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Abstract—In recent years, researchers have been exploring
alternative methods to solving Integer Prime Factorization, the
decomposition of an integer into its prime factors. This has
direct application to cryptanalysis of RSA, as one means of
breaking such a cryptosystem requires factorization of a large
number that is the product of two prime numbers. This paper
applies three different genetic algorithms to solve this issue,
utilizing mathematical knowledge concerning distribution of
primes to improve the algorithms. The best of the three genetic
algorithms has a chromosome that represents m in the equation
prime = 6m ± 1, and is able to factor a number of up to 22
decimal digits. This is a significantly larger number than the
largest factored by comparable methods in earlier work. This
leads to the conclusion that approaches such as genetic algorithms
are a promising avenue of research into the problem of integer
factorization.

Index Terms—Genetic Algorithms; Cryptanalysis; Integer Fac-
torization; Public-key Cryptography.

I. INTRODUCTION

Integer factorization is a fundamental problem that re-
searchers have been exploring for centuries, and that plays
a vital role in asymmetric key cryptography. This security
protocol ensures that only the intended recipient of a message
can understand it. This is described further in Section II. One
of the most widely used examples of this protocol is the RSA
cryptosystem [13].

Over recent years, there have been multiple different ap-
proaches proposed to solve the problem of integer factor-
ization. These approaches can be divided into three main
categories: special, general and alternative [15] [9]. Special
approaches take advantage of certain number structures which
will make the results more efficient. The general approach
focuses on solving the problem of integer factorization on any
type of number. The alternative approach focuses on a different
way to solve the problem altogether. This usually involves
some kind of computational intelligence algorithm such as a
genetic algorithm (GA), neural network, firefly algorithm, or
particle swarm intelligence.

This paper suggests an alternative approach to solving
the issue at hand using genetic algorithms. We develop and
utilize three different versions of a genetic algorithm, each
of which includes changes and/or additional enhancements to
try to achieve better results more quickly. The first version,

the Simple GA, uses the general ideas found in [15], but
changes the chromosome representation and fitness function.
The second version, the “Chromosome is m” GA, incorporates
a special structure that all prime numbers follow. Finally, the
Primality GA requires all chromosomes to pass a test as being
“probably prime”.

The remainder of this paper is structured as follows. Back-
ground information on cryptography, the RSA cryptosystem,
integer factorization, genetic algorithms, and genetic algo-
rithms applied to cryptanalysis are found in Section II. This is
followed by a brief summary of recent research in which other
alternative approaches were applied to the problem of integer
factorization in Section III. Section IV provides details on the
three different genetic algorithms proposed in this paper. The
paper will go on to present the findings for each version of the
GA in Section V. Subsequently, we will discuss the limitations
that were faced with these GAs in Section VI. Finally, the
conclusion will be presented in Section VII, and some ways to
expand and move forward with this research will be discussed
in Section VIII.

II. BACKGROUND INFORMATION

A. Cryptography

The main objective of cryptography is to enable two people,
often called Alice and Bob, to communicate over an insecure
channel, while ensuring that their opponent, often called Oscar,
cannot understand their communication. If Alice wishes to
send a message to Bob then she transforms the original
message, the plaintext, into ciphertext via encryption prior to
sending the message. When Bob receives the ciphertext he
transforms it into the original plaintext via decryption.

In a symmetric key cryptosystem, a single key is used for
encryption of the message. Security is dependent on Alice
and Bob agreeing on the key ahead of time and keeping it
secret, as the same key is also used for decryption. This is
a significant downfall of this type of system. An asymmetric
key cryptosystem, also known as a public key cryptosystem,
is one that uses different keys for encryption and decryption.
The encryption key is made public, while the decryption key
is kept private. If Alice (or anyone) wishes to send a message
to Bob then she uses Bob’s public key to encrypt the message,
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and as only Bob knows his private key only he can accomplish
the decryption.

It is to be noted that asymmetric key cryptosystems do not
provide unconditional security. Rather, they provide compu-
tational security via the use of a trapdoor one way function:
the encryption algorithm must be easy to compute, while the
decryption algorithm (its inverse) must be hard to compute.
Essentially the only way anyone can easily compute the
decryption rule is if they have the secret piece of the puzzle,
which is included in the private key.

