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Abstract—In this paper, the global identification of spring 
balancer, dynamic parameters and joint drive gains of a 6 
Degrees Of Freedom (DOF) robot is performed. Off-line 
identification method is based on the use of the Inverse 
Dynamic Identification Model (IDIM) which takes into account 
a spring balancer for gravity compensation and linear Least 
Squares (LS) technique to estimate the parameters from the 
positions and joint torques. It is key to get accurate values of 
joint drive gains to get accurate identification because the joint 
torques are calculated as the product of the current reference 
by the joint drive gains. Recently a new method validated on 
small payload robots (less than 10 Kg) allows to identify 
simultaneously all joint drive gains and dynamic parameters. 
This method is based on the Total Least Squares (TLS) solution 
of an over-determined linear system obtained with the inverse 
dynamic model calculated while the robot is tracking reference 
trajectories without load and trajectories with a known payload 
fixed on the robot. This method is used to identify accurately 
the heavy industrial robot Kuka KR270 (270Kg payload) with 
its spring balancer. This is a new step to promote a practical 
and easy to use method for global dynamic identification of any 
small or heavy gravity compensated industrial robots that does 
not need any a priori data, which are too often missing from 
manufacturer's data sheet. 

I. INTRODUCTION 

Accurate dynamic robots models are needed to control 
and simulate their motions with precision and reliability. 
Identification of robots has been widely investigated in the 
last decades. The usual identification process is based on the 
Inverse Dynamic Model (IDM) and Least Squares (LS) 
estimation. This method, called IDIM-LS (Inverse Dynamic 
Identification Model with Least Squares), has been 
performed on several prototypes and industrial robots with 
accurate results [1]. 

In most case, heavy duty handling industrial robots have 
spring balancer (gravity compensator) to avoid to require a 
big motor power to compensate gravity joint torques caused 
by the weight of robot links. Then to get accurate 
identification, it is necessary to take into account its modeling 
in dynamic model of the robot before performing the 
estimation of  parameters. 

 Another point to consider is the calculation of joint 
torques. Accurate values of joint drive gains must be known 
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to calculate the joint torques as the product of the known the 
current references by the joint drive gains [2]. This needs to 
calibrate the drive train constituted by a current source 
amplifier gain which supplies a permanent magnet DC or a 
brushless motor with torque constant coupled to the link 
through direct or gear train with gear ratio. Because of large 
values of the gear ratio for industrial robots, joint drive gain 
is very sensitive to errors in current source amplifier gain and 
torque constant which must be accurately measured from 
special, time consuming , heavy tests, on the drive chain 
[2][3]. 

Recently, new method for the global identification of the 
joint drive gains data was validated on two small payload 
robots (3 (Kg) and 10 (Kg)) [4][5][6]. This method uses the 
current reference and the position sampled data while the 
robot is tracking one reference trajectory without load fixed 
on the robot and one trajectory with a known payload fixed 
on the robot whose inertial parameters are measured. 
Contrary to the previous works [2], all drive gains are 
calculated in the same solving loop by the Total LS solution 
of an over-determined system in order to take into account 
the dynamic coupling between the robot axes. 

In this paper the identification of dynamic parameters and 
joint drive gains of a 6 DOF Kuka KR270 (270 (Kg) 
maximum payload) industrial robot is performed with a 
payload of 175 (Kg). This robot has a spring balancer 
attached to the second joint. The spring balancer induces a 
torque on the joint 2. A modeling of the spring balancer is 
proposed and its parameters are identified simultaneously 
with the usual dynamic parameters of the robot.  

This paper is divided into 7 sections. Section II describes 
the modeling of serial robots. Section III presents the usual 
method for dynamic identification of robots, based on IDIM-
LS method. Section IV presents the new modeling and 
identification for robot drive gains parameters. Section V is  
devoted to the modeling of Kuka KR270 industrial robot and 
its spring balancer. Section VI presents the experimental 
global identification of the robot. Finally, the last section 
gives the conclusion.   

