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Abstract— This paper considers the problem of multi-robot
patrol around a closed area with the existence of an adversary
attempting to penetrate into the area. In case the adversary
knows the patrol scheme of the robots and the robots use a
deterministic patrol algorithm, then in many cases it is possible
to penetrate with probability 1. Therefore this paper considers
a non-deterministic patrol scheme for the robots, such that
their movement is characterized by a probability p. This patrol
scheme allows reducing the probability of penetration, even
under an assumption of a strong opponent that knows the
patrol scheme. We offer an optimal polynomial-time algorithm
for finding the probability p such that the minimal probability
of penetration detection throughout the perimeter is maximized.
We describe three robotic motion models, defined by the move-
ment characteristics of the robots. The algorithm described
herein is suitable for all three models.

I. INTRODUCTION

This paper discusses the problem of patrolling around
a closed area by a team of robots (perimeter). The patrol
problem requires to visit a target area repeatedly in order to
monitor some change in the state of that area. We consider
adversarial settings, in the sense that the adversary tries to
enter the closed area. The problem of patrolling around an
area with the existence of an adversary is applicable in many
security applications. This problem can be also applicable in
cases one wishes to model the worst case scenario that the
system should deal with, for example toxic waste observance.

The problem of multi-robot patrol is derived from the
fundamental problem of multi-robot coverage [4], and has
received growing interest of its own (e.g. [1], [6]). Current
patrol solutions offer deterministic algorithms for generating
patrol paths for a team of robots and maintaining the pa-
trol. Analysis of these algorithms concentrated on assuring
frequency criteria in the patrolled area [6].

However, in adversarial settings the frequency criteria
becomes less relevant. Consider the following scenario. We
are given a cyclic fence of length 100 meters and 4 robots are
required to patrol around the fence while moving in velocity
1m/sec. Clearly, the optimal possible frequency of visits
at each point around the fence is 1/25, i.e., each location
is visited once every 25 seconds. Assume that it takes an
adversary 20 seconds to penetrate the area through the fence.
If the robots move in a deterministic path, then the adversary
can guarantee penetration if it simply enters through a
position that was currently visited by the patrolling robot.
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On the other hand, if the robots move non-deterministically,
then the choice of penetration position becomes less trivial.

Therefore in this paper we analyze non-deterministic pa-
trol paths for a team of homogenous mobile robots patrolling
around an area, under the assumption of an observing adver-
sary trying to enter the area. We first divide the perimeter
into segments such that each robot monitors one segment per
time cycle. When the robots patrol around a closed area, a
robot placed in segment i has a choice of going to segment
i − 1, i + 1, or remaining at the same segment.

We consider three movement models of robots, charac-
terized by different movement abilities of the robots. In the
first, DZCP , the robot has directionality associated with its
movement, therefore if the robot is headed towards segment
i + 1 it will go straight to segment i + 1 with probability p
and turn backwards to segment i− 1 with probability 1− p.
If it is directed towards segment i−1, then the probability of
it going to segment i− 1 is p, and to segment i+1 is 1− p.
The second model, DCP , is a more realistic version of the
DZCP model, in which the robot has cost related to turning
around, i.e., if the robot turns around, then it stays in segment
i. The last model is similar to a random walk, in which there
is no directionality associated with the movement, i.e., for
all i the robot goes to segment i + 1 (right) with probability
p and to segment i − 1 (left) with probability 1 − p.

In the strong adversarial model we consider, in which the
adversary knows the patrol scheme of the robots, it will
choose to penetrate where it has lowest probability of being
detected. We therefore describe a polynomial time algorithm
for maximizing this probability, i.e., the maximin probability
of penetration detection. We consider mainly the most real-
istic robotic model, DCP , although the proposed algorithm
works in all three models under minor modifications. This
algorithm was implemented and we show several interesting
results obtained from running the program.

