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Close-Range Camera Calibration

A photo test field consisted of a series of plumb lines whose images, because
of their lack of straightness, permitted an analytical determination of lens
distortion which, in addition to the usual concept,

varies also with object distance.

INTRODUCTION

ONE OF THE specialized activities at DBA

Systems over the last eight years has
been the application of close-range photo-
grammetry to the very precise measurement
of structures, particularly parabolic an-
tennas. This has led to the development of a
body of highly refined photogrammetric tech-
nique, the foundations of which were set
in Brown (1962). The current state of this
body of technique is reviewed by Kenefick
(1971) in a paper scheduled for a subsequent

sufficient if the distortion is calibrated for two
distinct focal settings, for then the distortion for
any other setting can be computed from theory.
Thus, even though the distortion function may
be known from a stellar calibration, the problem
remains of calibrating distortion for at least one,
and preferably two (the second to serve as a
check), well spaced, finite focal settings.

In elaborating on this matter, we shall present
developments which have been successfully
employed at DBA Systems for almost a
decade, but which, for proprietary reasons,
have not hitherto been disclosed.

ABSTRACT: For highest accuracies it is necessary in close range photogrammetry
to account for the variation of lens distortion within the photographic field. A
theory to accomplish this is developed along with a practical method for calibrat-
ing radial and decentering distortion of close-range cameras. This method, the
analytical plumb line method, is applied in an experimental investigation lead-
ing lo confirmation of the validity of the theoretical development accounting for
variation of distortion with object distance.

issue. Our concern in the present paper is with
one specific aspect of close-range photo-
grammetry, that of camera calibration. In
particular, we shall be concerned with the
variation of distortion within the photo-
grammetric model. This becomes a considera-
tion of increasing importance as magnification
increases. The essence of the problem as
pointed out in Brown (1962) is as follows:
Radial distortion is normally calibrated at
infinity focus. Accuracies of +2 microns rms
or better for the distortion function are not
difficult to obtain from a rigorous stellar calibra-
tion. . . However, optical ray tracing theory tells
us that Gaussian radial distortion is a function
of object distance. Thus when the focal plane is
set for a sensibly finite object distance, it is
necessary to employ the distortion function
appropriate to that distance. Actually, it is

* Presented at the Symposium on Close-Range
Photogrammetry, Urbana, Illinois, January 1971.
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EXTENSION OF MAGILL'S MODEL

Magill (1955) derived and experimentally
verified a formula which accounts for the
variation of distortion with changing focus.
Magill’s result can be expressed as follows.
Let:

f=focal length of lens,
s =distance of object plane for which lens is
focussed,
ors =distortion function for focus on ocbject
plane at distance s,
dr, =distortion function of lens for infinity
focus,

§r_, =distortion function of lens for inverted
infinity focus (i.e., distortion, if the lens is
reversed so that front element becomes
rear element and vice versa).

Then the magnification of the lens for the ob-
ject plane at s is

ms = f/(s — f) 1)

S
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and Magill’s formula states that

Org = 0F_ — MO

@
This formulation is convenient enough when
distortion is determined on an optical bench
with the aid of a collimator and goniometer
(as in Magill’s investigation), for then é7_,
and 67, can be determined with equal facility.
Otherwise, the determination of 67, for a
lens already mounted in a camera becomes
physically so awkward as to be impractical
in most instances. Accordingly, as it stands,
Magill’s formula is of rather limited practical
value. However, a more convenient result can
be derived from the formula by the following
process. Let s; and s, denote two arbitrary dis-
tances of object planes for which the distor-
tion functions ér,,, o7y, are known. If 5, and s,
are substituted into Equation 2, the resulting
pair of equations can be solved for ér_, and
07, as functions of 67, and br.,. If these solu-
tions are then employed in Equation 2 one
obtains

3rs = adrs, 4+ {1 — as)él‘sg (3)
where
w22 0TS @
Sy — §1 § — f

Accordingly, it follows that if the distortion
functions ér,,, 8r,, are known for the lens fo-
cussed on any two distinct object planes, the
distortion function ér, for the lens focussed on
any other plane can be computed by means of
FEquation 3. This extension of Magill’s for-
mula ts well suited to general application.