II. MODELING  

A. Modified Denavit and Hartenberg notation 

The kinematics of serial robots is defined using the 
Modified Denavit and Hartenberg (MDH) notation [7]. In this 
notation, the link j  fixed frame is defined such that: 

the jz axis is taken along joint j axis; the jx  axis is along the 

common normal between jz  and 1jz  ; j  and jd  

parameterize the angle and distance between 1jz   and jz  
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along 1jx  , respectively; j  and jr  parameterize the angle 

and distance between 1jx   and jx  along jz , respectively.  

B. Inverse Dynamic Model 

The IDM of a robot calculates the joint torques idm  as a 
function the joint positions, velocities and accelerations. It 
can be obtained from the Newton-Euler or the Lagrangian 
equations [7]. It is given by the following relation: 

   ,idm M q q N q q     (1) 

Where q , q  and q  are respectively the  x 1n  vectors 

of joint positions, velocities and accelerations;  M q  is the 

  x nn  robot inertia matrix;  ,N q q  is the   x 1n vector of 

centrifugal and frictions forces/torques. n  is the number of 
moving links.  

The choice of the modified Denavit and Hartenberg 
frames attached to each link allows a dynamic model that is 
linear in relation to a set of standard dynamic 
parameters ST [8]: 

 

1 2

, ,  

with 

idm st st

TT T T
st st st stn

IDM q q q χ

χ χ χ χ

 

   

 


 (2) 

Where  , ,stIDM q q q   is the   x Nn s Jacobian matrix of 

idm , with respect to the  N  x 1s vector  stχ  of the standard 

parameters. stjχ  is composed of standard dynamic parameters 

of axis j : 

           

stj j j j j j j

T

j j j j j j j joff

χ XX XY XZ YY YZ ZZ

MX MY MZ M Ia Fv Fc 

 



 (3) 

Where: 
- ,  ,  ,  ,  ,  j j j j j jXX XY XZ YY YZ ZZ  are the six components 

of the robot inertia matrix  of link j ; ,  M ,  Mj j jMX Y Z  are 

the components of the first moments of link j ; jM  is the 

mass of link j ; jIa  is a total inertia moment for rotor and 

gears of actuator of link j ; jFv  and jFc  are the viscous and 

Coulomb friction parameters of joint j ; joff  is an offset 

parameter which take into account of the dissymmetry of 
Coulomb friction of joint j  and of the motor current 
amplifier offset of joint j ; 14 x Ns n  is the number of 
standard parameters. 

III. IDIM-LS: INVERSE DYNAMIC IDENTIFICATION 

MODEL WITH LEAST SQUARES METHOD 

Because of perturbations due to noise measurement and 
modeling errors, the actual force/torque   differs from τidm  
by an error e , such that: 

 , ,idm st ste IDM q q q χ e       (4) 

Where:  

1 1

2 1

0 0

0 0

0 0 n n

v g

v g
v g

v g

 

 
 

 



   
   
    
   
   
   




    


 (5) 

Where v  is the ( x )n n  matrix of the actual references of 

the current amplifiers ( jv corresponds to actuator j ). g  is 

the ( x1)n vector of the joint drive gains ( jg corresponds to 
actuator j ) with: 

i tg NG K   (6) 

Where ,  and i tN G K are the   x nn  matrix of gear 

ratios, the  x nn  matrix of current source amplifier gains 

and the  x nn  matrix of torque constants respectively. 

The minimal model which contains only the b  base 
parameters [8][9] is defined from (4): 

 , ,idm e IDM q q q χ e       (7) 

Where a subset  , ,IDM q q q  of  , ,STIDM q q q   defines 

the vector χ  of the b  base parameters. They can be obtained 
from the standard inertial parameters by regrouping some of 
them by means of linear relation.  

The vector χ̂  is the least squares (LS) solution of an over 
determined system built from the sampling of (7), while the 
robot is tracking exciting trajectories [10]: 

Y W     (8) 

Where: Y is the ( x1)r measurement vector, W  the 
( x )r b observation matrix, and   is the ( x1)r  vector of 

errors. The number of rows is * er n n , where the number of 

recorded samples is en .  