B. RSA Cryptosystem

RSA (Rivest-Shamir-Adleman) [13] is probably the most
widely-known asymmetric key cryptosystem. The security pro-
vided by RSA is due to the ease of multiplying large primes,
and the difficulty of factoring large semi-primes (numbers that
are the product of two primes). More information on this is
given in Section II-C.

RSA has the following keys:

• Public Key - (N, b)
• Private Key - (p, q, a)

For the above, N is a large semi-prime, p and q are large prime
numbers such that p ∗ q = N and (p− 1) ∗ (q − 1) = φ(N),
and a and b are integers such that ab mod φ(N) = 1 and
1 < b < φ(N).

The encryption and decryption rules are, respectively:

ek(x) = xb mod N (1)

dk(y) = ya mod N (2)

where x is the plaintext and y is the ciphertext.
It is evident from the equations above that the public is

missing a main component of the decryption rule, namely the
integer a. There are a couple of different attacks on RSA which
can lead to computing a. Firstly, we could try computing
φ(N). But the most common attack on RSA is factoring N
to find p and q. From here we can compute φ(N), and then
a, since the public already knows b. This is the attack we use
in the current study: namely, we use genetic algorithms to try
to factor N and thereby break the public key cryptosystem.

C. Integer Factorization

The basic principle behind why RSA is suitable as an
asymmetric key cryptosystem relies on the fact that p∗q is easy
to calculate, but decomposing N (which is public) into p and
q is exceptionally difficult for large N . For example, if p = 23
and q = 11, then N is easily evaluated to be 253. But finding
the prime factors of 253 is significantly harder to calculate.
Factoring N is especially difficult in this case because it is
a semi-prime, whose only factors are 1, N , and two prime
numbers p and q. It should be noted that although integer
factorization is extremely difficult, it has not been proven to
be NP-Complete.

III. PREVIOUS WORK

Cryptanalysis is the process of converting ciphertext into
plaintext without being given the decryption key. This process
would be aiding Oscar, the “opponent” attempting to read the
messages of Alice and Bob.

Various computational intelligence approaches have been
used for cryptanalysis, although much of the work in this area
has been applied to classical ciphers – those that have been
proven to be insecure, and therefore are not in wide use at the
present time. These include ciphers such as the substitution
cipher [10], the Purple cipher [14], Substitution Permutation
Networks (SPN) [1], the Tiny Encryption Algorithm (TEA)
[6], and the RC4 Stream cipher [4]. The genetic algorithm
applied to the RC4 cipher was a success, as it greatly improved
on the complexity for theoretical attacks [4]. The genetic
algorithm applied to the Tiny Encryption Algorithm resulted in
the conclusion that keys that were comprised of more random
words, and keys that were comprised of all-one-bit words were
more resilient to the attack [6].

In [1] a genetic algorithm was used as a means of finding
weak keys for the Substitution Permutation Network cipher.
It was concluded that applying GAs to cryptanalysis may be
necessary to identify weak keys and therefore make the ciphers
more secure, as anyone with reasonable computing power can
run a GA and thereby break it if a weak key was used. It was
also suggested that GAs should be applied to non-classical
ciphers to unveil their true potential in this field [1].

Along these lines, recently genetic programming (GP) was
used for improved cryptanalysis of elliptic curve cryptosys-
tems [12]. These are public-key cryptosystems that are reliant
on the difficulty of the elliptic curve discrete logarithm prob-
lem. In the study, GP was used to speed up a component of a
well-known algorithm for solving this problem.

A. Computational Intelligence for Integer Factorization

As described in Section II-B, one means of attacking RSA
is to factor the value N , a semi-prime which is part of the
public key.

Integer factorization has been a fundamental problem in
mathematics and computer science for centuries. Recently,
some researchers have used bio-inspired algorithms to try
to solve this problem. Some examples of studies applying
alternative approaches such as GP and neural networks include
[2], [3] and [7]. Some more recent papers will be discussed
in more depth in the following subsections.

1) Yampolskiy, 2010 [15]: This paper applied a genetic al-
gorithm to integer factorization. The chromosome represented
the two primes p and q that produce the integer N = p∗q to be
factored. The chromosome was chosen to be the same length
as the decimal representation of N . The two primes p and q
were assumed to each have length no more than half the length
of N . Therefore, the first half of the chromosome was the
decimal value of p, and the second half was the decimal value
of q. The chromosome had the makeup shown in Equation 3.