If 6r5, and ér,, are expressed in the usual
representation as power series in radial dis-
tance #, so that

brs, = le‘l’3 + K‘zsli“r’ + K:ssl’ﬂ A
ory, = K1.=27’3 + Kz‘qz?"r’ + ](352?7 4.

one obtains from Equation 3 the result that
the coefhicients in the expansion

©)

org = Kyor® + Koo® + Kt + - - - (6)
@re given by
Kis = aKi, + (1 = a)K o,
Koo = asKa + (1 — ) Ky, (7

[\'3.@ = ﬂ’sK&s‘l 'i* (1_ oz\,f) stz.

Certain special cases of Equation 3 merit
consideration. If, as would often be the case,
one of the known distortion functions cor-
responds to focus at infinity (i.e., so= ), the
formula for a; reduces to

as = (s1 =)/ = ). ®

If, in addition, the second known distortion
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function corresponds to unit magnification
(i-e., st=2f), @; becomes

a = [f/(s — f) = m, ©

where, as indicated in Equation 1, m, is the
magnification of the image for object plane at
distance s. It is well known that for perfectly
symmetric lenses, distortion at unit magnifica-
tion is zero (i.e., 6ryy=0), in which case,
Equation 3 in conjunction with 9 assumes the
specialized form

dry = (1 — my)dr.. (10

This result is more of theoretical than practi-
cal interest, because most modern lenses that
are classified as symmetric do, in fact, depart
somewhat from perfect svmmetry in their de-
sign.

Unless the lens designer is specifically con-
cerned with the reduction of distortion to very
low levels (as with aerial mapping lenses), itis
likely that the distortion function over the
usable field will be totally dominated by
K73, the leading term of the power series ex-
pansion (higher order terms Ky K37 only
rarely assume significance in commercial
lenses not specifically designed for photo-
grammetric applications). When higher order
terms are insignificant for a given lens, Equa-
tion 3 has a consequence of special importance
to some applications; it implies the existence
of an object plane distance for which distor-
tion is zero. If we set s;=2f, ss= o0 in Equa-
tion 3 and then cquate ér, to zero, we shall
obtain a linear equation in s, the solution of

which is
={2—
)= (%"

This defines the object plane distance for
which the distortion of the lens will be zero
throughout the field (or, more precisely, for
which the leading coefficient K. will be zero).
If 4ryy and o7, are initially unknown, they
can, of course, be computed from Equation 3,
provided 67, and ér,, are known. Equation 11
can be helpful in selection of a lens for a proj-
ect where low distortion is desirable for the
magnification to be employed.

“”y.(m

VARIATION OF DISTORTION THROUGHOUT
THE PHOTOGRAPHIC FIELD

Magill’'s formula accounts only for distor-
tion of points within the particular object
plane for which the lens is focussed. It does
not precisely account for distortion for other,
less sharply focussed points within the photo-
graphic field. To clarify this matter, let us
consider the specific case of a lens that has
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been focussed for an object plane 4 feet away.
If the lens has a focal length of about 5 inches
and is stopped down to f/45, the useful field
may range between a near field of about 3 feet
and a far field of 6 feet. One could, of course,
validly employ Magill's formula to compute
the distortion for s=4 feet. However, as we
shall see, one could not validly proceed to em-
ploy Magill’s formula to account for the dis-
tortion for points at s=23 feet or s=06 feet as
long as the camera is actually focussed at 4
feet. This could, in fact, lead to an appreciable
error. What is needed, then, is a further ex-
tension of Magill's formula to account for the
variation of distortion for points distributed
throughout the photographic field. Anticipat-
ing such a development, we shall introduce the
notation &7+ to denote the distortion func-
tion corresponding to points in an object
plane at distance s’ for a lens that is focussed
on an object plane at distance s.