Calculating the LS solution of (8) from perturbated data in 
W  and Y  may lead to bias if W  is correlated to  . Then, it 
is essential to filter data in Y  and W  before computing the 
LS solution. Velocities and accelerations are estimated by 
means of a band-pass filtering of the positions. To eliminate 
high frequency noises and torque ripples, low pass filtering 
and a downsampling is performed on Y  and on each column 
of W with decimate filter. More details about data filtering 
can be found in [11] and [12]. 

IV. IDENTIFICATION OF JOINT DRIVES GAINS 

A. IDIM Including a Payload  

The payload is considered as a link 1n  fixed to the link 
n  of the robot [13]. Only Ln  of its parameters are considered 
known. The model (7) becomes: 

  TT T T
uL kL uL kLv g IDM IDM IDM χ χ χ e        (9) 

Where : kLχ is the ( x1)Ln
 
vector of the known inertial 

parameters of the payload; uLχ is the ((10- )x1)Ln vector of 

the unknown inertial parameters of the payload ; kLIDM is 

the ( x )Ln n
 

jacobian matrix of idm , with respect to the 

1356



 

vector kLχ ;
 uLIDM is the ( x(10- ))Ln n

 
jacobian matrix of 

idm , with respect to the vector uLχ . 

B. Total Least Squares identification of robot dynamic 
parameters and the drive gains  

Details on the TLS identification method can be found in 
[14] and many papers of the same authors. This method has 
been applied in [4][5][6] for the global identification of the 
drive gains and the dynamic parameters on a two 6 DOF 
small payload robots.  The scaling of parameters uses the 
accurate value of an additional payload mass. In order to 
identify the payload parameters, it is necessary that the robot 
carried out two sets of trajectories: without the payload and 
with the payload fixed to the end-effector [13]. The over 
determined system built from the sampling of (9) is the 
following: 

0 0 Ta a T T T
uL kL

b b uL kL

V W
Y g

V W W W





   
   

        
   

(10) 

Where: aV  is the matrix of v  samples in the unloaded 

case ; bV  is the matrix of v  samples in the loaded case ; 

1
,1

2
,2

, /

0 0

0 0
,  with ,

0 0

j
ii
j
iji

i i

jn
i r ni

vV

vV
V V i a b

vV




 



  
  
    
  
  
    




   


 (11)  

,
j
i kv  is the -thk  sample of current reference for actuator 

j , aW  is the observation matrix of the robot in the unloaded 

case, bW  is the observation matrix of the robot in the loaded 

case, uLW  is the observation matrix of the robot 
corresponding to the unknown payload inertial parameters, 

kLW  is the observation matrix of the robot corresponding to 
the known payload inertial parameters. 

But owing to the fact that , ),(kLW q q q   and , ),(uLW q q q   
are correlated by the same noisy data , ,( )q q q  , the total least 
squares (TLS) solution is more adapted [14], rewriting (10)  
as: 

tot totW    (12) 

Where: 

0 0a a
tot

b b uL kL kL

V W
W

V W W W


 
 

     
 (13) 

totW  is a x  with ( + 1)b uLr c c n n n   matrix and 

1
TT T T

tot uLg      is a ( x1)c  vector. 

Without perturbation, 0   and totW must be rank 

deficient to get the non-null solutions  ˆ ˆ n
tot tot 0    

(where ˆ n
tot  is a vector of unit norm, i.e. ˆ 1n

tot  ) 

depending on a scale coefficient  . However because of the 
measurement perturbations, totW  is a full rank matrix. 