[p1p2p3p4p|N |/2q1q2q3q4q|N |/2] (3)



The fitness function measured the similarity of the product
produced by multiplying p and q from the chromosome and
N using parity: if N were m decimal digits long then the best
fitness value that could be assigned to the chromosome would
be m, meaning that all m digits of the product produced from
the chromosome matched with N , and therefore the correct p
and q have been found. However, a lot of local minima may
also occur: this would happen if the product produced by p
and q from the chromosome is only one digit off from N .

The best result achieved in [15] was the factorization of a
twelve digit semi-prime (103694293567 = 143509 ∗ 722563),
taking a little over six hours.

2) Mishra, Chaturvedi, and Pal, 2014 [8]: In this paper, the
application of a multi-threaded bound varying chaotic firefly
algorithm was applied to the problem of integer factorization
[8]. The firefly algorithm is inspired by the behaviour of
fireflies. This algorithm too has a fitness function, and the
fireflies are attracted to each other based on their brightness.

This algorithm was tested on ten different test sets.
The largest number tested was 51790308404911 (5581897 ∗
9278263), which has 14 digits (46 bits). The success ratio of
factoring this number with their algorithm was 80 − 100%,
depending on the number of fireflies used.

3) Mishra, Chaturvedi, and Shukla, 2016 [9]: This paper
used a heuristic algorithm based on molecules to try to
solve the problem of integer factorization [9]. This is an
algorithm inspired by the arrangement of a group of atoms
in a space where the inter-atomic forces are close to zero. In
this algorithm there is an energy function, a force function and
a movement function to determine potential solutions.

The longest number tested with this algorithm was also
51790308404911 (5581897 ∗ 9278263), as in [8]. The success
rate given by the algorithm with this number was 69%. The
authors also compared their results to a random search algo-
rithm. The largest number the random search algorithm was
able to factor was the 11 digit (35 bit) number 42336478013,
at a success rate of 4%.

IV. METHODS

This section provides details on the three genetic algorithms
we use in our work. There are a few attributes that all
three genetic algorithms have in common, and that were kept
constant throughout the paper. For one, the population size
was arbitrarily chosen as 2000, and stays consistent throughout
the study. This means that there will be 2000 chromosomes,
each representing possible solutions, in a single population.
Secondly, the maximum number of generations chosen is
also 2000; this means the genetic algorithms will continue
running until the correct answer has been found, or until 2000
generations have been reached. Finally, the selection method
used in all three versions is tournament selection of size 3.

A. Simple Genetic Algorithm

Our first GA is adapted from the work in [15].

1) Chromosome Representation: Notice that there is no
requirement to represent both p and q in the chromosome as in
[15]. Therefore our chromosome represents only one of these
two primes. As N = p ∗ q, if we know one of the primes
then we can easily find the other by dividing N by the known
prime. This will allow the length of the chromosome to be
half the size of N.

Another minor change is that the chromosome is represented
in binary instead of decimal, for the purposes of easy manip-
ulation. Therefore, letting Nb be the binary representation of
N , the chromosome has the makeup shown in Equation 4a if
|Nb| is even and 4b if |Nb| is odd.

[1p2p3...p |Nb|
2

] (4a)

[1p2p3...p |Nb|+1

2

] (4b)

Note that we assume that the prime divisors (p and q) are
each no more than half the length of N when represented in
binary form (in decimal, the lengths may still differ slightly).

Also notice that the left-most bit (p1) in the chromosome
is always set to one. This is done purposefully, so that the
GA does not converge to a solution of zero and to ensure that
the initial population is randomized around the median of the
search space.

Some care must be taken with these points. When choosing
p and q for an RSA cryptosystem one should generally avoid
small values, so as to make factoring more difficult. Indeed,
the original RSA paper suggests that both p and q should
“differ in length by a few digits” (this for numbers of roughly
100 digits each) [13]. Our chromosome helps to ensure these
requirements but some flexibility could be incorporated to
allow for a wider range.

Our chromosome representation helps find the solution more
quickly. In [15], when the chromosome goes through crossover
and mutation both primes are changed: if one of the primes
was correct but the other one was not, then the correct answer
is not identified. Our chromosome represents only one prime,
so this is the only one ever changed and this problem is not
encountered: if the chromosome equals one of the two primes
(say p) then it evenly divides N by the other prime (q) and so
we are able to identify that we have found the correct answer.