II. RELATED WORK
Systems of multiple robots or agents cooperating in order

to patrol in some designated area have been studied in
various contexts using different approaches. Theoretical and
empirical solutions were proposed in order to assure quality
patrol [3], [6], [9]. The definition of quality depends on the
context. Most studies concentrate on the frequency of visits
throughout the designated area, therefore an efficient patrol
guarantees high frequency of visits in each part of the area.
In case the robots work in an adversarial environment, then
an efficient patrol is one that deals efficiently with intruders.
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Closely related to our research is the work of Paruchuri et.
al., that consider the problem of placing security checkpoints
[9], [8]. Similar to our assumptions, their agents work in an
adversarial environment in which the adversary can exploit
any predictable behavior of the patrolling agents. Their
agents use policy randomization in order to maximize their
rewards. However, the problem they describe, even for a sin-
gle agent, is solved in exponential time, hence they provide
heuristic algorithms for the single and multi agent case. In
our work, we simplify the problem such that it is reasonable
and implementable on one hand, yet we find optimal strategy
for the robots in polynomial time. Paruchuri et. al. further
study ([8]) the problem of checkpoint placement in case the
adversarial behavior is unknown, and again provide heuristic
algorithms for optimal strategy selection by the agents.

Theoretical work based on stochastic processes that is
related to our work is the cat and mouse problem [5], also
known as the predator-prey [7] or pursuit evasion [11]. In
this problem, a cat is attempting to catch a mouse in a graph
where both are mobile. The cat has no knowledge about the
mouse’s movement, therefore as far as the cat is concerned,
the mouse travels similarly to a simple random walk on the
graph. We, on the other hand, have worst case assumptions
about the adversary. We consider a robotic model, in which
the movement is correlated to the movement of a robot,
with possible directionality of movement and possible cost
of changing directions. Moreover, in our model the robots
travel around a perimeter, rather than in a graph or an area.

Other theoretical work by Shieh and Calvert [10], based on
computational geometry solutions, attempts to find optimal
viewpoints for patrolling robots. They try to maximize the
view of the robots in the area, show that the problem is NP-
Hard, and find approximation algorithms for the problem.

The first theoretical analysis of multi-robot patrol problem
was given by Chevaleyre [3]. He introduces the notion of
idleness, which is the duration each point in the patrolled area
is not visited. In his work, he analyzes two types of multi-
robot patrol schemes with respect to the idleness criteria:
partitioning the area into subsections, each section is visited
continuously by one robot, and the cyclic scheme in which
a patrol path is provided along the entire area, and all robots
visit all parts of the area, consecutively. He proves that in the
latter approach, the frequency of visiting points in the area
is considerably higher. Another survey by Almeida et. al. [2]
offers an empirical comparison between different approaches
towards patrolling with regards to the idleness criteria, and
show show great advantage to the cycle based approach.

Elmaliach et. al. [6] offer new frequency optimization
criteria for evaluating patrol algorithms. They provide an
algorithm for multi-robot patrol that is proven to have
optimal frequency as well as uniform frequency, i.e., each
point in the area is visited with the same highest-possible
frequency. Their work is based on creating one patrol cycle
that visits all points in the area in minimal time, and the
robots simply travel equidistant along this patrol path.

III. MODELS
In this section we provide basic definitions concerning the

assumptions on the robots’ behavior and coordination and the
influence of these attributes on the patrol mission.
A. Robotic computational model

We consider a system consisting of k homogenous mobile
robots, required to patrol around a closed area P . The robots
operate in cycles, where each cycle consists of two stages.

1) Compute: Execute the given algorithm, resulting in a
goal point pG.

2) Move: Move towards the point pG.
This model is synchronous, i.e. all robots execute each

cycle simultaneously. We consider patrol in a circular path,
which is similar to a one dimensional graph.

The path around P is divided into segments of length l,
where l corresponds to the distance one robot travels and
monitors the area in one cycle. Hence each robot travels
through one segment per cycle while covering it (its velocity
is 1 segment per one time cycle). This division into segments
makes it possible to consider patrols in heterogenous terrains.
In such areas, the difficulty of passing through terrains vary
from one terrain to another, for example driving in muddy
tracks vs. driving on a road. In addition, riding around cor-
ners requires a vehicle to slow down. Figure 1 demonstrates a
transition from a given area to a discrete cycle. Throughout
the paper, we denote the number of segments around the
perimeter by N . Note that the distance between the robots is
calculated with respect to the number of segments between
them, i.e., the distance is in travel time. For example, if we
say that the distance between R1 and R2 is 7, then there are
7 segments between them, and if R1 remained still, then it
would have taken R2 7 time cycles to reach R1.

