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Abstract— Impedance control is a common framework for
control of lower-limb prosthetic devices. This approach requires
choosing many impedance controller parameters. In this paper,
we show how to learn these parameters for lower-limb prosthe-
ses by observation of unimpaired human walkers. We validate
our approach in simulation of a transfemoral amputee, and we
demonstrate the performance of the learned parameters in a
preliminary experiment with a lower-limb prosthetic device.

I. INTRODUCTION

Impedance control [1] is a common strategy for control

of lower-limb prostheses [2]. It proceeds by breaking a

gait cycle into four phases, and by applying a proportional

derivative (PD) feedback policy within each phase [2]–

[4]. A challenge in the application of this framework is

that it requires the choice of many controller parameters,

in particular 12 parameters for the knee joint, which is

what we consider in this paper. Currently clinicians often

choose these parameters by trial and error for each patient

as noted in [2], [5], [6]. In this paper, we show how to learn

impedance controller parameters in an automated way using

observations of unimpaired human locomotion.

A common approach to learning controller parameters is

to learn from demonstrations of an expert [7]–[15]. However,

there is a challenge in applying such approaches to controller

parameter learning for prosthesis, because in this particular

case, there is no expert who can demonstrate what the

nominal joint trajectories of an amputee should be. In other

words, we do not have the amputee’s gait trajectories prior

to amputation. To address this problem, we develop a two

step controller estimation algorithm shown in Figure 1. The

first step of our algorithm is to use existing invariance

in locomotion to produce joint trajectories corresponding

to the locomotion of the amputee subject. To do so, we

utilize locomotion trajectories that have been shown to

be invariant across subjects and walking speeds [16]. By

tracking the invariant trajectories on a model which uses

the amputee’s physical characteristics, i.e. mass and length
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Fig. 1: Overview of the proposed algorithm.

information, we produce joint trajectories corresponding to

the amputee. In the second step we use the generated joint

trajectories in a model that again utilizes the amputee’s

physical characteristics, and is parameterized by controller

parameters. We estimate controller parameters by solving

a parameter estimation problem for ordinary differential

equations (ODE) [17]. This leads to a computationally-

efficient approach that can produce controller parameters

for an amputee walking at a desired cadence, while only

using pre-recorded invariant locomotion trajectories and the

amputee’s physical characteristics.

Biomechanical system identification is an alternative ap-

proach that in principle can be used to select impedance

parameters for lower-limb impedance controllers. These ap-

proaches consist of stationary and time-varying impedance

estimation techniques. In stationary impedance estima-

tion [18], the joint under study is perturbed multiple times,

and the time-invariant impedance of the joint is estimated.

While these stationary estimation methods are very well

studied, their applicability to the problem of locomotion

controller parameter estimation is limited due to the time-

varying nature of joint impedances during locomotion. Time-

varying impedance estimation techniques [19] on the other

hand continuously perturb the joints and can measure in-

stantaneous impedance values in dynamic cases, i.e. when

the joints are moving. However, these algorithms are often

highly inefficient, requiring many perturbation experiments

to be performed and averaged until an accurate measure
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of the impedance is obtained. Therefore, their applicability

to measuring impedance values during locomotion is again

limited. If the goal is to find parameters for prosthetic

control rather than understanding the biomechanics of the

intact system, it may be possible to estimate the parameters

of an impedance controller that replicates the dynamics of

natural locomotion, even if those parameters differ from the

biomechanical properties of an intact limb.

In this paper, we apply the proposed impedance parameter

learning algorithm to find controller parameters for a sub-

ject. We perform a preliminary experiment with the subject

walking on a lower-limb prosthetic device, and demonstrate

the results. We also validate our approach in simulation

of a transfemoral amputee by showing stability through a

numerical Poincare analysis [20].

The remainder of the paper is organized as follows. In

Section II we introduce the hybrid system used to model

the biped walker. In Section III we discuss our proposed

impedance parameter estimation algorithm. Subsequently, we

introduce the prosthetic simulator in section IV. We conclude

by demonstrating the results in section V, followed by a

discussion in section VI.