2) Fitness Function: Due to the different chromosome
representation, the fitness function is also changed. Our fitness
function judges the fitness of the chromosome by remainders.
Given the potential solution p in the chromosome, fitness is
calculated as shown in Equation 5:

fitness = N mod p (5)

Since N is a semi-prime, the only numbers that divide it
evenly are 1, N , and the two primes that we are trying to
find (p and q). Consequently, having a fitness of zero is the
best, and the lower the fitness value the fitter the chromosome.
There are also many numbers that would give a low remainder
(i.e. a low fitness value), creating a plethora of local minima.
This is shown in Figure 1.



Fig. 1: Search Space when N=2693*4051=10909343 (Data Set 1) in Simple GA

This is where mutation rate is useful. Because there are
many local minima, the mutation rate will have to be higher
than is normally used.

3) Initial Population: The initial population for the Simple
GA is created randomly. As was seen in Equation 4, the first bit
is always set as one, and the rest of the bits in the chromosome
are chosen randomly.

4) Crossover: This GA uses a two point crossover. This
works by choosing two random positions in the chromosome,
copying the values between the two positions to the respective
children, and then copying the other values of the chromosome
to the opposite child. This results in the creation of two
children.

5) Mutation: This GA handles mutation by choosing a
random position in the chromosome and changing its value. If
the value was 0, the mutation will change it to a 1, and vice
versa. It is important to note that the mutation is unable to
change the very first bit of the chromosome, as the leftmost
bit in the chromosome must always be equal to 1.

B. “Chromosome is m” Genetic Algorithm
Different properties of primes, semi-primes, and double-

primes are described in [5]. Among these is the property that
all primes p > 3 must satisfy the following equation for some
non-negative integer m:

p = 6m± 1 (6)

That is, p mod 6 = 1 or p mod 6 = 5. In [5] this is
demonstrated using a hexagonal integer spiral, with each prime
exclusively lying on the 6m+ 1 and 6m− 1 radical lines.

1) Chromosome Representation: It is important to note
that although all primes p > 3 must satisfy Equation 6,
there will also be many non-primes that satisfy it. It does,
however, significantly reduce the search space if this property
is used. To take advantage of this property, the chromosome
representation is modified to follow this structure. Specifically,
the chromosome now represents m in Equation 6. This ensures
that regardless of its value, multiplying by 6 and then subtract-
ing/adding 1 will give a number on the 6m − 1 and 6m + 1
radical lines. Note that the leftmost bit of the chromosome
is still always set to one. This aids in starting the genetic
algorithm around the median of the search space.

With this representation the length of the chromosome is
reduced, as it now represents either (p + 1)/6 or (p − 1)/6
for one of the prime factors p. Since the chromosome is
represented in binary, there is no easy way to divide the length
by 6 exactly. Instead, the length is divided by 4 by subtracting
two digits from the chromosome representation if the binary
length of N is even, and subtracting three if the binary length
of N is odd.

2) Fitness Function: The fitness function is essentially the
same as in the Simple GA, as given in Equation 5, although
more processing is done before evaluating fitness.

Since the chromosome represents m in Equation 6, we
have two possible answers that may be represented by the
chromosome: either 6m + 1 or 6m − 1. In fact we test the
fitness of both of these solutions and choose the one with the
best fitness.



3) Initial Population: The process of generating the initial
population of chromosomes (or m’s) is the same as in the
Simple GA. The leftmost bit is set to 1, and the rest of the
bits are chosen randomly to be either 1 or 0.

4) Crossover: Crossover is the same as in the Simple GA.
5) Mutation: Mutation is the same as in the Simple GA.

C. Primality Genetic Algorithm

Primality testing is the last enhancement added. The goal is
to restrict the search space even further, in the hope of finding
the answer in earlier generations. To do so, we use the function
isProbablyPrime from the Java BigInteger class. According
to the Java Documentation [11], this function “returns true
if this BigInteger is probably prime, false if it’s definitely
composite”.

The hope is that this test will return true for all chro-
mosomes so that we are only considering prime numbers as
possible solutions.

1) Chromosome Representation: The chromosome repre-
sentation is the same as in the previous version, i.e. the binary
representation of the integer m in Equation 6.

