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Abstract— The lack of a parameterized observation model
in robot localization using occupancy grids requires the ap-
plication of sampling-based methods, or particle filters. This
work addresses the problem of optimal Bayesian filtering
for dynamic systems with observation models that cannot
be approximated properly as any parameterized distribution,
which includes localization and SLAM with occupancy grids.
By integrating ideas from previous works on adaptive sample
size, auxiliary particle filters, and rejection sampling, we derive
a new particle filter algorithm that enables the usage of the
optimal proposal distribution to estimate the true posterior
density of a non-parametric dynamic system. Our solution
avoids approximations adopted in previous approaches at the
cost of a higher computational burden. We present simulations
and experimental results for a real robot showing the suitability
of the method for localization.

I. INTRODUCTION

Two prominent applications of Bayesian sequential esti-

mation have received a huge attention in robotics research,

namely localization and simultaneous localization and map

building (SLAM) [22], [23]. The former consists of esti-

mating the pose of a mobile robot within a known environ-

ment, whereas in SLAM the map is also estimated while

performing self-localization. In both problems the choice

for the representation of the environment determines the

probabilistic estimation method that can be applied. In the

case of landmarks, the map can be modeled by multivariate

Gaussian distributions with Gaussian observation models,

obtained by solving the problem of association [3], [4].

Thus, SLAM with landmark maps can be approached well

through Gaussian filters such as the EKF [12]. However,

these methods are not applicable to other types of map rep-

resentations, as occupancy grid-maps [17], forcing a sample-

based representation of the joint probability density. In this

case, sequential estimation is carried-out by Monte-Carlo

simulations, or particle filters [5].

In this paper we focus on the problem of localization

using occupancy grids, although the proposed method can be

also applied to other representations, e.g. topological maps.

Some advantages of occupancy grids are the precise dense

information they provide and the direct relation of the map

with the sensory data, which avoids the problem of data

association. Their main drawback is that the probabilistic

observation model for grid maps can be evaluated only
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pointwise and lacks a parametric form ([23] is a good refer-

ence for the problem of providing approximate observation

models for grids), in contrast to analytical models available

for landmark maps [3], [4]. Standard particle filter algorithms

like the Sequential Importance Sampling (SIS) filter [20] and

the SIS with resampling (SIR) filter [10], [21] allow us to

perform sequential filtering provided only the ability to draw

samples according to the system transition model (the robot

motion model) and to pointwise evaluate the observation

model. However, the efficiency of these algorithms is greatly

compromised by peaky sensor models and outliers, which

make most of the particles to be discarded in a resampling

step and lead to particle impoverishment or even to the

divergence of the filter. For mobile robots this issue typically

arises in robots equipped with low-noise sensors such as laser

range finders.

A theoretical solution that enables the efficient represen-

tation of probability densities through perfectly distributed

particles was proposed by Doucet et al. [7], consisting of an

optimal proposal distribution from which to draw samples at

each time step. However, a direct application of this approach

requires an observation model with a parametric distribution

from which to draw random samples (as in [15]), whereas

for grid maps we can evaluate it only pointwise [23].

The contribution of this work is a new particle filter

algorithm that, given the same requirements as the original

SIS and SIR algorithms, dynamically generates the minimum

number of particles that best represent the true distribution

within a given bounded error, thus providing optimal sam-

pling. We claim our method is optimal in this sense, in the

draw of new samples according to the theoretic proposal

distribution. Naturally, no particle filter without parametric

models can perform optimal filtering due the approximate

nature of Monte-Carlo methods.

Our method is grounded on previous works related to

optimal sampling [6], [7], auxiliary particle filters (APF)

[19], rejection sampling [14], and adaptive sample size

for robot localization [8]. In the context of mobile robots,

the proposed algorithm represents an important contribution

since no Gaussian approximations are assumed while gen-

erating new particles, which is the case of previous works

[11], [15]. Moreover, our method is based on the formulation

of a general particle filter, thus it does not depend on the

reliability of scan matching as previous works and can be

applied to a wider variety of problems.

The rest of this paper is structured as follows. In section

II we review previous particle filter algorithms used in

robotics and highlight the differences with our proposal,
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which is introduced in section III. We provide simulations

and experimental results with real data in section IV, and

finally we remark some conclusions.