At each cycle a robot that resides in segment i has three
options as to where to go - segment i− 1, segment i + 1 or
remain in segment i. We assume the robots are coordinated,
i.e., all robots decide simultaneously to move in the same
direction. We also require that the robots are initially placed
uniformly around P with distance d = N/k between every
two consecutive robots. The motivation for these assumptions
is shown in Lemma 3.

equivalent

Fig. 1. An example for creating discrete segments from a circular path
with the property that the robots travel through one segment per cycle.

Definition: Let si be a discrete segment of a perimeter P
which is patrolled by one robot or more. Then the Probability
of Penetration Detection in si, ppdi, is the probability that
a penetrator going through si during t time units is detected
by some robot going through that segment during that period
of time. In other words, ppd is the probability that a patrol
path of some robot will pass through segment si during the
time that a penetrator is going through that segment. We use
the general acronym ppd when referring to the general term
of probability of penetration detection (without reference to
a certain segment).
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B. Robotic movement model
The execution of the patrol differs from one model to

the other in the Compute step. As mentioned previously, we
consider three different patrol models, based on movement
abilities of the robots.

1) Bidirectional Movement Patrol (BMP)
2) Directional Zero-Cost Patrol (DZCP)
3) Directional Costly-Turn Patrol (DCP)

The BMP patrol is intended for robots whose movement
pattern is similar to movement on train tracks or a camera
going back and forth along a fixed course. Here, the robots
have no movement directionality in the sense that switching
directions — right to left and vice versa — does not require
physically changing their direction (turning around).

In the other two models the robots’ movement is directed,
and turning around is a special operation that might have an
attached cost in time. The DZCP patrol is used for robots
which have directionality of movement, but turning around
does not consume extra time. The DCP patrol model is a
more realistic version of the DZCP model, where if the
robot turns around, it remains in its current position, i.e.,
switching direction costs the system extra time. An example
for this kind of robots are the differential drive robots
commonly used in research labs. For simplicity reasons, we
assume that turning around costs one time cycle.

C. Adversarial model
We assume the system works with the existence of an

adversary that controls the behavior of the penetrators. We
assume the adversary is strong in the sense that it has full
knowledge of the system. Specifically, the adversary has the
following information, formally known as the patrol scheme:

1) Number of robots, the distance between them and their
current position.

2) The movement model of the robots and any character-
ization of their movement.

This information can be learned by the adversary by
observing the behavior of the robots for sufficiently long
enough time. Note that in security applications, such strong
adversary exists. In other applications, the adversary models
the behavior of the system in the “worst case scenario” from
the patrolling robots point of view.

The adversary, having all the information it obtained, has
to decide at time 0 through what segment is wishes to
penetrate. Therefore it will choose to pass where it will less
likely be detected by the robots.

Note that we assume the adversary tries to penetrate once
through some segment.Also, the robots are responsible only
for detecting penetrations and not handling the penetration
(which requires task-allocation methods). Therefore the case
in which the adversary issues multiple penetrations is similar
to handling a single penetration, as the robots detect, report
and continue their monitoring through the rest of the path,
according to their algorithm.

D. Problem definition
Since we assume the existence of a strong adversarial

model, we assume the adversary will choose to penetrate

through the weakest spot in the cycle. Therefore we wish
to find a patrol algorithm that maximizes the probability of
penetration detection in that weakest spot. This algorithm is
characterized by a probability value p, according to which
the robots switch their direction through their patrol. Note
that p could be 1, and then the algorithm is deterministic.
First, we define how p characterizes the movement of the
robots in the different movement models. We then provide a
formal definition of the generic problem.

Assume a robot is currently located in segment i. In the
BMP model, it moves one step to the right (segment i+1)
with probability p and one step to the left (segment i−1) with
probability q = 1−p. This model is similar to a random walk.
See Figure 2a for an illustration. In both the DZCP and
DCP models, we assume directionality of movement, hence
the robot continues its movement in its current direction with
probability p, and turns around (rewinds) with probability
q = 1 − p. Therefore in the DZCP model, if the robot
is facing segment i + 1, then it has probability p of going
straight to it and probability 1 − p for turning around and
reaching cell i− 1. Similarly, if it faces segment i− 1, then
it has probability p or reaching i − 1 and probability 1 − p
of reaching segment i + 1. The DCP model is similar, only
that if the robot turns around it remains in segment i. See
Figures 2b. and 2c. for illustration of the DZCP and DCP
models, respectively.