II. BIPED MODEL AND CONTROL ARCHITECTURE

Bipedal walking displays both continuous and discrete

behavior. It is thus natural to model bipedal walking by

a hybrid system [21]. The planar point-feet biped model

considered in this paper has five serial chain links (one torso,

two thighs and two calves) with length and mass properties

which correspond to an amputee subject. Details about the

computation of mass and length values for each segment of

a human subject can be found in [3], [22]. In this section,

we model the dynamics of this system and introduce the

impedance control framework.

A. Hybrid System Model of Dynamics

We model the dynamics of a five-link biped walker

using a hybrid system. The configuration space of the

biped is defined as Q = S
5 with coordinates θ =

(θsf , θsk, θsh, θnsh, θnsk)
T . As illustrated in Figure 2, θ1 =

θsf is the stance foot angle, θ2 = θsk is the stance knee

angle, θ3 = θsh is the stance hip angle which is measured

from the stance thigh to the torso, θ4 = θnsh is the non-

stance hip angle which is measured from the torso to the

non-stance thigh, and θ5 = θnsk is the non-stance knee angle.

Throughout the paper, a variable without a subscript denotes

the vector consisting of the variable for all joints, for e.g.

θ̇ = (θ̇1, θ̇2, θ̇3, θ̇4, θ̇5)
T .

1) Continuous Dynamics: The equations of motion of the

biped are given using the Euler-Lagrange formula

D(θ)θ̈ +H(θ, θ̇) = B(θ)u, (1)

where D(θ) is the inertial matrix and control torque distri-

bution map B(θ) which equals the identity matrix since the

biped is fully controlled, and

H(θ, θ̇) = C(θ, θ̇)θ̇ +G(θ),

Fig. 2: Five link biped model considered in this paper and

the joints angles.

2) Discrete Dynamics: The discrete dynamics are intro-

duced to model the impact that happens instantaneously

when the swing foot hits the ground. This causes an in-

stantaneous change in the velocities of the biped and also

an instantaneous switching of the stance and swing legs. We

use the function ∆ to denote the mapping between (θT , θ̇T )T

just before and just after the impact. Formal definitions of

the impact map can be found in [23], [24].

B. Impedance Control Framework

In this section, we describe the impedance control archi-

tecture used in control of lower-limb prosthetic devices [2].

In this framework, one gait cycle is divided into multiple

phases. Within each phase, a unique impedance control

for each joint is used to produce control inputs. Figure 3

demonstrates the division of a gait cycle into four phases.

��������	


� 
� 


������������	������������	����


�

�����	����

Fig. 3: Separation of gait into four phases

We consider the separation of gait into four phases,

denoted p = 1, ..., 4. Each phase begins at time tp
0

and ends

at tpf . These phases consist of

1) P1 from foot strike to mid stance denoted by passing

a threshold θsf < thr [2],

2) P2 from mid stance to foot lift [25],

3) P3 from foot lift to full knee extension (i.e. θ̇nsk < 0),

4) P4 from full knee extension to foot strike [25].
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The commanded torque of an impedance controller at joint

i during a phase p ∈ {1, 2, 3, 4} can be represented by the

following equation

up
i (t) = kpi (θi(t)− θpi,e) + bpi θ̇i(t), (2)

where ui(t) denotes the input torque, θi(t) is the angle and

θ̇i(t) denotes the angular velocity of joint i at time t. The

impedance parameters consist of

1) kpi denoting the stiffness,

2) bpi denoting the damping,

3) θi,e denoting the constant equilibrium angle.

These parameters are constant within each phase of the gait.

We refer to the vector of all impedance parameters at joint

i during phase p as

βp
i = [kpi , θ

p
i,e, b

p
i ]

T . (3)

In this paper, we will consider having impedance control only

at the knee, i.e. joints i = 2 and i = 5 denoting the stance

and swing knee, with a total of 12 parameters to be chosen

for the knee. The control input at other joints is described

when necessary.

Note that the impacts in the hybrid system occur only

during the transitions between the phases. Therefore, within

each phase p, the biped system evolves from time tp
0

to tpf
according to the following continuous dynamics, governed

by the Euler-Lagrange equations






D(θ)θ̈ +H(θ, θ̇) = u ∀ t ∈ [tp
0
, tpf ]

(

θ(tp
0
), θ̇(tp

0
)
)

= R
(

θ(tp−1

f ), θ̇(tp−1

f )
)

,

(4)

where we let p− 1 = 4 if p = 1. The initial condition to the

ODE for each phase is given by the function R defined as

R(θ(t), θ(t)) =







∆(θ(t), θ(t)) if at impact

(θ(t), θ(t)) otherwise.