II. RELATED RESEARCH

In this section we briefly review the applications of particle

filters to robot localization and SLAM. A more compre-

hensive review of particle filter techniques can be found

elsewhere [1], [5].

The probabilistic approach to localization and SLAM

includes the estimation of the posterior distribution of the

robot poses up to the current instant of time given the whole

history of available data. In the case of localization (the focus

of this work), let xt denote the robot pose at time step t and

zt and ut represent the sequences of observations and actions

up to t, respectively. Then, the posterior of the robot pose

can be computed sequentially by applying the Bayes rule:

p(xt|z
t, ut) ∝

Observation likelihood
︷ ︸︸ ︷

p(zt|xt)

Prior
︷ ︸︸ ︷

p(xt|z
t−1, ut) (1)

Under the assumptions of linearity and Gaussianity, the

Kalman filter [13] represents a closed-form, optimal solution

to (1). Some improvements have been proposed to overcome

the assumption of linearity, where the most widely known is

the Extended Kalman Filter (EKF) [12]. The EKF approach

to localization and SLAM has been the predominant one for

several years [4], but the limitations of this Gaussian filter led

to the popularization of particle filters for global localization

[9], and, more recently, also for mapping [11], [16].

As opposed to parametric probability distributions, the

distributions estimated by a particle filter are represented by

a finite set of hypotheses, or particles, which are weighted

according to importance sampling. The simplest particle

filter algorithm is the SIS filter [20], described next in the

context of localization. Let {x
[i]
t }Mt

i=1 denote a set of robot

pose hypotheses for the time step t, approximately distributed

according to the posterior, that is, x
[i]
t ∼ p(xt|z

t, ut) for

i = 1, ...,Mt. Most previous particle filter techniques rely

on Mt representing a constant number of particles for all

time steps t (an exception in the work by Fox in [8]).

In general, the particles will be not distributed exactly

according to the true posterior, hence they are assigned

importance weights ω
[i]
t to obtain an unbiased estimation

of the density. The SIS algorithm consists of simulating

the Bayes update in (1) by drawing samples for the new

robot pose from some proposal distribution, that is, x
[i]
t ∼

q(xt|x
[i]
t−1, z

t, ut), and then updating the weights by [6]:

ω
[i]
t ∝ ω

[i]
t−1

p(zt|xt, x
t−1,[i], zt−1, ut)p(xt|x

[i]
t−1, ut)

q(xt|xt−1,[i], zt, ut)
(2)

The simplest choice for the proposal distribution q(·) is

the robot motion model – the prior in (1). In this paper we

will refer to this choice as the standard proposal. In this

case, widely employed in robotics [8], [9], [16], the weight

update in (2) simplifies to the product of the previous weights

TABLE I

BAYESIAN FILTERING ALGORITHMS THAT HAVE BEEN APPLIED TO

LOCALIZATION AND SLAM

Proposal

distribution
System models Algorithms

–
Linear

Gaussian
Kalman Filter [13]

–
Non-Linear

Gaussian
EKF [12], UKF [24]

Standard
Non-Linear

Non-Gaussian

SIR [10],

APF [19], RBPF [18],

FastSLAM [16]

Optimal
Non-Linear

Gaussian

FastSLAM 2.0 [15],

Grisetti et al. [11]

Optimal
Non-Linear

Non-Gaussian
This work

with the evaluation, at each particle, of the observation model

p(zt|x
t,[i], zt−1, ut). Note how the SIS filter requires only the

ability of drawing samples from the robot motion model and

evaluating the observation likelihood pointwise. In spite of its

simplicity, the SIS filter is not a practical solution, since it has

been demonstrated that the variance of the weights increases

over time [6], which eventually leads to the degeneracy of the

filter. This is the reason for the introduction of the SIS with

resampling (SIR) algorithm [10], where a resampling step

replaces those particles with low weights by copies of more

likely particles. For the case of SLAM, Rao-Blackwellized

Particle Filters (RBPF) are a practical solution [18] that

has been applied to landmark maps (FastSLAM [16]) and

occupancy grids [11].