1−p

time ttime t+1time t

−1 0 1

−1 0 1

time t+1time t

10−1

−1 0 1

−1 0 1

10−1

a. no directionality

p

1−p

c. directionality, turning with costb. directionality, no cost of turn

−1 0 1

0 1

p

1−p
−1−1 0 1

p

time t+1

Fig. 2. Illustration of p’s characterization of the three models of movement.

Border penetration detection (BPD) problem: Given a
circular fence (perimeter) of length l divided into N seg-
ments, and k robots uniformly distributed around this perime-
ter with distance d = N/k (in time) between every two
consecutive robots. Assume that it takes t time units for the
adversary to penetrate. Let fi(p) = ppdi, 1 ≤ i ≤ d − 1
(describing ppdi as a function of p). Find the optimal p,
popt, such that the minimal ppd throughout the perimeter is
maximized. Formally,

popt = argmax
0≤p≤1

{ min
1≤i≤d−1

fi(p)}

IV. PRELIMINARIES

Following, we justify our motivation for considering mod-
els in which robots are placed uniformly around the perimeter
and are coordinated in the sense that they all move together
in the same direction and switch directions simultaneously.
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Recall that we assume the number of time units it takes the
penetrator to enter is t, and that the time between every two
consecutive robots around the perimeter is d. Therefore we
consider t values between the boundaries �d

2� ≤ t ≤ d − 2.
The reason for this is that in case t < �d

2�, then there is
at least one segment si with ppdi = 0, therefore a strong
adversary will always manage to penetrate successfully re-
gardless of the actions taken by the patrolling robots. On
the other hand, if t > d − 2 then all segments si can have
ppdi = 1 simply by using a deterministic algorithm.

In order to find the probability of penetration detection in
some segment si, ppdi, we need to find the probability that
si is visited during t time units. ppdi is determined only
by the first visit to si, since once the intruder is detected
then the detection mission was successful. Therefore ppdi is
actually the probability that a segment will be visited at least
once during t time units. Denote the probability of detecting
a penetrator by robot Ra in segment sj after t time units
by ppdj(Ra). Note that ppdi is the sum of probabilities
that R1, . . . , Rk will visit that segment during this time,
i.e., ppdi =

∑k
j=1 ppdi(Rj). Also, the value of the ppd

is calculated regardless of the actions of the adversary.
Lemma 1: For a given p, the function ppdi(Ra) : N ⇒

[0, 1] for constant t and Ra residing in segment s0 is a
monotonic decreasing function, i.e., as the distance between
a robot and a segment increases, the probability of arriving
in it during t time units decreases.

Proof: We need to show that for all i, i ∈ N,
ppdi(Ra) ≥ ppdi+1(Ra). The movement of the robots is
coherent, i.e., in order to move from segment i to segment
i + 2, it has to move through segment i + 1. Therefore the
probability of arriving at segment i given that we have arrived
at segment i+1 is 1, i.e., ppdi|i+1(Ra) = 1. By conditional
probability law, if ppdi+1(Ra) > 0 then

ppdi|i+1(Ra) =
ppdi+1∩i(Ra) · ppdi(Ra)

ppdi+1(Ra)
= 1

⇒ ppdi+1(Ra) = ppdi+1∩i(Ra) · ppdi(Ra) ≤ ppdi(Ra)

If ppdi+1(Ra) = 0, then since ppd’s value can not be lower
than 0, then necessarily ppdi(Ra) ≥ ppdi+1(Ra).

Lemma 2: As the distance between two consecutive
robots along a cyclic patrol path is smaller, the ppd in each
segment is higher and vice versa.

Proof: Consider a sequence S1 of segments s1, . . . , sw

between two adjacent robots, Ra and Rb, where s1 is
adjacent to the current location of Ra and sw is adjacent
to the current location of Rb. Let S2 be a similar sequence,
but with w − 1 segments, i.e., the distance between Ra and
Rb decreases by one segment. Assume that other robots are
in distance greater than or equal to w − 1 away from Ra

and Rb, and that w − 1 < t. Since a robot may influence
the ppd in segments that are up to distance t from it (as
it has probability 0 of arriving at any segment with greater
distance within t time units), the ppd in these sequences is
influenced only by possible visits of Ra and Rb.