For joints i = 2, 5, which are controlled using an

impedance controller, we replace ui = ki(θi− θi,e)+ biθ̇i to

show the dynamics as







ki(θi − θi,e) + biθ̇i =
[

D(θ)θ̈
]

i
+
[

H(θ, θ̇)
]

i
∀t ∈ [tp

0
, tpf ]

(

θ(tp
0
), θ̇(tp

0
)
)

= R
(

θ(tp−1

f ), θ̇(tp−1

f )
)

.

(5)

where the notation [v]i denotes the i-th element of vector v.

III. LEARNING IMPEDANCE CONTROLLER PARAMETERS

A. Producing Desired Joint Trajectories for an Amputee

A common approach to learning controller parameters is

to learn from demonstrations of an expert [7]–[15]. However,

these approaches can not be extended to learning prosthetic

parameters, because in this particular case, there is no expert

who can demonstrate what the nominal joint trajectories of

an amputee should be. In other words, we do not have

Fig. 4: The chosen invariant locomotion outputs.

the amputee’s gait trajectories prior to amputation. In this

section, we address this problem by using a set of locomotion

trajectories that have been shown to be invariant across

subjects [16] and across different walking speeds. Alternative

approaches such modeling locomotion with a cost function

can also be used. We proceed by incorporating the physical

characteristics of the amputee, i.e. the segment lengths and

masses, into our discussed biped model, and then tracking

the invariant trajectories on the biped model. To track the

invariant trajectories, we make use of an input/output (I/O)

linearization controller [24], [26].

We use the following kinematic trajectories, which were

shown to be stereotypical across subjects and walking

speeds [16]:

• z1 denoting slope of the non-stance leg mnsl,
• z2 denoting stance knee angle θsk,

• z3 denoting non-stance knee angle θnsk,

• z4 denoting the angle of the torso from vertical θtor,
• z5 denoting the horizontal position of the hip ph.

The variables corresponding to the chosen invariant trajecto-

ries are shown in Figure 4.

Note that, due to the invariance of the kinematic trajecto-

ries with respect to speed, they can be scaled in time to pro-

vide kinematic trajectories and subsequently joint trajectories

for different speeds for every subject. These modulated joint

trajectories can then be used to produce controller parameters

leading to different walking speeds [16].

We consider observing sampled noisy observations of the

invariant trajectories, and next we describe how to find their

continuous estimates to use for tracking.

B. Continuous Estimates of Sampled Observations

We consider observing invariant kinematic trajectories

that are sampled in time, and corrupted by noise. These

observations, which are obtained from motion capture data

of unimpaired human walking, are represented by yi for

i = 1, ..., 5 at time instants t1, ..., tN

yi(k) = zi(tk) + ǫi(k), k = 1, ..., N.
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The random variables ǫi(k) ∼ N(0, σ2

k,i) are i.i.d and

represent measurement noise. As it will be described in

section III-C, to find controller parameters β̂ we first need

to find continuous estimates of ẑi given observed noisy

samples yi. While in general spline functions can be fitted

to observed samples to find these estimates, we fit the

kinematics trajectories with the following two functions:

g1(t,α) = e−α1t(α2 cos(α3t) + α4 sin(α3t)) + α5, (6)

g2(t, v) = vt. (7)

We use the function g1 to fit y1, ..., y4 and we use g2 to

fit y5. These functions have shown to produce good fits

to the chosen kinematic trajectories in different locomotion

modes [27]. However, other regression approaches such as

spline fitting can be used as well. The following optimiza-

tions are solved to produce estimates ẑi for i = 1, ..., 4

α̂i = argmin
α

K
∑

k=1

(yi(k)− g1(tk,α))2

σ̂2

k,i

⇒ ẑi = g1(t, α̂i)

and for i = 5

v̂ = argmin
v

K
∑

k=1

(y5(k)− g2(tk, v))
2

σ̂2

k,5

⇒ ẑ5 = g2(t, v̂),

where σ̂2

k,i are variances estimated from recorded kinematic

data.