Therefore, the system (12) is replaced by the compatible 
system closest with respect the Frobenius norm:  

ˆ ˆ ˆ ˆ ˆˆ0 with 1
TT T T

tot tot tot uLW g          (14) 

Where ˆ
totW  is the rank deficient matrix, with the same 

dimension as totW , which minimizes the Frobenius norm: 

ˆ tot tot F
W W   (15) 

ˆ tot  is the solution of the compatible system (14) closest 

to (12). ˆ
totW is calculated with the singular value 

decomposition (SVD) of totW : 
T

totW U SV   (16) 

where U and V are orthonormal matrices, and 
( )iS diag s  is a diagonal matrix with singular values is  of 

totW  sorted in decreasing order.  

ˆ
totW is given by: 

ˆ T
tot tot c c cW W s U V    (17) 

where cs  is the smallest singular value of totW  and cU  

( cV , resp.) the last columns of U (V, resp.) corresponding to 

cs . Then, the normalized optimal solution ˆ n
tot is given by 

the last column Vc of V, ˆ n
tot cV  , which belongs to the 

kernel of ˆ
totW . 

There is infinity of vectors ˆ ˆ n
tot tot   which are 

solutions of (14) depending on a scale factor  . The unique 

solution * ˆˆ ˆ n
tot tot   for the robot can be found by taking 

into account that the last value *ˆ
ctot  of *ˆ tot  must be equal to 

1 according to (14), i.e. ˆ ˆ1 /
c

n
tot  , with ˆ

c

n
tot  the last value 

of ˆ n
tot . 

C. Statistical Analysis 

Standard deviations ˆi
 , are estimated assuming that all 

errors in data matrix totW  are independently and identically 

distributed with zero mean and common covariance matrix 

WWC  such that: 
2ˆ

WWW W rC I   (18) 

where
Wr

I is the identity matrix of dimension ( . xr.c)r c . 

An unbiased estimation of the standard deviation ˆW  is 

[14]: 
ˆ /W cs r c     (19) 

The covariance matrix of the estimation error is 
approximated by [14]: 

   
1: 1 1: 1

122
ˆ ˆ 1: 1 2

ˆ ˆˆˆ 1
c c

T
W c tot totC W W  

 



    (20) 

with 1: 1ˆ c   the vector containing the 1c   first coefficients 

of  *ˆ tot  and 
1: 1

ˆ
ctotW


 a matrix composed of the 1c   first 

columns of ˆ
totW . Finally, 2

ˆ ˆ ˆ ( , )
i

C i i   is the ith diagonal 

coefficient of ˆ ˆC and the relative standard deviation ˆ%
ri  

is given by: ˆ ˆ ˆ% 100
ri i i    , for ˆi ≠ 0. 

ˆ ˆ ˆ ˆ% 100  for 0
ri i i i        (21) 
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V. MODELING THE KUKA KR270 AND ITS SPRING 

BALANCER 

A. Modeling of the Kuka KR270 

The Kuka KR270 (see fig. 1) robot has a serial structure 
with 6 rotational joints. Its kinematics is defined using the 
MDH notation described in section II-A. The geometric 
parameters defining the robot frames are given in table I. 

All mechanical variables are given in SI unit in joint side. 
The robot is characterized by a kinematic coupling effect 
between the joint 4,5 and 6: 

4

5

6

4 4

54 5 5

64 65 6 6

0 0

0

m

m

m

q K q

q C K q

C C K qq

     
          
         

 
 


  (22) 

With mjq  is the motor velocity of joint j and jq  is the 

joint velocity of joint j. The values 54 64 65( , , )C C C  are very 

low (factor 100) compared to the values 4 5 6( , , )K K K , 
therefore the kinematic coupling effect is not considered in 
the dynamic modeling.  

The Kuka KR270 has 66b   base parameters with spring 
balancer parameters.  