Denote the probability of penetration detection in segment
si ∈ Sj by ppdk

i , 1 ≤ i ≤ w, j ∈ {1, 2}, and the probability
that the penetrator is detected by robot Rl by ppdk

i (Rl).
Therefore, for any segment si ∈ Sj , ppdj

i = ppdj
i (Ra) +

ppdj
i (Rb). Note that either ppdj

i (Ra), ppdj
i (Rb) or both can

be equal to 0. It is required to show that ppd2
i ≥ ppd1

i , for all
1 ≤ i ≤ w, and for at least one segment sm, ppd2

m > ppd1
m.

First, for sw, ppd2
w = 1 as Rj is presently on segment sw

in S2. Therefore ppd2
w = 1 ≥ ppd1

w.
For every other segment si, ppdj

i (Ra) remains the same
(there is no change in its relative location), hence we need to
examine the change in ppdj

i (Rb). From Lemma 1 we know
that ppdj

i (Rb) is a monotonic decreasing function. Therefore
for each i, ppd2

i (Rb) ≥ ppd1
i (Rb). We need to show that for

at least one segment ppd2
i (Rb) > ppd1

i (Rb). A robot may
influence the ppd to both of his sides - segments located
left and right to its current position. Denote the number of
influenced segments to its right by s (s may be equal to 0). If
s > 0, then ppd2

w−s+1(Rb) > ppd1
w−s(Rb). In other words,

Rb has probability 0 to reach the segment with distance s +
1 from it in S1, but in S2 it is s segments away from it,
therefore Rb has probability greater than 0 to reach it. If
s = 0, then ppd2

w = 1 > ppd1
w, as Rb lies exactly on

segment sw in S2, and ppd1
k(Rb) = 0.

Lemma 3: A team of k mobile robots engaged in a patrol
mission maximizes minimal ppd if the following conditions
are satisfied. a. The time distance between every two con-
secutive robots is equal b. The robots are coordinated.
Note that condition b means that all robots move together in
the same direction, i.e., if they change direction, then all k
robots change their direction simultaneously.

Proof: Following Lemma 2, it is sufficient to show that
the combination of conditions a and b yield the minimal
distance between two consecutive robots along the cyclic
path. Since we have N segments and k robots, there are(
N
k

)
possibilities of initial placing of robots along the cycle

(robots are homogenous, so this is regardless of their order).
If the robots are placed uniformly along the cycle, then
the time distance between each pair of consecutive robots
is N/k. This is the minimal value that can be reached.
Therefore, clearly, condition a guarantees this minimality.

If the robots are not coordinated, then it is possible that
for two consecutive robots along the cycle, Ri and Ri+1, to
move in opposite directions. Therefore the distance between
them increases from N

k to N
k + 2, and by Lemma 2 the

ppd in the segments between them is smaller. If Ri and
Ri+1 move towards one another, then the distance between
them is N

k − 2 and the ppd in the segments between them
becomes higher. On the other hand, there exists some pair Rj

and Rj+1 where the distance between them increases, as the
total sum of distances between consecutive robots remains
N , hence the minimal ppd around the cycle becomes smaller.

Therefore the only way of achieving minimal distance
(maximal ppd) is by assuring that condition a is satisfied,
and maintaining it is achieved by satisfying condition b.

Following Lemma 3, we assume that the robots are coor-
dinated, and placed uniformly along the patrol path.
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V. ALGORITHM FOR FINDING OPTIMAL p

After establishing the preliminary assumptions, we wish
to find a solution to the BPD problem. The solution to the
problem is twofold. First, it is necessary to find equations
representing the detection probability in each segment along
the patrol path. At the second stage, the equations are
manipulated in order to find the required probability (here
the maximin point). In this section we describe a polynomial
time algorithm for solving the BPD problem optimally.

A. Finding the equations
In order to analyze the ppd achieved by a patrol algorithm,

it is enough to consider only one segment of the path that lies
between two consecutive robots, without loss of generality
R1 and R2. This segment has two extreme robots, and is of
length d. We use a Markov chain in order to model the states
the system can be in. We describe herein the modeling under
the DCP movement model (the cases of BMP and DZCP
are similar, and are illustrated in Figure 3).