2) Initial Population: The initial population is created
randomly. Since we want the number represented by the
chromosome to pass the primality test, before we push the
chromosome to the population we make sure that for chromo-
some value c, either 6 ∗ c+1 or 6 ∗ c− 1 passes the primality
test. If not then we randomly generate the chromosome again.
This process is repeated until we have 2000 chromosomes that
passed the primality test in the population.

3) Crossover: The crossover procedure is still two point
crossover. To make sure the children produced by crossover are
probably prime, we also run the result through the primality
test. However, it is possible that no matter what two positions
of the parents are chosen, the children created by two-point
crossover will not pass the primality test. Therefore, in order
to avoid an infinite loop, the crossover procedure is only
allowed to run up to a set maximum, equal to the length of
the chromosome multiplied by 2.

The procedure is essentially as follows. Choose two lo-
cations and perform two-point crossover on the parents to
produce the two children. If both children pass the primality
test, then the two children are added to the new population,
and the crossover function is complete. If the two children do
not pass the primality test, then repeat the process using the
same parents but two different locations. This continues until
the maximum allowed number of attempts is reached, at which
point we use the children that were produced even if they did
not pass the primality test.

4) Mutation Procedure: Mutation acts very similarly to
crossover, and is essentially the same procedure as in the
previous versions of the GA. However, it is run for a maximum
number of iterations, equal to the length of the chromosome. If
the mutation causes the chromosome to pass the primality test,
then the chromosome is finalized. If the mutation causes the
chromosome to not pass the primality test, then the mutation

is reversed, and the procedure is repeated on the same chro-
mosome. This continues until a mutation passes the primality
test or the mutation procedure has failed chromosomeLength
times, in which case the mutation is accepted anyway.

V. RESULTS

Each of the three genetic algorithm versions were run for up
to 16 data sets of N . Data sets 1 to 8 were replicated from the
data sets used in [8]. The rest of the data sets were generated
randomly by picking two prime numbers of equal length and
multiplying them together to obtain a semi-prime. The results
for the Simple GA can be found in Table I, the results for the
“Chromosome is m” GA can be found in Table II, and finally
the results for the Primality GA can be found in Table III. It
is important to note that if the the correct prime was found
only x times out of 30, then the average generation is the sum
of the generations the correct prime was found divided by x.

A. Simple GA

Preliminary tests were run to choose the crossover and
mutation rates. These tests indicated that a crossover rate of
50% and a mutation rate of 100% worked best for this GA.

The simple GA performed the worst out of the three
versions. The largest number it was able to factor was
10380088039872631 (101858333 ∗ 101907107), a 17 decimal
digit number, and even this took an average of 1564 genera-
tions. However, this GA did outperform the GA in [15], which
as a best result was able to factor the 12 decimal digit number
103694293567 (143509 ∗ 722563). In comparison, our simple
GA is able to factor a 12 decimal digit (about 38 bit) number
100 per cent of the time, with an average of 291 generations.
This suggests that the changes made to the chromosome and
the fitness function returned favourable results.

Comparing the results to those obtained using the molecule
algorithm in [9], the simple GA had a lower success rate for
data set 8. Using the molecule algorithm, the success rate of
data set 8 (N = 51790308404911) was 69%. Using the simple
GA, the success rate was 47%. However, the average number
of iterations/generations was lower with the simple GA: the
average number of iterations in the molecule algorithm was
2154.5, while the GA found a correct prime in an average of
661 generations.

The results reported in [8] using the firefly algorithm out-
performed the simple GA. When the firefly population was set
to 1000, [8] reported a success rate of 100% with an average
iteration of about 419 for data set 8 (N = 51790308404911).
These results are better than the results obtained with the
Simple GA with the same N .

B. “Chromosome is m” GA

Preliminary tests were run to choose the crossover and
mutation rate. These tests indicated that a crossover rate of
100% and a mutation rate of 100% worked best for this GA.