These estimates of invariant trajectories are then tracked

using the I/O linearization controller to produce joint tra-

jectories θ̂, and numerical differentiation is used to find

derivatives
ˆ̇
θ, leading to state estimates x̂ = [θ̂T ,

ˆ̇
θT ]T . The

produced joint trajectories will then be used in an ODE

estimation to find impedance parameters.

C. Impedance Parameter Estimation

As discussed in section II-B the dynamic equations for

joints i = 2, 5 can be described by an ODE (5) parameterized

by impedance parameters βp
i = [kpi , θ

p
i,e, b

p
i ]

T during each

phase. If we let x = [θT , θ̇T ]T denote the state of the

system and drop the superscript p for notational simplicity,

the dynamic equation (5) can be represented as an implicit

ODE parameterized by βi







Fi(βi, x, ẋ) = 0 ∀ t ∈ [t0, tf ]

x(t0) = x0,
(8)

where Fi =
[

D(θ)θ̈
]

i
+
[

H(θ, θ̇)
]

i
−
[

ki(θi − θi,e) + biθ̇i
]

.

We consider the problem of estimating unknown

impedance parameters βi given the parameterized ODE (8)

and observations y(k).
The described problem falls in the framework of parameter

estimation for ODEs. Two main estimation approaches have

been developed to address this problem. The first class of

methods are maximum likelihood (ML) estimators [28]–

[31]. While these approaches have satisfactory theoretical

properties, they are faced with some computational bot-

tlenecks. These methods involve iteratively optimizing an

objective function with respect to the parameter and then

approximation the solution of an ODE with the current guess

of the parameter. Approximating the solution of an ODE can

be computationally expensive [17], [32]. Moreover due to the

nonlinear nature of this optimization, the optimization often

converges to a local solution [17].

Alternatively, another class of estimation approaches have

been described in [17], [33], [34]. These approaches rely on a

non-iterative two-step procedure. In the first step, continuous

estimates of the states denoted by x̂ and their derivatives

denoted by ˙̂x are constructed using the observations y(k).
The estimates x̂ are then used in the second step, which is

to minimize an objective function to find the estimated ODE

parameters. This approach is desirable because both steps can

be implemented very efficiently. In particular spline fitting

can be used to obtain consistent non-parametric estimates of

the states efficiently. Subsequently a least-squares minimiza-

tion can be solved to estimate the unknown parameters.

We take the two-step approach to estimating the parame-

ters βi. In section III-B we described how to obtain estimates

x̂ given observations y(k). Now given the state estimates, i.e.

the desired amputee joint trajectory, we solve the following

least-squares minimization to find estimates of the ODE

parameters, denoted by β̂i

β̂i = argmin
βi

∫ tf

t0

(

Fi(βi, x̂(t), ˙̂x(t)
)2
dt. (9)

Given the expression

Fi =
[

D(θ̂)
¨̂
θ
]

i
+
[

H(θ̂,
˙̂
θ)
]

i
−
[

ki(θ̂i − θi,e) + bi
˙̂
θi
]

,

we can write the first two components solely as a function

of the known values x̂(t) and ˙̂x(t), i.e. V (x̂(t), ˙̂x(t)) =
[

D(θ̂)
¨̂
θ
]

i
+
[

H(θ̂,
˙̂
θ)
]

i
. Moreover, if we let U(x̂N (t), ˙̂x(t)) =

[θ̂i, 1,
˙̂
θi] and we define β̃i = [ki,−ki×θi,e, bi]

T (as opposed

to βi = [ki, θi,e, bi]
T ), we can then write the minimiza-

tion (9) as

ˆ̃
βi = argmin

β̃i

∫ tf

t0

(

V − Uβ̃i

)2
dt. (10)

Note that from (10), it is clear that the minimization is

a linear least-squares optimization, which can be solved

efficiently. We solve this optimization by discretizing the

objective and solving a linear least-squares problem. Note

that while we are estimating the parameters β̃i instead of βi,

the estimated value of θi,e can be obtained by −β̃i(2)/β̃i(1).
Thus, by first obtaining estimates of desired joint trajectories

θ̂ for an amputee, and then solving the optimization (10), we

learn impedance controller parameters for the subject.