However, the efficiency of all the above particle filter al-

gorithms is strongly influenced by the choice of the proposal

distribution q(·): the larger the mismatch between the pro-

posal and the observation likelihood, the more particles are

wasted in non-relevant areas of the state space. In particular,

this is the case of mobile robots equipped with accurate

sensors like laser scanners [11]. This is partly overcome

with the Auxiliary Particle Filter (APF) [19], through a one-

step look ahead resampling. In general, an APF reduces

the number of wasted particles, but it is still a sub-optimal

solution since particles are propagated using the standard

proposal distribution.

It has been demonstrated by Doucet et al. [7] that the

variance of the particle weights is minimized by choosing

an optimal proposal distribution, which incorporates the

information of the most recent observation while propagating

particles. It has been applied to landmark maps (FastSLAM

2.0 [15]), but it is not directly applicable to map representa-

tions without parametric observation models, like occupancy

grids.

Recent work by Grisetti et al. [11] overcomes this by

approximating the sensor model with a Gaussian whose mean

value is obtained by scan matching over the grid map. This

approximation has demonstrated its practical utility allowing

the efficient mapping of large environments. However, the

observation likelihood may not be appropriately approxi-

mated by a Gaussian in many situations, thus the posterior
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Fig. 1. The theoretic model of our optimal particle filter. An initial set of Mt−1 particles is first replicated into a set of auxiliary particles, which are
then propagated according to the optimal proposal distribution (simulated by rejection sampling). Then, a resampling stage (with an adaptive sample size)
chooses the final set of Mt samples from the updated auxiliary particles, taking each one of them with a probability proportional to its weight. As a result,
all the final particles have equal importance weights (omitted in the graph by this reason).

distribution would be severely distorted. Even in those cases

where the observation likelihood could resemble a Gaussian,

it can not be proven that the mean of the real posterior

coincides with the result of scan matching. Actually, there

are some practical situations where scan matching techniques

fail. It has been proposed to discard the information of

the corresponding observations [11], but observe that even

in those cases we could obtain a more precise posterior

by integrating all the available information, which is lost

otherwise, and which would provide valuable information

when facing ambiguous sensor measurements.

To summarize the above discussion we have represented

the previous methods in Table I, where our method also

appears for comparison.

III. THE OPTIMAL PARTICLE FILTER

A. Preliminary definitions

It has been shown that the optimal proposal distribution

that minimizes the variance of the next weights for any

generic particle filter is given by [7]:

x
[i]
t ∼ q(xt|x

t−1,[i], zt, ut) = p(xt|x
t−1,[i], zt, ut) (3)

=
p(zt|xt, x

t−1,[i], zt−1, ut)p(xt|x
t−1,[i], zt−1, ut)

p(zt|xt−1,[i], zt−1, ut)

For mobile robots this proposal requires drawing samples

from the product of the transition (robot motion) and ob-

servation models, which are the terms that appear in the

numerator of (3), respectively. Since the system state for the

last time step (xt) does not appear in the denominator, it is

a value µi, however different for each particle i. Therefore,

to draw samples from the optimal proposal is equivalent to

draw:

x
[i]
t ∼

Observation model
︷ ︸︸ ︷

p(zt|xt, x
t−1,[i], zt−1, ut)

Transition model
︷ ︸︸ ︷

p(xt|x
t−1,[i], zt−1, ut)

µi

(4)

By replacing this optimal proposal in the general equation

for the weight update in a SIS filter, in (2), we obtain:

ω
[i]
t ∝ ω

[i]
t−1p(zt|x

t−1,[i], zt−1, ut) (5)

At this point, we state that the purpose of our optimal par-

ticle filter algorithm is to generate samples exactly distributed

according to the density in (3), while dynamically adapting

the number of samples to assure a good representation of the

true posterior at each moment.

To avoid the problem of particle depletion we have found

two different approaches in other works. The first one is

to resample particles at every time step as required to

assure that they represent well the true posterior. Another

solution consists of resampling only when a measure of the

representativeness of the samples is below a given threshold

[21]. We will employ the first approach for the derivation

of our optimal algorithm. As discussed later on, this generic

optimal filter fits perfectly to the problem of mobile robot

localization. A variation using selective resampling can be

devised for SLAM, but this will be not addressed here due

to space limitation.

