned a certain weight E(P, R) =
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Fig. 4. AIBO’s energy station and its associated visual pattern

Fig. 5. The five head position used to build the view list and their
corresponding snapshots

wPR. In this phase, all edges have the same weight, but later

on, in the route learning stage, the value of this weight will

be updated.

C. Route Planning

When the robot wants to go the recharging station, it needs

to find a path through the graph. The Dijkstra’s algorithm

[20] has been used in order to find the shortest path. In

our implementation, each view (vertex of the graph) has an

associated boolean that allows to know if the energy station

is present on this view (thus, we could have several views

for the charging station). The robot comes with a built-in

functionality to recognize the visual pattern associated to the

station pole (see figure 4).

During the path finding, all the vertices of the graph are

first checked to find all the views from which the station can

be seen. Then the possible paths between the current view

and the station are calculated. When the last vertex has been

reached, it means that AIBO can see the station.

In order to travel between the vertices of the view graph

we need a homing method. Since the location of a vertex

is only encoded in the recorded view, we have to deduce

the driving direction from a comparison of the current view

to the goal view. For this purpose we first build a list of

views that can be seen from AIBO’s head. The list of views

is built by dividing AIBO’s hemispheric field of view in 5

regions (with a separation of 45 degrees between them). This

is represented in figure 5.

When AIBO stands and moves the head, a rolling effect

appears. That is due to AIBO’s design. However, this doesn’t

represent any problem for us since SIFT keypoints are

Fig. 6. Correct view matching despite image rotation

invariant to rotation (see figure 6).

Each view from this list is matched against each view from

the path and each view from which the station can be seen.

The next view to be explored and travel to it is chosen in

order to guarantee the shortest path to the station. In other

words, this corresponds to the edge in the graph (from the

matched view list) which has the lowest weight. Once an

edge has been followed, its weight is decreased. This, way

some edges are reinforced. On the other hand, if an edge

is not used, its weight is increased. If it’s value is above a

certain threshold, the edge is removed (the associated views

are too far apart).

IV. EXPERIMENTAL RESULTS

The AIBO’s visual system is represented by a web-like,

CMOS camera with a maximum resolution of 412x318 pix-

els. For AIBO programming we used the Remote Framework

(RFW) toolkit [21]. It is a C++ library that contains functions

to control AIBO based on a client-server architecture over

a wireless network between the robot and PC. The main

advantage using this toolkit is represented by the fact that

all the computation load of the algorithm is executed on PC.

For efficiency purposes, the images are transferred from the

robot in the JPEG format and decompressed on-the-fly in

PC’s memory. This way, we were able to achieve a real-time

processing (10 frames/s) at maximum image resolution. For

image processing we used OpenCV library. SIFT keypoints

were computed using Lowe’s implementation and available

on Internet [22].

It is very important to underline here, that in our approach,

the train and test phases take place simultaneously. In other

words, we don’t create an a priori ’training set’ with images

from the robot’s environment. Thus, the initial graph is empty

and is incrementally built. A new snapshot is converted in

vertex of the graph if it contains at least 50 keypoints. A

match between two views in the graph is declared if we can

find at leat 10 corresponding keypoints. The initial value of

edges’ weight is 100. We increase/decrease this value with

a step of 10. The upper threshold to remove an edge is 150.

In the figure 7 we represent the evolution of number of con-

nections and vertex of the graph in the route learning stage.

After some time, the number of vertices is saturated while

the number of edges continues to increase. The interpretation

is that after some time, the whole environment was mapped.
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Fig. 7. Evolution of the number of vertices and edges of the view graph

As we don’t have any idea of how the environment is (and

no information about robot initial position), the strategy for

exploration is very simple: we choose a random direction.

The different possibilities of movements are thus to turn

right, to turn left or to go straight. The only constraint we

have regarding the exploration is that the next view that will

be seen by the robot after moving has to be connected to

the previous one. Thus the movement cannot be too big. We

used a fixed turning angle of 50 degrees and a fixed distance

of 50 cm. Then the probability to go straight is 66% whereas

the one to turn is 33%. These probabilities have been chosen

after some tests. The advantage of this strategy is that the

environment will be explored without any danger that the

agent is caught in an infinite loop. The disadvantage is that

the exploration time can be long to get a full map of the

environment.