The relationship we seek can be readily de-
rived with the aid of Figure 1 which is largely
self explanatory. From similar triangles we
have the relations

7= e (12
s, = 3rge 13)
Vo'
where
Yeunr = CorfCse 14
We may express 67,/ as
bry = K (r')P + Koo ()P + Koo G 4 - -+ (13)

Replacing 7' by 7v,,s7 in Equation 15 and sub-
stituting the result into 13, we get

2 4
s = Yo,u K s A v, Koorr®

16
+ 'Y:,s’KKs’r-l + DR ( ))

the desired result. According to the thin lens
law

1 n I

s Cs f an
1 1 1

S’ + . = ‘/'7 .

From these relations and Equations 1 and 14
follow the alternative expressions for s,
Y = e D= T (18)

Weare nowina position to outline the steps
involved in the process of correcting for dis-
tortion of points distributed throughout the

photographic field. We assume first that dis-
tortion functions ér.,,67;, have been previously

O comera axis

image plane for fens focussed
on object plane ot distaace s

[+

observedradial distonce
in plone O o

-
brye

image plane for lens focussed
on object plane ot distonce s

i
observed radial distance
in plane O’

Fi1G. 1. lllustrating the geometric rela-
tionship between 8r,-, and 87

calibrated (later we shall concern ourselves
with how this is to be done). Then the steps of
the corrective process are as follows:

a. approximate coordinates X, ¥V, Z of the
photographed point are determined by photo-
grammetric triangulation using plate coordinates
that are either uncorrected for distortion or are
corrected for the distortion corresponding to the
object plane at distance s on which the lens is
focussed; this permits the distance s’ to the
object plane containing X, ¥, Z to be computed;

b. with s’ known, Equation 4 is evaluated to
obtain @, which is then substituted into 7 to
generate the coefficients Kiyr, Koy, Kis';

€. veo is then evaluated by means of Equa-
tion 14 or 18 which together with the coefficients
Kiyr, Koy, Kso permits the distortion function 16
to be evaluated for the observed radial distance
r of the image;

d. with 87, thus evaluated, the corrections to
be added to the measured plate coordinates x, ¥
(referred to the principal point as origin) are
computed from the wusual formulas: éx
=(x/7)8%s,5rs 8y =(¥/7)875.07;

e. the corrected plate coordinates for each
camera are employed to effect a revised triangu-
lation, generating improved X, Y, Z coordinates
which may, if deemed desirable, be employed in
an iteration of the above process.

Later in this paper we shall present experi-
mental verification of the above development.

METHODS OF CAMERA CALIBRATION
DEevVELOPED BY DBA

The general analytical calibration of cam-
eras focussed at infinity was originally de-
veloped in Brown (1956). Extensions of this
theory to account for errors in control points
and for effects of lens decentering were pub-
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lished in Brown (1964) and in Brown (1965).
A further generalization to permit determina-
tion of distortion by means of the simultane-
ous reduction of measurements from an un-
limited number of frames taken by a given
camera is embodied in the smac (Simultane-
ous Multiframe Analytical Calibration) re-
duction published in Brown (1968). All pre-
vious developments had been concerned with
extraction of distortion from measurements of
a single frame or plate having the essential
property of invariant orientation throughout
the total exposure. In application to stellar
calibrations, sMAC made it possible to do away
with the conventional requirement that the
orientation of the camera remain perfectly
stable for all exposures on a given plate; it also
did away with the conventional requirement
that the times of the stellar exposures be ac-
curately known. In application to aerial cali-
bration, sMAC provided the rigorous solution
to the problem of deriving a definitive calibra-
tion from the merging of an indefinitely large
number of frames exposed over an aerial
calibration range.

As far as applications to close-range pho-
tography are concerned, the methods cited
above have served mainly to calibrate &7,
thus providing one of the two distortion func-
tions needed in our extension of Magill’s for-
mula. In principle, Aerial sMac could be em-
ployed to reduce exposures of a carefully con-
structed and very accurately surveyed cali-
bration range specifically designed for close-
range photogrammetry. This would provide
the second of the two needed distortion func-
tions. We, however, have not chosen to adopt
this approach, largely because of practical
problems associated with constructing and
maintaining a suitable target range, but also
because of our development and implementa-
tion of two alternative methods which have
proven extremely effective.