In order to calculate the probability of detection in each
segment along t time cycles, we use the graphic model G
illustrated in Figure 3. For each segment si in the original
path, 1 ≤ i ≤ d − 1, we create two states in G: One for
going in clockwise direction (scw

i ), and the other going in
counterclockwise direction (scc

i ). As mentioned previously, if
R1 or R2 reach one of the segments si within t time units,
then the intruder is discovered, i.e., it does not matter if the
segment is visited more than once during these t time units.
Therefore we consider only the probability of the first visit to
each segment, and this is done by defining the states s0 and
s′0 as absorbing states. The edges of G are as follows. There
exists one outgoing edge from scw

i to scc
i with probability

q for turning around, and one outgoing edge to scw
i−1 with

probability p for continuing straightforward. Similarly, there
exists one outgoing edge from scc

i to scw
i with probability

q for turning around, and one outgoing edge to scc
i+1 with

probability p for continuing straightforward.

p
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R2R1

S0’S3 S4
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Fig. 3. Converting the initial segments and robot locations to a graphical
model for the three possible robotic models: DZCP , DCP and BMP .

The straightforward way of finding the probability of
arriving at an absorbing vertex is using a stochastic matrix
M , which represents the probability of transition between
states. In order to find the probability of absorption after t
cycles starting from each state si, 1 ≤ i ≤ d−1, M t should
be computed. However, as t reaches d = N

k , it leads to a
computational complexity exponential in the input size.

Therefore we use the following dynamic-programming
inspired rule in order to find the optimal solution, yet in
polynomial time. We determine the probability of reaching a
certain state in time r by the sum of probabilities of reaching
si from any other state sj multiplied by the probability of
being in state sj at time r − 1. Hence in order to compute
the probability of reaching absorption state in t time cycles
starting from state sinit, we initialize sinit with the value 1
at r = 0, compute the values for r = 1, . . . , t, and extract
the probability at the absorption state, sabs. See Procedure
FindFunc(d, t) for a detailed description of the method.

Procedure FindFunc(d, t)
For each sinit = si ∈ {s1, . . . , sd−1} do:
Create matrix M of size (2d + 2)× (t + 1), initialized with 0s.
Set M0(sinit)← 1.
Complete M gradually using the following rules.

1) For each entry Mr(s
cw
i ) set value to p ·Mr−1(s

cw
i+1) + q ·

Mr−1(s
cc
i ).

2) For each entry Mr(s
cc
i ) set value to p ·Mr−1(s

cc
i−1) + q ·

Mr−1(s
cw
i ).

3) For absorbing states, set entry Mr(sabs) = Mr−1(sabs)+
p · [Mr−1(s

cw
1 ) + Mr−1(s

cc
d )].

Report row t of M .

Fig. 4. Description of FindFunc algorithm.
The time complexity of Procedure FindFunc is d · (2d +

2) · (t + 1). Since t is bounded by d− 1 and d = N/k, then
the complexity is O((N

k )3).
B. Finding the maximin point

After establishing the d − 1 equations representing the
probability of detection in each segment, it is left to find the
value p that maximized the minimal possible value in each
segment, where p ∈ [0, 1]. Denote these equations by fi(p),
1 ≤ i ≤ d − 1. The maximal minimal value is the maximal
value that lies inside the intersection of all integrals of fi.

Observing the problem geometrically, consider a vertical
sweep line that sweeps the section [0, 1] and intersects with
all d − 1 curves. It seeks the point p in which the minimal
intersection point between the sweep line and the curves,
f∗(p), is maximal. This p is the maximin point. Since the
segment [0, 1] and the functions f1, . . . , fd−1 are continuous,
this sweep line solution cannot be implemented. We observe
that a maximin point is actually the maximal point that lies
inside the integral of all curves. We prove in the following
lemma that this point is either an intersection point of two
curves, or a local maxima of one curve (see Figure 5). See
Figure 6 for the formal description of Algorithm FindP.

Fig. 5. An illustration of two possible maximin points. On the left, the
point is created by the intersection of two curves, and on in the right it is
the local maxima of the lowest curve.

Following, we prove that Algorithm FindP finds the point
p such that maximin property is satisfied.
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Lemma 4: A point p yields a maximin value f∗(p) if the
following two properties are satisfied.
a. f∗(p) ≤ fi(p) ∀1 ≤ i ≤ d − 1.
b. One of the two following conditions holds: f∗(p) is an
intersection of two curves (or more), fi(p) and fj(p) or a
local maxima of curve fk(p).