TABLE I.  MDH PARAMETERS OF THE KR270 ROBOT 

j  
j

  
j

  
j

d  
j

  
j

r  

1  0  
  0  

1
q  

1
( 0.750 )rl m 

2  0  / 2  
2
( 0.350 )d m  

2
q  0  

3  0  0  
3
( 1.250 )d m  

3
/ 2q   0  

4  0  / 2  
4
( 0.055 )d m  

4
q  

4
( 1.100 )rl m 

5  0  / 2  0  
5

q  0  

6  0  / 2  0  
6

/ 2q   
4
( 0.230 )rl m 

L 2 0  0  0 0

 

6, Lx x

5z  

6rl  

4 5,x x

4rl  

4 6, , Lz z z  

4d  
3z  

3x  

3d  
2z  

2d  

2x  

1rl  

1x  

0z  

0x  

Spring  
balancer 

Lx  

- Lz  

 
Figure 1.  Link frame of the KR270 robot and picture of robot  

The support of payload and payload are shown on fig. 2 
 

Lx

- Lz

 
Figure 2.  The support of payload and payload of 175Kg 

B. Modeling of the spring balancer 

This robot has a spring balancer attached to the second 
joint. It is composed by a spring and induces a torque on the 
joint 2. This system compensates the gravity joint torques 
caused by the weight of robot links 2 to 6. The location of the 
system on the robots is shown in figure 1. 

The torque induced must be taken into account in the 
dynamic model of the robot to identify all parameters 
accurately. The kinematics of the spring balancer uses the 
MDH notation in order to compute the compensation torque 
applied on joint 2. The MDH parameters defining the spring 
balancer frames are given in table II and its kinematics are 
detailed in figure 3.   

TABLE II.  MDH PARAMETERS OF THE SPRING BALANCER 

j  ( )a j
j


j

  
j

d  
j

  
j

r  

21 20  0 0 
21

0.69 4( 6 )md   
21

q  0  

22 21 0 0  
22

0.18 7( 4 )md   0  0  

23 20  0 0  0  
23

q  0  

24 23  1  / 2 0  0  
24

rl  

21z  

22z  

20,23z  
24z  

24x  

23x  

21,22x  

20x  

22d  

  

21d  

23x  

21,22x  

24z  

24x  

20x  

24rl  

2q  

1F  
 21q  

23q  

 
Figure 3.  Frames of spring balancer of the KR270 robot 

The spring balancer applies a force 1F  on the body 2 in 

the direction 24z


, this force depend on the value  24 2rl q  : 

  
 

1 24 2 24min

24 2 0 0 4min

K

   K  with K

r Off

r Off r

F rl q rl K

rl q K K K rl

  

   
  (23) 

Where  /rK N m  is the stiffness of the spring,  0  K N  

is the force applied by the spring when 4 4minrl rl and 

  OffK N is an offset term. 

The compensation torque sb  applied on joint 2 depends 

on the force 1F :  
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 
  
  

22

22

22

1

1 2

1 2

cos

cos

sin

   90

   

sb F

F q

d

d

F dq







 

 



  (24) 

With: 

     23 22 212 90q qq q q     (25) 

Consequently, the values  221q q ,  4 2rl q  and  223q q  

must be expressed function of 2q .  

The angle  223q q  depends directly of 2q : 

21 2  with 1.6148 (rd)q q       (26) 

With   is the value 21q  when 2 0q  . 

To compute  4 2rl q  and  223q q , it is necessary to 

compute  20
22T  and 20

24T : 

 
 

21 22 21
20

20 20
20 22 22

22 22 22 21 with 
0  0  0 1

cos

0

d d
A P

T

q

P d sin q

 
   


 
  


 
 

  (27) 

 
 

24 23
20

24

20 20
20

24
24

23
24

24  with 
0  0  0 1

cos

0

rl
A P

T

sin q

P rl q

 
   


 
  


 
 

  (28) 

The mark position 22R  is identical to the position of the 

marker 24R  relative to the reference 20R , so: 

20 20 20 20
22 24 22 24, P P P P    (29) 

From equations (27), (28) and (29), : 

     2 22
24 21 22 21 22 21cos sinrl d d q d q     (30) 

   
 

 
 

23 21 22 21
23

23 22 21

sin cos
tan

cos sin

q d d q
q

q d q


     (31) 

 4 2rl q  and   223q q  are calculated from equations (26) , 

(30) and (31): 