The first of these two methods is a process
of self-calibration effected by incorporating
our extension of Magill’s formula into the
process of multistation analytical stereotri-
angulation that was originally developed in
Brown (1958). Our computer program for
structural measurements can accommodate
observations from up to nine exposure sta-
tions. I't requires that distortion coefficients be
precalibrated for one object plane s; (usually,
s2= ) and regards as unknown the distortion
coefficients for the particular object plane on
which the camera is focussed. It also regards
coefficients of decentering distortion as being
unknown. The reduction requires no absolute
control points (but can exercise them, if avail-
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able) and can accommodate an indefinitely
large number of passpoints. If highly conver-
gent geometry from three or more exposure
stations is exercised, the program can also
accomplish an accurate calibration of the
coordinates of the principal point x,,y,. If, in
addition, at least one distance between tar-
gets in object space is known, the program can
also recover the principal distance ¢ of the
camera (otherwise, a pre-established value of
¢ must be enforced). We shall not go further
into the method of self-calibration inasmuch
as a separate paper on the method is in prep-
aration.

In those photogrammetric projects in
which the same camera can be used for all
needed exposures, our policy has been to em-
ploy the method of self-calibration just de-
scribed with the project itself providing the
observational material needed for the calibra-
tion. Thus, in such endeavors we do not find it
necessary to pre-calibrate the camera for the
project. However, in some projects a different
camera must be employed at each of the ex-
posure stations. Such projects include men-
suration of nonstatic structures and mensura-
tion of structures inside environmental test
chambers. Here, self-calibration is ineffective
because each exposure station requires re-
covery of a fresh set of distortion coefficients.
This brings us to the second of the two special
methods of camera calibration that we have
employed in conjunction with close-range
photogrammetry. It is one particularly well
suited to the task of pre-calibrating a camera
for a specified focal setting. As was pointed
out in our original paper on photogrammetric
structural measurements (Brown (1962)), this
method “‘involves photographing a set of
plumb lines arrayed in the desired object
plane and exploits the fact that, in the ab-
sence of distortion, the central projection of a
straight line is itself a straight line. Systematic
deviations of the images of plumb lines from
straight lines thus provide a measure of dis-
tortion if properly reduced.”

Because details of the analytical plumb-line
method, as we shall call it (to distinguish it
from older, more qualitative plumb-line ap-
proaches such as that described by Cox
(1956)), have not hitherto been published, we
shall outline the essentials of the method here.
As is clear from Figure 2, the equation of an
arbitrary straight line L on a plate can be ex-

pressed as
x'sinf+ 9y cos =p 19

where p denotes distance of the line from the
origin and 6 is the angle between the y'-axis
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and the normal to the line passing through the
origin. Because of radial and decentering
distortion the image of a photographed plumb
line will not be truly straight. However, if the
coordinates x, v of points on the image of a
plumb line were corrected for such distortion,
they would conform to a straight line. Ac-
cording to Brown (1964), (1965), coordinates
so corrected can be expressed as

& = x4 (K2 4+-Kort+Kar®+ -+ 1)

+ P12+ 252 4 2Pyzy ] [1 -+ Pyr2 - -
¥ =y+F(Ku?+ Ko+ Kyt - - - )

+[2P &5+ P02 +25) [ [14- Pyt - - - ]

in which

20

XT=x— Xp
y=y =¥
r=[x = x)? + (v — 3?72

and K,K,, K3 are coefficients of radial distor-
tion (for the object plane being observed)
and Py, P P; are coefficients of decentering
distortion. Let us now consider images of a set
of plumb lines on.a given plate and let
%i;,y:; denote the plate coordinates of the
jth measured point on the i-th line. If we then
substitute x;j,y:;; into Equations 20 and 21
and substitute the resulting expressions into
19 we shall obtain an observational equation
that is functionally of the form

S (@i, ¥is; %py Yo, K1, Ko, Ka, Py, Py, P3; 05, 00) = 0. (22)
If m denotes the total number of lines mea-
sured and #; denotes the number of points

measured on the ¢-th line, the total number of
equations of the form 22 will amount to