Proof: Property a. is derived from the definition of a
maximin point. Therefore we are looking for the maximal
point that satisfies property a. It is left to show that this
point, f∗(p), is obtained by either an intersection of two or
more curves or is a local maxima. Clearly, a maximal point
of an integral is found on the border of the integral (the curve
itself). The area which is in the intersections of all curves
lies beneath parts of curves, fi1 , . . . , fim

, such that fij
is

the minimal curve in the section [lj , rj ] and
⋃m

j=1[l
j , rj ] =

[0, 1]. By finding the maximal point in each section f j
max =

max{f(x), x ∈ [lj , rj ]}, and choosing the maximal between
them, i.e., max{f j

max, 1 ≤ j ≤ m}, we obtain f∗(p). In
each section [lj , rj ] the maximal point can be either inside
the section or on the borders of the section. The former case
is exactly a local maxima of fij

. The latter is the intersection
point of two curves fij−1 , fij

or fij
, fij+1 .

Lemma 5: There exists a point p yielding a maximin value
f∗(p) > 0.

Proof: In order to prove the lemma, we need to show
that the intersection of all integrals f1, . . . , fd−1 in the x
section [0, 1], and the y section (0, 1] is not empty. It suffices
to show that for every fi, fi(x) > 0, 0 < x < 1.

Each function fi, 1 ≤ i ≤ d − 1 represents the ppd in a
segment si between two robots. From our requirement that
t ≥ �d

2�, it follows that in all models we consider, for 0 <
p < 1 the ppd �= 0. Note that if p = 0 or p = 1, then ppd
is either 0 or 1, but this does not contradict the fact that we
have a point guaranteeing f∗(p) > 0.

Algorithm FindP finds this point by scanning all possible
points satisfying the conditions given in Lemma 4, and
reporting the x-value (corresponding to the p value) that its
y-value is dominated by all fi. The input to the procedure
is a vector of functions fi, 1 ≤ i ≤ d − 1 and the value t.
The time complexity of Algorithm FindP is the complexity
of Procedure FindFunc, O((N

k )3) plus O(d3) = O((N
k )3)

(the algorithm itself), i.e., together O((N
k )3).

Algorithm FindP(d, t)

1) F ← Procedure FindFunc(d, t).
2) Set popt ← 0.
3) For Fpivot ← F1,...,d−1 do:

a) Compute local maxima (pmax, Fpivot(pmax)) of
Fpivot in the range (0, 1).

b) For each Fi, 1 ≤ i ≤ d − 1, compute intersection
point pi of Fi and Fpivot in the range (0, 1).

c) If Fpivot(pi) > Fpivot(pmax) and Fpivot(pi) ≤
Fk(pi)∀k, then popt ← pi.

d) If Fpivot(pmax) > Fpivot(pi) and Fpivot(pi) ≤
Fk(pi)∀k, then set popt ← pmax.

4) Return (pmax, Fpivot(pmax)).

Fig. 6. Description of FindP algorithm.

Theorem 6: Algorithm FindP(F, t) finds the point p
yielding maximin value of ppd.

Proof: Algorithm FindP checks both all intersection
points between pair of curves, and points of local maxima
of curves. It then checks the dominance of these points,and
picks maximal between them. Therefore, if such a point is
found, by Lemma 4, this point is exactly the maximin point.
Moreover, by Lemma 5 this point exists.

VI. RESULTS

We have fully implemented Algorithm FindP in order
to find the optimal maximin p for pairs of d’s and t’s. In
the following section, we describe a few interesting results
that we got when running the program. Recall that when
running a deterministic patrol algorithm in all scenarios we
handle, the minimal ppd is 0. If directionality is considered,
we assume the robots are initially heading to the clockwise
direction. We first show results of the DCP model, then an
example of the difference between the three models.

First of all, we have seen that the minimal ppd achieved
after running FindP was always more than 0. As t/d → 1,
i.e., t increases, then the value of the maximin ppd increases,
and vice versa, i.e., as t/d → 1/2, then the value of the
maximin ppd decreases. This can be seen clearly in Figure
7. In this case, we have fixed the value of t to 8 and checked
the maximin ppd for 9 ≤ d ≤ 15. When t/d is close to 1
(d = 9, t = 8) the maximin ppd = 0.423, and the value
decreases to 0.05 when t/d is close to 1/2 (d = 15, t = 8).
Similar results are seen if we fix the value of d and check
for different values of t.

