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Many studies have been undertaken to develop and analyze the combination of results from 

different classifiers for a better result than using each individual classifier [1-2]. Most decision 

fusion approaches mainly focus on supervised classifiers as base learner, i.e., all classifiers need 

training, so the classification results can only be as good as training data. To avoid the possible 

negative influence from the limited quality of training data, it is motivated to propose a method 

that can combine supervised and unsupervised classifiers.

In general, a supervised classifier can provide better classification than an unsupervised 

classifier. In addition to training data limitation, a supervised classifier may result in over-

classification for some homogeneous areas. An unsupervised classifier, although it may be less 

powerful, it can generally well classify those spectrally homogeneous areas. Thus, fusing 

supervised and unsupervised classification may yield better performance since the impact from 

trivial spectral variations may be alleviated and the subtle difference between spectrally similar 

pixels may not be exaggerated. Although individual classifiers are pixel-based, the final fused 

classification has a similar result to an object-based classifier [3]; however, the overall 

performance using classifier fusion is less sensitive to region segmentation result.      

In our previous work, we presented a majority-voting (MV)-based decision fusion for 

support vector machine (SVM) and Kmeans clustering results, which are typical supervised and 

unsupervised classifier, respectively [4]. After classification is completed by both classifiers, the 

Kmeans-based classification is deployed on the SVM-based classification as region segmentation. 

Spatially adjacent pixels grouped by the Kmeans clustering are re-classified using the majority-

voting rule by considering the SVM classification result. In other words, all the pixels in each 

local segmented region are classified into the same class, which is the class that most pixels 

belong to using the SVM-based decision. The same idea was independently proposed by other 

researchers in [5]. 



In this paper, we will investigate several different unsupervised classification methods and 

present the performance difference. In particular, we propose a new decision rule, which is 

Mahalanobis distance-based weighted majority voting (WMV). Its basic idea is that pixels in the 

same segment should play different roles on the final decision; a pixel with smaller distance to 

the cluster centriod is more important and should be assigned a high weight, while a pixel more 

different from the centriod has a low weight. The assigned weight is the inverse of the 

Mahalanobis distance between the pixel to the centroid. The concept is illustrated in Fig. 1. In 

Case I, there are two Class I pixels and two Class II pixels in the same cluster; in MV rule, this 

will come to a draw, and the output can be either Class I or Class II. However, if using the WMV, 

the total weight for Class I is 1 1 3
1 2 2

, the total weight for Class II is 1 1 2
3 3 3

, and 3 2
2 3

;

so the final output of WMV is Class I, which is reasonable. In Case II, there are two Class II 

pixels and one Class I pixels. The MV rule will give Class II as output, while the WMV rule will 

get 21
3

, resulting in Class I as the final output.
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Figure 1: Majority Voting Rule versus Weighted Voting Rule.

The hyperspectral data used in the experiments was taken by the airborne Hyperspectral 

Digital Imagery Collection Experiment (HYDICE) sensor. It was collected for the Mall in 

Washington, DC with 210 bands covering 0.4-2.4 m spectral region with approximately 2.8m 

spatial resolution. The water-absorption bands were deleted, resulting in 191 bands. The original 

image was cropped into a subimage with 266 × 304 pixels as shown in Fig. 2 in pseducolor. It 

includes seven classes: {road, grass, water, shadow, trail, tree, roof}. The test set has 418 



samples and the training set 5516 samples. Fig. 3(a) shows the classification result using SVM. 

Compared with Fig. 2, we can see that there are some misclassifications among roof, trail, and 

road pixels as well as among shadow, road, and water pixels. Fig. 3(b) is the Kmeans 

classification map, containing obvious misclassifications between roof and trail and between 

shadow and water pixels. However, the Kmeans output consists of larger homogeneous areas. 

Fig. 3(c) is the MV-based fused decision, where the improvement in roof regions was significant. 

However, the trail area around the water pond was misclassified. This area was corrected in Fig. 

3(d) using WMV. In addition, the pixels in blue, which were shade pixels being misclassified 

into water in Fig. 3(c), were also corrected in Fig. 3(d). Table I lists the classification results 

from eight unsupervised methods in fusion with SVM, where Kmeans (L1), fuzzy Kmeans, and 

ISODATA are among the best three methods. Using WMV, the classification performance was 

improved in most cases compared to MV.  

Figure 2:  A subimage used in the experiment. 
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Figure 3:  Classification results using SVM+Kmeans (with similarity metric L1). 

In conclusion, we propose a weighted decision fusion approach for supervised and 

unsupervised classifiers. The final output can take advantage of the power of the SVM-based 

classification in class separation and the capability of a unsupervised classifier in reducing the 

impact from intraclass variations in spectrally homogeneous regions. This approach improves the 



performance of the MV decision rule. The final output is also dependent on the unsupervised 

classifier selected. Kmeans (L1), fuzzy Kmeans, and ISODATA are robust, while Kmeans (L2) 

may not be a good choice since it may be too sensitive to the change of the norm of a pixel 

vector.

TABLE I

CLASSIFICATION PERFORMANCE BEFORE AND AFTER DECISION FUSION

AA OA pa Kap
SVM .36% 4.00% % 93 9 92.74

MV M M WMV MV VW V V WM

SVM+Kmeans (L1) 94.42 97.17
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