@n

Y

"

0
‘——‘jv———-’ x!
o
sin 9 L

F1a. 2. Explanation of the plumb-line
method.
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n=nm+n+ -+ #m (23)

This set of equations will involve a total of
8+42m parameters consisting of the eight par-
ameters of the inner cone xp,vp,K1,K2, K3, Py,
P,,P; (which are common to all lines) and a
pair of parameters ;,0; for each of the m lines.
It follows that if a sufficient number of points
are measured on each line, the number of
equations will exceed the number of unknowns
and a least-squares adjustment is in order.
To effect such an adjustment we first set
Xy = 450 + v,
2] ]o L, (24)
Yig = ¥i® vy
where x;;%v;;° are the actually measured co-
ordinates and the v’s are corresponding resi-
duals. For the parameters we then set
ZXp = 2% + b,
= 9,00 1+ 5y
Yo T Up Vp (25)

pr = pi"® + 8p;

where the superscripts (°°) denote known ap-
proximations and the 8’s are unknown cor-
rections. By substituting Equations 24 and 25
into 22 and then linearizing the resulting ex-
pression by Taylor’s expansion, we obtain the
following set of observational equations:

Ay v + By 5+ By & = e
1L,2eEn 14LeGH O, n G,
1:=1,2,'--,m 26)
]:1,2’...’7”
in which
€ij = — f(.\'ijo, y'ffo; :\APOOJ yI'm)' Klooy cT (27)
P:{OO, 0100‘ P'[OO)
dxp
5v
T o ., 8;
PR ) B 0 [
Yui; opi
5Py

and the coefficient matrices A;j, Bsj,Bi; are
the Jacobians

Oegj
A= =
i, 34
R Jeis
By = — . (29)
A, 3,90, K, - -, Pi)
. Deij
B,;=— o
6(017 Pi)

If we initially confine ourselves to consid-
eration of the set of normal equations gen-
erated hy the observations of the i-th line, we
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shall obtain the following result upon apply-
ing the generalized least-squares theory de-
veloped in Brown (1955):

Ni Ni é
8,8 2 (8 1)-l [-(8, 1)_|
| . ..J J | J(w
Nz N;
I-(Z, & (2,2 2, 1) I-( , D
where
Ni=3 Ny, =2 ¢
No=2_ Ny &=2 % (31)
Ni = Z Nif’

in which all summations range from ¢=1 to
i=mn;, and in which

Ny = piBi™By, ¢ = piBiTeis
Ny = piBy"By;, ‘c‘,-,- = piBiTe; (32)
Nij = piBy"Bi.
In Equations 32, p;; is the scalar
pii =4y Ay Ay 33)

1 n

in which A;; denotes the covariance matrix of
x:;%%:;% In the derivation of the above result
we made the usual assumption that plate co-
ordinates of different points are uncorrelated.

Because observational vectors are indepen-
dent from line to line, we may employ the
zero augmentation merging process originally
developed in Brown, Trotter (1967) to gen-
erate the system of normal equations resulting
from the simultaneous adjustment to all ob-
servations from all lines. This system is of the

1,22, 02,

form:
N+W ]Wl N, "Tm l.’
’, 1—\711 | 1 0 . 07.‘ ’> B'l
| Mo o Feei0 || G
S | ; .
N0 o0 « N 8 (34
¢ — We
e
= &
-
in which
=2 N, ¢=3 é (33)

i=1 t=1

The terms W and Wé account for any a priori
values of the parameters in § that are to be
exercised according to the development of
Brown (1959) (specifically, W is the inverse of
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the parameters and é is the discrepancy vector
between the a priori values themselves and
the approximations being exercised in the cur-
rent linearization).