Fig. 7. On the left, results of maximin ppd for fixed t = 8 and different
values of d: the possible maximin ppd decreases as d increases. On the
right, results of maximin ppd for fixed d = 16 and different values of t:
the possible maximin ppd increases as t increases.

In Figure 8, we bring the values of the ppd in all 16
segments, for all different possible values of t (9 ≤ d ≤ 15).
It is seen clearly, that the value of ppd usually decreases as
the distance from the left robot increases, until it reaches the
segment with maximin ppd, then the value rises again until
reaching the current location of the robot to the right. The
reason lies in the fact that the segments to the left of the
segment with the maximin ppd are influenced mostly by the
robot on the left, and the segments to the right of that point
are mostly influenced by the robot to the right. Since the p’s
yielding the maximin point in this example have value of
greater than 0.8 for all t’s, the segment having the maximin
value is to the right of the midpoint.

Last, we bring an illustration of the difference between
the values of the ppd obtained by all three models: DZCP ,
DCP and BMP in all 16 segments, in case t = 12. It
is clearly noticeable that the DCP model yields less or
equal values of ppd compared to DZCP model throughout
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Fig. 8. ppd values in all 16 segments for all t values (9 to 15)

the segments. The reason is because when turning around,
in the DCP model, the operation costs an extra cycle,
therefore the probability of arriving at a segment decreases,
compared to the case in which turning around is not costly.
Another interesting phenomena is that the ppd values of
the BMP are considerably higher (and close to 1) than the
values obtained by other models for segments closer to the
location of the righthand side robot. The value then decreases
dramatically around the value of t and then increases back
again. Recall that here there is no directionality of movement,
therefore the probability of going right is 0.707 and going
left is 1 − 0.707 = 0.293, which explains this phenomena.

Fig. 9. Results of maximin ppd values for d = 16 and t = 12 for all three
models: DZCP , DCP and BMP . The maximin ppd values are circled.

VII. WORKING UNDER OTHER ADVERSARIAL MODELS

Until now we have discussed the case in which the
adversary has full knowledge of the robots’ policy, and
decides to penetrate through the least protected segment.
If the adversary has partial knowledge, finding popt has to
be done differently. This case is interesting, since we might
obtain higher values of ppd considering weaker adversaries.
The advantage of our method is that the first part of finding
the equations is similar for all methods. Finding the optimal
p is done by replacing the second stage with a more suitable
function to the given scenario. This scenario depends, for
instance, on the knowledge of the adversary and/or its pref-
erences and on the preferences of the robots. For example,
if the adversary has no knowledge on the robots’ behavior,
then it might choose to enter through any point currently
unoccupied by a robot with uniform probability. In this case
the p we would choose would correspond to the p that

maximizes the expected ppd over all segments. One might
want to minimize the standard deviation of the ppd through
all segments, or create some weighted function taking into
consideration multiple requirements.

VIII. CONCLUSIONS AND FUTURE WORK
This paper discusses the problem of multi-robot perimeter

patrol around a closed area in adversarial settings. We assume
a strong adversarial model, in which the adversary knows
the location of the robots and the patrol scheme. We show
that in this case, if the time it takes the adversary to
penetrate is less than the minimal duration between two
visits of some robot, then it can penetrate with probability
1 even through an optimal deterministic patrol algorithm.
Therefore we consider a non-deterministic patrol algorithm,
with probability p characterizing the robots’ movement. We
assume strong adversary, that has full knowledge of the patrol
scheme. It will therefore decide to penetrate through the point
in which it has minimal probability of being detected. We
offer a polynomial-time algorithm for finding the probability
p of the robots, such that the minimal probability of pen-
etration detection is maximized. We have implemented this
algorithm, and showed that this probability is always greater
than 0 for various values of penetration time of the adversary
we consider and for three robotic models we propose.

There are various points we wish to address as future work.
First, we would like to find a solution for the continuous
case, rather than the discrete model we consider here. We are
interested in more realistic movement models, mainly ones
with arbitrary turning time. We would also like to consider in
depth other adversarial models, and also the case of unknown
adversary similar to Bayesian games. Last, we would like to
see how this algorithm can be adapted to patrol in other
domains (area patrol, for example).
Acknowledgement: We thank Efrat Manisterski for her
highly useful comments.
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