IV. SIMULATING LOCOMOTION WITH A PROSTHETIC

In this section, we describe a simulation of a transfemoral

amputee wearing a lower limb prosthetic device on one leg.

The goal of designing this prosthetic simulator is to assess

the stability of our impedance controller for a prosthetic

device in simulation. To simulate the dynamics of our

system, we utilize the aforementioned 5-link biped system
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with mass and length parameters corresponding to an average

human [3], with the exception of one of the shanks, which

has the physical characteristics of the Vanderbilt prosthetic

leg [35]. The controllers for this simulation consist of two

data-based controllers, namely the estimated impedance con-

troller, and a stable controller replicating observed human lo-

comotion trajectories, which we refer to as a human-inspired

controller. These two controllers are described below.

A. Estimated Impedance Controller

The estimated impedance controller is used to control

one knee of the 5-link biped. The control architecture is as

described in section II-B, and the controller parameters are

estimated using our proposed estimation method described

in section III. The segment lengths of the biped corresponds

to an average human [3]. Note that since the length of

the prosthetic can be adjusted, we use the average human

shank length for both legs, but we use different masses

for the two shanks, corresponding to average human and

prosthetic masses. The segment lengths are subsequently

used to produce joint trajectories as described in section III-

B. Furthermore, the produced joint trajectories, along with

the length and mass information are used in the estimation

problem (9) to find impedance controller parameters for the

biped model.

B. Human-Inspired Controller

The human-inspired controller will be used on all re-

maining joints of the biped, i.e. all joints except one knee

joint being controlled with the estimated impedance control.

While we do not know how the central nervous system con-

trols locomotion, we can design a controller that replicates

observed human trajectories. This is the motivation for using

the human-inspired controller introduced in [24], which has

also been implemented on the biped robot AMBER1 [36].

In short, this controller utilizes the observed locomotion

trajectories zi described in section III-B, and fits functions

to these observations with the additional constraint that

the fitted functions satisfy a hybrid zero-dynamics (HZD)

constraint [23], [24], [37]. Subsequently, an Input/Output

linearization feedback controller [26] is used to replicate

the fitted functions. The additional HZD constraint is used

to ensure that the resulting fitted functions lead to a stable

controller. This controller utilizes the complete information

about the states of the biped system, which is not available to

the prosthetic device. Thus the application of this controller

in this work is limited to modeling the intact human joints.

V. RESULTS

In this section we describe the results obtained through

the application of the proposed controller parameter learning

approach to finding impedance parameters for a subject, and

we demonstrate experimental results of the subject walking

with the Vanderbilt prosthetic leg [35], shown in Figure 5.

We use invariant locomotion trajectories that were obtained

using motion captured locomotion of unimpaired subjects.

A. Prosthetic Experiment with Learned Impedance Con-

troller Parameters

Fig. 5: Vanderbilt prosthetic leg with the attached able-

bodied adapter

As a preliminary evaluation of our approach, we applied

the proposed controller parameter learning algorithm to find

knee controller parameters for one able-bodied subject. The

ankle controller parameters were tuned experimentally by

clinicians. Unimpaired subjects can walk on the Vanderbilt

prosthetic leg using an able-bodied adapter [2]. We used

the subject’s physical characteristics, which are listed in

Table I. The weight and height of the subject, along with

the lengths of the thigh and shank were measured. The

remaining values were obtained through the computation

methods described in [3], [22]. We used averaged invariant

trajectories, along with the physical characteristics of the

subject to obtain controller parameters listed in Table II.

The learned impedance controller parameters result in knee

trajectories shown in Figure 6 for the corresponding subject.

Note that these trajectories can be obtained by simulating

the controlled dynamic equations with the learned impedance

parameters and the subject’s joint trajectories (all except the

knee trajectories), which were produced in the first step of

our algorithm.

To estimate controller parameters for the Vanderbilt leg,

we measured the intrinsic damping of the device during

stance and swing to be 0.05 and 0.08 respectively. To account

for the intrinsic damping of the prosthetic, we constrained

our impedance estimation to have damping values larger than

the intrinsic damping of the device. We then subtracted the

intrinsic damping from the estimated damping parameters,

to account for the intrinsic property of the device.