Using Equation 6 allowed this GA to achieve everything that
it was supposed to achieve. The number of local minima was
significantly reduced in comparison to the simple GA. Also,



TABLE I: Test Cases Applied to the Simple GA. Crossover Rate = 50%, Mutation Rate = 100%

Data Set N Digits Bits p q Success Rate Min Generation Max Generation Average Generation
1 10909343 8 24 2693 4051 30/30 0 4 0
2 29835457 8 25 4001 7457 30/30 0 18 3
3 392913607 9 29 17911 29137 30/30 0 16 3
4 5325280633 10 33 57731 92243 30/30 0 266 55
5 42336478013 11 36 174169 243077 30/30 2 201 55
6 272903119607 12 38 374989 727763 30/30 2 1244 291
7 11683458677563 14 44 2595899 4500737 25/30 13 1954 732
8 51790308404911 14 46 5581897 9278263 14/30 21 1920 661
9 115137038087959 15 47 10037141 11471099 18/30 221 1988 1093
10 8335465900089539 16 53 90745723 91855193 1/30 1349 1349 1349
11 10380088039872631 17 54 101858333 101907107 1/30 1564 1564 1564
12 253422413591685001 18 58 501900991 504925111 0/30 - - -
13 1160633764479964633 19 61 1004922797 1154948189 0/30 - - -
14 31625125947164338313 20 65 3510002059 9010002107 0/30 - - -
15 454367322351811534933 21 69 13545006127 33545006779 0/30 - - -
16 4500000514520012390279 22 72 50000003993 90000003103 0/30 - - -

TABLE II: Test Cases Applied to the “Chromosome is m” GA. Crossover Rate = 100%, Mutation Rate = 100%

Data Set N Digits Bits p q Success Rate Min Generation Max Generation Average Generation
1 10909343 8 24 2693 4051 30/30 0 0 0
2 29835457 8 25 4001 7457 30/30 0 0 0
3 392913607 9 29 17911 29137 30/30 0 3 0
4 5325280633 10 33 57731 92243 30/30 0 7 1
5 42336478013 11 36 174169 243077 30/30 0 50 12
6 272903119607 12 38 374989 727763 30/30 1 751 216
7 11683458677563 14 44 2595899 4500737 30/30 1 1309 415
8 51790308404911 14 46 5581897 9278263 27/30 2 1913 835
9 115137038087959 15 47 10037141 11471099 29/30 0 1504 548
10 8335465900089539 16 53 90745723 91855193 5/30 2 1316 569
11 10380088039872631 17 54 101858333 101907107 10/30 106 1974 1100
12 253422413591685001 18 58 501900991 504925111 2/30 1080 1801 1440
13 1160633764479964633 19 61 1004922797 1154948189 1/30 1276 1276 1276
14 31625125947164338313 20 65 3510002059 9010002107 0/30 - - -
15 454367322351811534933 21 69 13545006127 33545006779 0/30 - - -
16 4500000514520012390279 22 72 50000003993 90000003103 0/30 - - -

when comparing the average generations from the simple GA
in Table I to the “Chromosome is m” GA in Table II, it is
evident that this GA on average took fewer generations to find
one of the correct primes. For data sets 1–5, the “Chromosome
is m” GA found a correct prime in an average of no more
than 12 generations. In comparison, for the same data sets the
Simple GA needed an average of up to 55 generations.

This GA was also able to factor a larger N . This is evident
by looking at the largest number the two GAs were able to
factor 100% of the time. The simple GA was only able to
factor up to data set 6, which is a 38 bit number, 100% of the
time, while the “Chromosome is m” GA was able to factor up
to data set 7, a 44 bit number, 100% of the time.

The “Chromosome is m” GA was the best performing GA
in factoring large semi-primes. It was able to factor a 19
decimal digit semi-prime 3.3% (1/30) of the time. Of course,
this required a high number of generations since the larger the
semi-prime the more prime numbers are in the search space.

C. Primality GA

Again, preliminary tests were run to select a good crossover
and mutation rate. These indicated that a crossover rate of 50%
and mutation rate of 95% was best for this GA.

Looking at the results in Table III, it can be seen that the
GA did, overall, find a correct prime number earlier in the

evolution. Most of the average generations for each data set
were less than 35, and there was only one data set (data set 6)
in which the average number of generations to find a correct
prime was greater than 35. However, the minimum generation
for this data set was also 0. This gives reason to believe that
the average was over inflated due to one or two runs with a
higher than normal maximum generation.