The general system of normal Equations 34
is of the by-now-familiar form first investi-
gated in Brown (1958) and further treated in
Brown, Trotter (1969). The order of the nor-
mal equations is 2m+8 and thus increases
linearly with the number of lines being carried
in the reduction. Ordinarily, this would set a
practical limit of the number of lines that can
be processed simultaneously. However, as is
shown in Brown (1958) the block diagonality
of the N portion of the normal equations can
be exploited to generate an algorithm for the
practical solution of the system no matter
how large m may become. The essential steps
of the algorithm are as follows. In terms of
the basic matrices generated in Equation 30
for the 4-th line, the following auxiliaries are
formed:

Qi =N N
2,8 (2,229
R, = N, ¢
(8,'3) (8,' (2, 8 36)
Si = N; — R,
(8,8 8,8 (&9
i ¢ Qr &
@1 @1 822010

As S;and ¢; are formed, they are added to the
sum of their predecessors and only cumulative
result is retained. The end result of this pro-
cess, once all m lines have been processed, is
S=S1+S4+ - +Sn,
i=atat o+

The solution for the vector 8 is then given by

37

§= (S + W) — Wé. (38)

After § has been obtained, the vector of par-
ameters 6; for each line is computed from

= N + Qi

It will be noted that the largest matrix to be
generated, inverted or otherwise operated on
in the above process is only of order 8X8.
Moreover, the computational effort increases
only linearly with the number of lines to be
reduced. Hence there is no limit to the num-
ber of lines that can be processed simultane-
ously.

The covariance matrix of the adjusted
parameters in & is given by the term
(S+W)1in Equation 38. From this one can

G=1,2---,m). (39
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compute error bounds to be associated with
the calibrated distortion functions.

If the adjustment is iterated to conver-
gence, the final plate measuring residuals can
be computed from

vij =|imji| =p; Ay A" e
2, 1) Loy, 2, 9@, 1, H
in which e;; denotes the value computed from

the final values of the parameters. The mean
error of the residuals is given by

L 12
s=| 2% v Ay lZ',j/(‘.O.f.:I

i=1 jeol

(40)

(41)

in which the degrees of freedom (d.o.f.) are
given by

dof.=n—p—2m (42)

in which p denotes the number of projective
parameters being exercised.

The observational equations for the ana-
lytical plumb line method do not involve ex-
terior elements of orientation (a,w,k,X¢, ¥¢,Z°¢)
nor do they involve the principal distance c.
As a result, one is free to employ multiple ex-
posures of one or more plumb lines to gen-
erate as many images as desired as long as all
correspond to a common plane in the object
space. The most attractive feature of the
plumb line method is its observational sim-
plicity. By contrast, the preparation of a
special target range of accuracy and stability
sufficient for close range calibration is a for-
midable and expensive undertaking. In the
next section we shall review specific applica-
tions of the analytical plumb line method.

EXPERIMENTAL VERIFICATION OF
THEORETICAL FINDINGS

In this section we shall present results of a
series of calibrations that serve to:

e Demonstrate the efficacy of the analytical
plumb line method of calibration;

o Provide a check on the validity of Equation 3
in accounting for change of distortion with change
of focus;

e Provide a check on the validity of Equation
16 in accounting for change of distortion within
the photographic field.

The lens employed in the calibrations is a
standard commercial Schneider Symmar of
135mm focal length. The lens, mounted in a
threaded barrel, was installed in one of DBA’s
structural measurement cameras (Figure 3)
having a circular format six inches in diam-
eter (with the 135 mm lens, this corresponds
to a cone angle of about 60°). On actual proj-
ects of structural measurements, focussing of
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Fi16. 3. Single-frame glass-plate camera fabiicated
by DBA for close-range structural measurements.
The camera accepts 190X215 mm X% inch bal-
listic plates and exposes a 6-inch diameter format.
Interchangeable cones allow focussing from 2 feet
to infinity.

the camera is accomplished by means of pre-
cise, dowelled spacers mounted between the
lens plate and the camera body. This permits
%p,¥p and ¢ to be related to the values ob-
tained from a stellar calibration to a precision
of about 10 micrometers. For the plumb line
exercises, however, we considered the fabrica-
tion of special spacers to be unwarranted and,
instead, focussed the lens by screwing the
threaded mounting barrel from its standard
setting for infinity focus.