B. Derivation of the optimal filter algorithm

In the following we derive the algorithm for generating

a dynamically-sized set of samples according to the exact

posterior being estimated. To clarify the exposition we have

summarized the process graphically in Fig. 1.

We start by assuming that a set of Mt−1 particles x
[i]
t−1

is available which are exactly distributed according to the

posterior of our system for the time step t − 1, that is:

x
[i]
t−1 ∼ p(xt−1|z

t−1, ut−1) (6)

Since these samples are optimally distributed, all of them

will have equal importance weights, and so they can be

omitted. The assumption of perfectly distributed particles

for the previous time step is not a problem but for the first
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iteration of the filter. Typical assumptions for the initial belief

include uniform or Gaussian distributions, depending on the

available information and the specific problem.

Now we introduce a set of auxiliary particles x̃
[i,j]
t−1 with

associated importance weights ω̃
[i,j]
t−1 , such that x̃

[i,j]
t−1 = x

[i]
t−1

for j = 1, ..., N and ω̃
[i,j]
t−1 = 1/ (NMt−1). That is, we

replicate N times each particle x
[i]
t−1, assigning equal weights

to all of them. Notice that this process does not modify the

sample-based estimation of the posterior, since each particle

i is replicated the same number of times. We will use these

auxiliary particles just as a computation artifact: in practice

only a few of them need to be generated, as will become

clear below. Therefore, the value N is left undefined here,

although it is convenient to think of it as a large value, ideally

the infinity.

The auxiliary particles are propagated according to the

optimal proposal, in (4), in order to obtain a large amount

(ideally infinity) of optimally distributed particles x̃
[i,j]
t ,

from which we will finally keep only the required ones

for providing a good representation of the posterior. This

is achieved by generating the new set of particles x
[k]
t by

resampling the set of auxiliary samples x̃
[i,j]
t .

The key point that allows us to directly generate the

optimally distributed particles without computing all the

auxiliary ones is that all the auxiliary particles x̃
[i,j]
t coming

from a given particle x
[i]
t−1 will have equal weights. This

property follows from the fact that the concrete value of the

particle at time step t does not appear in the computation

of the new weights, as described by (5). These groups of

equally-weighted samples are sketched in Fig. 1.

Thus, the optimal particles x
[k]
t are generated by resam-

pling the auxiliary set at time step t. Similarly to auxiliary

particle filters [19], we perform this by drawing indexes i
of particles for the previous time step, in our case with a

probability proportional to the weights ω̃
[i,j]
t , which are given

by:

ω̃
[i,j]
t = ω̃

[i,j]
t−1p(zt|x

t−1,[i], zt−1, ut) (7)

Here the a priori likelihood of the observation zt can be

expanded using the law of total probability:

p(zt|x
t−1,[i], zt−1, ut) = (8)

∫

p(xt|x
[i]
t−1, ut)p(zt|xt, x

t−1,[i], zt−1)dxt

The terms that appear inside the integral above are the

system transition and observation models, respectively. Since

we are assuming in this work that we can only draw samples

from the system transition model and evaluate pointwise

the observation model, a Monte-Carlo approximation of the

integral p̂(zt|·) ≈ p(zt|·) can be obtained by means of:

p̂(zt|x
t−1,[i], zt−1, ut) =

1

B

B∑

n=1

p(zt|x
[n]
t , xt−1,[i], zt−1) (9)

TABLE II

THE OPTIMAL PARTICLE FILTER ALGORITHM

algorithm OptimalParticleFilter : {x
[i]
t−1}

Nt−1

i=1 7→ {x
[k]
t }Nt

j=1

1. For each particle x
[i]
t−1

1.1. Generate a set of B samples x
[n]
t ∼ p(xt|x

[i]
t−1, ut).

1.2. Use them to compute p̂(zt|·) and p̂max(zt|·).

2. Generate Nt particles, with Nt determined by KLD-sampling [8].

2.1. Draw an index i with probability given by weights in (7).

2.2. Generate a new sample by rejection sampling:

2.2.1. Draw a candidate sample x
[k]
t ∼ p(xt|x

[i]
t−1, ut).