Consequently, these results were also met with a tremendous
increase in execution time. Completing 2000 generations for
Data Set 8 on an Intel Core i5-4590 processors (quad core
3.30Ghz) with 8GB of RAM, the Primality GA took an
average of 6m40s, whereas the Simple GA and “Chromosome
is m” GA took an average of 5.3s and 6.2s respectively; for
successful runs, there was a reduction in runtime proportional
to the generation at which the answer was found. The Primality
GA took significantly more time as N increased due to the
many times the GA had to repeat an operation.

Unfortunately, the addition of the primality test also hin-
dered the length of N that the GA was able to factor. The
largest number factored with a success rate of 100% was
data set 5 (N = 42336478013). This is possibly because the
additional restriction on the search space was too severe.

The largest number that was factored by this GA was data
set 11 (N = 10380088039872631), a 54 bit number, with
a success rate of 6.7% (2/30). It is notable that data set 10



TABLE III: Test Cases Applied to the Primality GA. Crossover Rate = 50%, Mutation Rate = 95%

Data Set N Digits Bits p q Success Rate Min Generation Max Generation Average Generation
1 10909343 8 24 2693 4051 30/30 0 0 0
2 29835457 8 25 4001 7457 30/30 0 0 0
3 392913607 9 29 17911 29137 30/30 0 1 0
4 5325280633 10 33 57731 92243 30/30 0 5 0
5 42336478013 11 36 174169 243077 30/30 0 29 10
6 272903119607 12 38 374989 727763 12/30 0 607 198
7 11683458677563 14 44 2595899 4500737 11/30 0 53 12
8 51790308404911 14 46 5581897 9278263 1/30 32 32 32
9 115137038087959 15 47 10037141 11471099 11/30 0 34 15
10 8335465900089539 16 53 90745723 91855193 0/30 - - -
11 10380088039872631 17 54 101858333 101907107 2/30 18 21 19
12 253422413591685001 18 58 501900991 504925111 0/30 - - -
13 1160633764479964633 19 61 1004922797 1154948189 0/30 - - -

was unable to have even one successful run out of 30. One
observation is that this is one data set in which one of the
factors is of the form 6m + 1 while the other is of the form
6m−1, while all other nearby data sets have either both factors
of the form 6m+1 or both of the form 6m− 1. It is possible
that this situation affected either the primality testing or the
resulting chromosomes in some way.

VI. LIMITATIONS

As can be seen in the results, at times the success rate
decreases and then increases in the next data set. This can
be seen in Table II for data sets 10 and 11, and again in Table
III for data sets 8 and 9. Upon further investigation we found
that there are some limitations to our GAs.

Recall that the left-most bit of the chromosome is always
set to one. Even throughout crossover and mutation, this bit
is never changed. Therefore, the GA is only searching for the
prime in the later half of the integer space made by the length
of the chromosome.

First consider data set 8. The number to be factored is
N = 51790308404911, which is 46 bits long. In the Simple
GA, the chromosome’s length would be (46/2) = 23 bits long
where the left-most bit is always equal to 1. Therefore, the
search space in binary would be 10000000000000000000000
to 11111111111111111111111, which in decimal form is
4194304 to 8388607. Looking at the known prime divisors,
we see that one of them falls within this range, namely
p = 5581897. For the “Chromosome is m” and Primality
GA the chromosome is shortened by 2 bits (since the original
binary length of N was even). Therefore the chromosomes in
these GAs would be 21 bits long: 100000000000000000000
to 111111111111111111111. Also, the chromosome must
go through Equation 6 to get the potential solutions first.
Therefore, the search space in decimal form is 6291455 to
12582907. This range again contains one of the correct prime
divisors, namely p = 9278263.

Now consider data set 9. The number to be fac-
tored is N = 115137038087959, which is 47 bits long.
In the Simple GA, the chromosome would be half this
size. This means the chromosome would be 24 bits long
((47+1)/2), and the search space for this semi-prime (in
binary) would be from 100000000000000000000000 to

111111111111111111111111, or 8388608 to 16777215 in
decimal form. Comparing this search space to the known prime
numbers, we see that both of the prime divisors (10037141
and 11471099) are in the search space. In the “Chromosome
is m” and Primality GA, the chromosome is wrapped in the
prime form shown in Equation 6. This means the chromosome
length is shortened by three bits, since the original length
of N is odd. Therefore the search space then becomes 21
bits: 100000000000000000000 to 111111111111111111111.
Before the chromosome is considered as a solution, we must
multiply the number by 6 and add/subtract one. Therefore, in
decimal form the search space is from 6291455 to 12582907,
and the two prime numbers (10037141 and 11471099) are both
within the search space again.