The subject walked with the Vanderbilt leg, shown in

Figure 5, using the learned impedance controller parameters

and hand-tuned impedance parameters for the ankle. The

resulting knee trajectories from multiple steps of walking
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Fig. 6: The unimpaired averaged stance θHsk and swing knee

θHsk trajectory is seen in blue, with one standard deviation

shown in gray. The learned impedance parameters result in

the red stance knee θesk and swing knee θensk trajectories.

TABLE I: Table describing the mass (kg) and length (m)

properties of the subject and of the prosthetic

* Lcalf Lthigh Ht. mfoot mcalf mthigh Wt.

subject 0.4826 0.4826 1.7526 1.3812 4.4293 9.5254 95.25

prosthetic * * * * * * 5.4431

with self-selected cadence is demonstrated in Figure 7. The

accompanied video shows the subject walking in the labo-

ratory of Center for Bionic Medicine at the Rehabilitation

Institute of Chicago (RIC).

Finding measures of performance for prosthetic walking

is a subject of current research. In this work the resulting

locomotion was evaluated by clinicians at RIC using the

following measures of performance. The first measure is the

smoothness of the of the knee trajectories, which can be

verified from Figure 7 by the lack of any jumps at the phase

transitions. Additionally, the learned prosthetic controller

was evaluated by the amount of support it provided for the

amputee. This was verified by the subject’s ability to walk

without any use of the overhead harness system and with

minimal use of the hand rails.

It should be noted that the stance knee trajectories obtained

from prosthetic walking in the experiment (Figure 7) have

a smaller flexion angle compared to the predicted stance

trajectory (Figure 6). This is commonly seen when walking

with prosthetic devices [2], [38], and is not an artifact of our

learned impedance parameters.

B. Simulation of a Transfemoral Amputee with Learned

Prosthetic Controller

As discussed earlier, the second objective of this study

was to evaluate the stability of impedance controllers for

biped locomotion. We performed the simulation described

in section IV with the objective of verifying the stability of

the learned impedance controllers. We verified the stability

using a numerical Poincare analysis [20]. The resulting

TABLE II: Estimated Controller Parameters of the Prosthesis

Phase k[N·m] b[N·m·s] qe[Degree]
P1 4 0.276 0

P2 0.94 0.03 0.4

P3 0.29 0.02 65

P4 0.33 0.02 0
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Fig. 7: The stance knee (dotted lines) and swing knee (solid

lines) trajectories obtained from subject walking with learned

prosthetic controller parameters.

eigenvalues all had a magnitude smaller than 0.05, which

verifies the stability of the estimated impedance control in

this simulation. The simulation is also demonstrated in the

accompanying video.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed a method of learning impedance

controller parameters for lower-limb prostheses using only

observed unimpaired kinematic trajectories, and the physical

characteristics of the amputee. The main challenge in design-

ing such a learning algorithm is that locomotion trajectories

corresponding to the amputee’s walking prior to amputation,

i.e. the amputee’s nominal joint trajectories, are often not

available. Thus, we used the invariance present in locomotion

trajectories along with a model that utilized the amputee’s

physical characteristics to track the invariant trajectories,

and produce nominal trajectories for the amputee. While we

applied this framework to the problem of locomotion, this

idea can be used in other similar applications, where nominal

observations are not available.

We would also like to emphasize that this approach is

not limited to one specific dynamic model. The biped model

we used was just one of several candidates of a dynamic

model of a human body. Thus, while the current work has

limitations due to the inconsistencies between our model

and the real world, these limitations could be reduced by

using a more sophisticated dynamic model. One example

would be to include a dynamic model of the actuator used

in the prosthetic. This should in turn improve the quality

of the learned impedance parameters. Similarly, the current
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framework is not limited to estimating controller parameters

only for the current control architecture.

In this work we only focused on learning controller

parameters for the knee. Our future work includes learning

impedance parameters for the actuated ankle as well, by in-

corporating a dynamic model that has feet. The experimental

results presented are limited to one unimpaired subject using

the able-bodied adapter. Experiments with more subjects

are currently under investigation. Furthermore, it would

be beneficial to include measures of performance such as

symmetry between the intact and prosthetic leg, in the future.

Other extensions include performing this analysis to learn

impedance parameters for different locomotion modes such

as stair ascent/descent and walking on ramps.
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