2.2.2. Compute ∆ through (10).

2.2.3. With a probability of 1 − ∆, go back to 2.2.1.

with the B samples x
[n]
t generated according to the system

transition model, e.g. the robot motion model for localization

and SLAM. The number B is a parameter of our algorithm,

and will be typically in the range 10 to 200 depending on

the specific problem addressed by the filter.

Going back to the resampling of the auxiliary particles,

for each drawn index i we generate a new optimal particle

by taking the value of any auxiliary particle in the i’th
group, since all of them have equal probability of being

selected in the resampling. That is, the new optimal particle

x
[k]
t is a copy of x̃

[i,j]
t , where the value of j is irrelevant.

The importance weights of the final particles given by

our algorithm can be ignored, since particles obtained by

resampling all have exactly the same weights.

We need to provide a method to compute the concrete

value of the auxiliary particles x̃
[i,j]
t for some certain value

of i. We employ here the rejection sampling technique to

draw from the product of the transition and observation

densities – refer to (4). Basically, this technique consists

of generating samples x
[k]
t following one of the terms of

the product (the transition model), and accepting the sample

with a probability ∆ proportional to the other term (the

observation model) [14]:

∆ =
p(zt|x

[k]
t , xt−1,[i], zt−1, ut)

p̂max(zt|xt, xt−1,[i], zt−1, ut)
(10)

We must remark that this technique has a random exe-

cution time. The only quantity required to evaluate (10) is

the maximum value of the observation model p̂max(zt|·),
which can be estimated simultaneously to the Monte-Carlo

approximation in (9) for the same set of samples x
[n]
t , thus

it does not imply further computational cost.

Up to this point we have shown how to generate one

particle according to the true posterior given the set of

particles for the previous time step. The above method can

be repeated an arbitrary number of times to generate the

required number of particles Mt for the new time step t. To

determine this dynamic sample size we propose to integrate

here the method introduced by Fox in [8]. There it is used

the concept of Kullback-Leibler distance (KLD) [2] to derive

an expression for the minimum number of particles Nt such

as the KLD between the estimated and the real distributions

464



0.5 1 1.5 2 2.5 3
0

0.5

1

0.5 1 1.5 2 2.5 3
0

0.5

1

0.5 1 1.5 2 2.5 3
0

0.5

1

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Particle filter with standard proposal

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Auxiliary particle filter

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Optimal particle filter

State-space

State-space

State-space

State-space

State-space

State-space
Im

p
o

rt
an

ce
 w

e
ig

h
ts

Im
p

o
rt

an
ce

 w
e
ig

h
ts

Im
p

o
rt

an
ce

 w
e
ig

h
ts

Analytical density

Weighted histogram

Analytical density

Weighted histogram

Analytical density

Weighted histogram

K
L

 d
is

ta
n

ce

102
0

0.5

1

1.5

2

K
L

 d
is

ta
n

ce

103 104Sample size
0

0.5

1

1.5

2

K
L

 d
is

ta
n

ce

102 103 104Sample size
0

0.5

1

1.5

2

102 103 104Sample size

Fig. 2. A comparison of our method to other two particle filters for a linear, Gaussian system. The top row shows the particles and weights obtained
for each algorithm. Below the weighted histograms of the samples is compared to the exact Gaussian density. This similarity is measured in the third row
with the Kullback-Leibler distance between the real and the estimated distributions for different sample sizes. Observe how our method achieves a lower
distance (a higher similarity) even for a few particles.

is kept below a certain threshold ǫ with a probability 1 − δ.

Please, refer to [8] for further details.

To summarize the introduction of our algorithm we present

an algorithmic description of the overall method in Table II.

IV. EXPERIMENTAL RESULTS

In this section we will first present simultations for com-

paring our filtering algorithm to others, and next we will

show experiments where our approach is applied to robot

localization (position tracking).