In figure 8, we depicted a scenario used to test our

approach. The experiment is intended to prove the robust-

ness of our application, in a complex environment, where

obstacles are intentionally set between the robot and the

station. The upper left image represents the real scenario

and the upper right its graphical representation, where the

shortest path found by the robot is highlighted. The bottom

row corresponds to the views associated with the shortest

path found by our robot. The built graph corresponding to

this scenario is formed of 21 vertices (views), of which only

4 are enough to find the shortest path. In table I, we depicted

some of the vertices of the view graph. (Please note that

vertex indexes in this table are not the same with the labels

of key views from figure 8).

The accuracy of the view matching relies on the SIFT

algorithm, which, on its turn depends on the environment

conditions and robot position. In general, the matching is

very robust (SIFT keypoints are very distinguishable), but

sometimes it could happen that we got some false positive

(see figure 9). However, the number of mismatched views is

low and the system is able to recover from these errors. The

view matching could achieve as much as 95% recognition

rate.

In order to have a good representation of the image,

Current Vertex Connected views

1 −→ 2, 9, 13 (station)

2 −→ 1, 3, 13

3 −→ 2, 10

4 −→ 4 (deadend)

5 −→ 6

6 −→ 5, 7

7 −→ 6, 8, 10, 11

8 −→ 7, 9, 16, 13

9 −→ 8, 1

10 −→ 3, 7

11 −→ 7, 12

12 −→ 11

13 −→ 2, 1, 8

14 −→ 8

TABLE I

TOPOLOGICAL REPRESENTATION OF OUR TEST ENVIRONMENT

Fig. 9. A false positive example

it must have a rich texture. Otherwise, we cannot find a

representative number of keypoints. It is the case with regions

poor in texture like walls, carpets, furniture, etc. Another

source of problems is the presence of similar objects in the

environment. In this case, the robot get confused about its

position. This means that during the mapping phase, wrong

edges will be added between graph nodes. They can be

removed afterwards, in the path following phase, because

the weight of the edges is updated depending on if the robot

can follow the route. If there is a wrong edge and the robot

wants to reach the next view following this edge and never

finds the next view, then the weight is increased and when it

reaches a maximum threshold, it is removed from the graph.

Another situation is represented by changes in robot

environment (for instance, in the context described above,

a box is removed from the scene). If this happens during the

mapping phase, the new views of the environment will be

added to the graph and new edges will be added between

’old’ and ’new’ views. If this happens during the path

following phase, then the robot will try to reach places which

are not longer in the environment. The edges linking these

views will be increased until they reach a certain threshold

and they are removed. Then, new views will be added to the

graph (in consequence, new edges will appear) and this way

the graph will be updated.
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Fig. 8. The test environment (see text for more details)

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a solution for incremental

on-line topological map learning for a homing application.

Topological maps are inspired from animal behavior and

they are a suitable solution for visual SLAM. AIBO is a

biologically inspired robot, so we considered this approach

is taylored for it. Furthermore, due to its architecture, visual

sensing is the only cue it can perceive the environment. The

incremental map building provides a ubiquitous dimension of

our approach, since no a priori training and knowledge of the

environment is required. The views are represented through

SIFT keypoints, which are invariant to scale, rotation and

changes in illumination conditions. The proposed method

was used for a homing application, which proved that AIBO

is able to reach the recharging station even when it is far

away or its view occluded by obstacles. The experimental

results so far are very encouraging, but they are conditioned

by the presence of distinct objects presenting a rich texture.

In the future we plan to carry out more extensive experi-

ments in larger areas in order to confirm its robustness. Since

the graph used here is a deterministic one, we also plan to

implement a stochastic version of it (where the transitions

are represented by probabilities) and to draw a comparison

between the two methods. We would also like to test other

feature representation for images and to compare with SIFT.
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