    
1

2 2 2
24 2 21 22 21 22 22 cosrl q d d d d q      (32) 

   
 

21 22 2
23 2

22 2

cos
atan

sin

d d q
q q

d q




  
    

  (33) 

The gravity compensation torque sb  is expressed in 

terms of rK and 0K : 

       24 2 0222 2 22sin sinsb rK rl q q K qd d      (34) 

The gravity compensation torque sb  can be expressed 

linearly to the parameters rK  and 0K : 

 

    
  

2

24

0

2

2 2

2 2 2

2

 
sin

sin
  

sb sb sb

T

r
d

IDM

d

q χ

rl q q K

Kq









   
    

   

  (35) 

This torque is included in the IDM (2) and stχ  is 

composed of standard dynamic parameters plus rK  and 0K : 

1..2 st 3..  

1 2 3with 

idm n st st

TT T T T T
st st st st stnsb

sbIDM IDM IDM χ

χ χ χ χ χ χ

    

   
 (36) 

VI. EXPERIMENTAL VALIDATION 

The global identification of spring balancer, dynamic 
parameters and joint drive gains of the Kuka KR270 robot is 
performed. The sample acquisition frequency for joint 
positions and current reference is 500Hz. The cut-off 
frequency of the decimate filter is fixed at 20Hz.  The mass 

LM has been weighed to 175(Kg). 
Only the relevant parameters are given in table III, the 

other parameters are not significant because their relative 
standard deviations are large. Identified parameters (SI Units) 

Parameter
s 

3
χ̂  3

ˆ
(%)

r


  χ
ap (%)e

1g -2.76 102 1.15 -2.99 102 8.33 
2g -4.27 102 1.35 -3.89 102 9.77 
3g -4.02 102 1.23 -3.67 102 9.54 
4g -2.95 102 1.42 -2.58 102 14.3 
5g -3.06 102 1.25 -2.58 102 18.6 
6g 2.15 102 1.32 1.83 102 17.4 

1RZZ  1.19 103 0.63   
1Fv 1.09 103 0.75   
1Fc 3.01 102 1.42   
2RXX  -6.23 102 1.38   
2RZZ  1.51 103 0.54   
2RMX  3.44 102 2.15   
2Fv 2.63 103 1.28   
2Fc 6.42 102 3.01   
2Off -1.53 102 1.98   

rK 5.04 104 3.9   
0K -7.85 104 2.1   
3RXX 9.96 101 5.6   
3RZZ 1.20 102 3.2   
3RMX 1.45 101 3.3   
3RMY -1.02 102 0.72   
3Ia 6.80 102 0.78   
3Fv 1.02 102 0.51   
3Fc 4.02 102 1.98   
4Ia 1.70 102 1.95   
4Fv 5.26 102 1.62   
4Fc 1.85 102 4.22   
5Ia 2.09 102 1.43   
5Fv 8.45 102 1.21   
5Fs 1.99 102 4.32   
6Ia 1.31 102 2.42   
6Fv 7.82 102 2.10   
6Fc 3.05 103 5.56   
LMZ  -3.83 101 1.81   

LM  1.75 102 -   

 

The mean relative error e between the identified and 

manufacturer's values of ĝ is 13%. It is important error and 
it shows the importance of the identification of joint drive 
gains.  

The spring balancer parameters are well identified with 
low relative standard deviation with rK =5.04 104  (N/m) and 

0K =-7.85 104 (N). 
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The identification of drive gains and spring balancer 
parameters allows to perform an accurate dynamic 
identification of robot.  

VII. CONCLUSION 

In this paper, the global identification of a 6 DOF heavy 
industrial robot was performed. The identification of drive 
gains, spring balancer parameters, dynamic parameters was 
performed. A modeling of its spring balancer was proposed 
and it is relevant for identification. The IDIM-TLS method 
can be used on heavy industrial robot without manufacturer 

modeling and parameters of spring balancer to get accurate 
identification of joint drive gains and dynamic parameters.  
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