A. Simulations

We have considered here a one-dimensional linear system

with Gaussian transition and observation models. Such a

simple system allow us to contrast the output of the different

filters with the analytical solution from a Kalman filter (KF)

which provides us the exact posterior. The situation being

simulated is that of an observation model much more peaked

than the prior distribution obtained from the system transition

model, a situation similar in mobile robotics to a poor motion

model (such as odometry) and a very precise sensor (such

as a laser scanner). The top graphs of Fig. 2 represent the

location and weights of the obtained particles with three

different algorithms: a SIR filter with a standard proposal

distribution [21], an auxiliary particle filter (APF) [19], and

our method. We can observe how the standard proposal leads

to most of the particles being wasted in non relevant areas

with negligible importance weights. The APF introduces a

great improvement in this sense, since particles are more

concentrated in the area of interest. However, the weights

still contain a certain variance. In contrast, our optimal

algorithm generates particles distributed exactly according

to the true posterior, thus they all have the same weights.

To measure the accuracy of each particle filter we have

reconstructed the estimated densities by means of weighted

histograms, shown in the middle row of Fig. 2 along with the

analytical solution from the KF. To evaluate each algorithm,

we have computed the KLD between the analytical and the

estimated distributions for a range of sample sizes (we have

disabled here the capability of automatically determining the

sample size in our method for comparison purposes with the

others). The average KLD for 1000 realizations, shown in

the bottom row of Fig. 2, confirms that our approach gives

estimations closer to the actual posterior (with less particles)

than previous methods.

B. Localization

The following experiments consist of tracking the pose of

a mobile robot equipped with a laser range finder while it is

manually guided through an office environment. Concretely,

the path and the (already built) map of the environment are

shown in Fig. 3(a). The purpose of the first experiment is to

compare the accuracy in the localization between our optimal

sampling mechanism and the standard proposal distribution.

The resolution of the grid is 0.04m, and the non-parametric

observation model is the likelihood field described in [23].

The accuracy has been calculated by averaging the local-

ization errors of all the particles at each time step, and using

as the ground truth the robot poses estimated while the map

was first built. Significant results are obtained by averaging

over 100 executions for each sample size. The capability of

adapting the sample size in our algorithm has been disabled

in this first experiment to provide a fair comparison to

a standard PF. The most interesting conclusion from the

results, in Fig. 3(b), is that our optimal PF has an excellent

performance starting from just one particle (an average error

of roughly 0.10m), whereas the standard proposal needs

about 10 particles or more to avoid the filter to diverge (e.g.

the average error of 6m for one particle means the filter has

lost track of the localization).

On the other hand, our method requires more computation

time than the standard approach. For example, for 100

particles, ours takes 50.56s for the whole experiment while

the standard PF takes 9.91s only. Thus, one could argue that

a standard PF with more particles would achieve a similar

accuracy than our optimal PF for the same computation time.

Actually, we can see in the graphs that our method always

achieves a better accuracy than the standard approach, even

with much fewer particles and a similar computation time.
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Fig. 3. Results for localization experiments. (a) The map used for the
experiment and the robot path. (b) The average positioning error using the
standard proposal and our optimal algorithm, both for different sample sizes
(results averaged over 100 repetitions). Observe how our method performs
well even for just one particle. (c) The number of particles for our method
(determined automatically), starting in a situation of global localization with
10000 particles distributed uniformly.

A second localization experiment has been carried out

where the adaptive sample size capability of our algorithm

is enabled. In this case, we start in the situation of global lo-

calization (initially there are 10000 particles distributed uni-

formly over the whole environment). As shown in Fig. 3(c),

the sample size drastically falls in the first few iterations to

the range of 20-30 particles, and it remains approximately

fixed along the whole experiment. This is because there

are no situations where the sensors become particularly

ambiguous.

V. CONCLUSIONS

In this paper we have identified a problem, localization

with grid maps, where a particle filter is required but the

lack of a closed-form observation model prevent the direct

application of the optimal proposal distribution. We have

derived a new algorithm that allows a particle filter to exploit

this optimal proposals even for non-parametrical models. We

have shown how the method focuses the samples in the

relevant areas of the state space better than previous particle

filter algorithms in simulated experiments, as well as the

suitability to real robot localization.

Additional work will be required to explore the interesting

applications of this method to SLAM, where a dynamic

number of optimally distributed particles will improve recent

works on RBPF-based grid mapping.
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