Knowing that a prime has the ability to not be in the search
space at all, the “Chromosome is m” GA was executed again,
this time with a value of N for which both prime factors were
in the search space of the GA. These results are in Table IV.

Even though the “Chromosome is m” GA did not suc-
cessfully factor a 19 decimal digit number when both of the
primes were in the search space, it did successfully factor a 22
decimal digit number, as can be seen in Table IV. In general,
however, the search space is too large for this GA when N has
19 or more digits. It is important to consider other possible
representations and other means of reducing the search space
to attack larger numbers.

VII. CONCLUSIONS

In conclusion, the area of applying a genetic algorithm to
the problem of integer factorization, and thereby breaking RSA
cryptosystems, is promising. It is clear that certain biases have
a huge impact on the results of the GA, and by adding more, or
exchanging some biases with stricter biases, the results could
be improved further. The “Chromosome is m” GA had the
best result out of the three versions, with its current best result
being able to factor a 22 decimal digit number. This required
a total of about an hour over the 30 runs (i.e. on average 2
minutes per run). In comparison to previous related work that
used computational intelligence approaches for factorization,
this is a significant improvement: the largest number factored
in [15] had 12 digits while the largest number factored in both
[8] and [9] had 14 digits.



TABLE IV: Test Cases of N when both primes are in the search space using “Chromosome is m” GA. Crossover Rate =
100%, Mutation Rate = 100%

Data Set N Digits Bits p q Success Rate Min Generation Max Generation Mean Generation
1 10380088039872631 17 54 101858333 101907107 16/30 70 1987 880
2 250002103000012609 18 58 500000003 500004203 2/30 229 1054 641
3 1188648832703065339 19 61 1090000523 1090502993 - - - -
4 50552160235930852127 20 66 7110001573 7110006899 - - - -
5 109408697578482829907 21 67 10405004609 10515007123 - - - -
6 3381755902745713031047 22 72 52015006073 65015005493 1/30 251 251 251

It should be noted that although this work showed promise,
and made significant steps in comparison to related work, it
is still not close to being able to factor numbers in the range
required by RSA cryptosystems to be considered secure, as
these have hundreds of digits. Of course, such numbers are
also a significant challenge even for specialized programs, as
these require hundreds or thousands of years of computation.

VIII. FUTURE WORK

The results of this algorithm are very promising, however,
there is room for improvement. The next steps would be
to introduce more bias, and also try to incorporate further
mathematical properties and knowledge about primes, semi-
primes and double-primes such as those discussed in [5].
These properties may give more insight about ways to reduce
the search space. It is also definitely worthwhile to further
experiment with GA parameters such as population size and
mutation rate, including variations for different data sets.

Another way to expand or move forward with this research
would be to find a way to reduce the size of the chromosome.
The results showed that when moving from the simple GA
to the “Chromosome is m” GA, the reduction in size of the
chromosome led to successful factorization of longer numbers,
and also more reliable results overall. This shows that the
length of the chromosome may have a dramatic impact on
the length of N that can be factored by the GA. It would be
worth while to try to reduce the size of the chromosome even
more by considering alternate representations, e.g. decimal.

Another avenue to be pursued is to further investigate the
nature of which semi-primes (of similar length) are easier or
harder to factor for the GAs. This may lead to the possi-
ble identification of characteristics of such semi-primes that
indicate that they are weak keys and should be avoided as
selection for RSA because they are susceptible to attack by
such methods [1].

Lastly, the current way the chromosome is being generated
always has the leftmost bit equal to 1. As we saw in Section
VI, this may be the cause of some semi-primes not being
factored as effectively as other semi-primes of the same length.
It may be valuable to experiment with the idea of allowing one
or more extra bits in length, and then enforcing only that at
least one of the first few (i.e. leftmost) bits have a value equal
to 1. This could include possibly having a function that decides
whether the value of one of these should be a one or not: if
it is decided that the left-most bit should be 0, should the
second left-most bit be 1? This can also be adapted to the GA

itself. If after x generations the correct answer is not found
with 1 as the left-most bit, then refresh the entire population
with a different configuration in the leftmost bit(s) to see if
the correct prime can be obtained.
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