To test our theoretical findings, we decided
to perform a series of five plumb line calibra-
tions with relative aperture set at f/45 to in-
sure a fairly deep field of acceptable focus.
The five calibrations correspond to the situa-
tions indicated in Table 1. For each case, an
array of seven plumb lines was set up in the
indicated plane with line-to-line spacing ad-
justed between exposures to maintain a spac-
ing of nominally 20mm between images of the
plumb lines on the photographic plate. The
plumb lines were made of very fine white
thread and were stabilized by immersion of
the plumb bobs in containers of oil. Illumina-
tion was provided by a pair of vertically
mounted, 8-foot fluorescent fixtures that could
be freely positioned for optimum distribution
of light. A dead black background was pro-
vided for the plumb-line array in order to
heighten contrast and to permit the execution
of multiple exposures on the same plate. For
each of the indicated cases two exposures were
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TABLE 1. CASES CONSIDERED IN EXPERIMENTAL
INVESTIGATIONS BASED ON ANALYTICAL
PLuMB LINE METHOD OF
CAMERA CALIBRATION

Camera focus . .

set for object Plumb lines in
Cuse . common plane at

plane at dis- dist "o

tance s (f) istance s (ft)

1 3 3 (mid field) }
2 4 3 (near field)
3 4 4 (mid field) \ )
4 4 6 (far field)
5 6 6 (mid field) \ /

made on a given plate with the camera rolled
nominally 90° between exposures. A reproduc-
tion of one of the plates is provided by Figure
4. All five plates are essentially alike in ap-
pearance by virtue of the adjustment of plumb
line spacing from one case to the next. Focus-
sing on each of the indicated object planes was
accomplished visually at full aperture (f/5.6)
by observing on ground glass the magnified
image of a rear-illuminated bar target at the
center of the object plane.

On each of the five plates, points on the
lines were measured at Smm intervals on
DBA'’s digitzed Mann comparator. This gen-
erated a total of 324 points per plate (162
from the horizontal lines and 162 from the
vertical lines). The measuring process required
from 5 to 6 hours per plate. Each set of ob-
servations was processed through the analyti-
cal plumb-line program on DBA’'s Xerox
Sigma 5 computer. Typical total job time per
plate was just under four minutes. Key results
of the reductions are presented in Table 2.
Also listed in the table as Case 6 are results of
a stellar sMaAc calibration that had been per-
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F1G. 4. Appearance of typical plate em-
ployed in plumb-line calibrations.

formed two years earlier on the same lens.
The stellar calibration employed a total of
302 measured stellar images, a number com-
parable to the number of points measured on
the plumb line plates.

From the table we note that the rms values
of the residuals obtained from the analytical
plumb line calibration are all appreciably
lower than that obtained from the stellar
calibration. This suggests that settings can
be made on arbitrary points on well defined
lines to significantly greater accuracy than
they can on point-like images. Only the lead-
ing coefficient K of the radial distortion func-
tion was found to contribute to the adjust-
ment. Results for decentering distortion are

TABLE 2. SUMMARY OF KEY RESULTS OF CALIBRATIONS

\ RMS‘value Radical distortion Decentering distortion
of residuals
Case s s’
‘ m 105K, 10°x, 1057, 10y, ¢ op
(um) (mm)~* (mm)~? mm)~t  (mm)7? (deg) (deg)
1 3 3 1.6 — .0628 .0023 .292 .010 61.7 1.9
2 4 3 1.6 — .699 .0023 .345 .009 50.6 1.9
3 4 4 1.4 - 719 .0017 .338 .007 47.6 1.7
4 4 6 1.8 — .740 .0025 .320 011 53.4 2.1
5 6 6 1.8 — .825 .0023 .324 .001 43 .4 2.1
6 © o 2.7 —1.024 .0028 .397 .013 37.5 2.0

Note: All values of ¢ have been corrected for rotation of lens barrel in order to facilitate direct inter-
comparison with infinity calibration (Case 6).
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Fic. 5. Plots of radial distortion functions (upper) and decentering profile functions (lower) given
in Table 3 (profile functions Pry;3 and Pra¢ nearly coincide with Prs and Prs, respectively, and hence are

not plotted).

expressed in terms of the profile parameter
defined by

J1= /(P2 + P)

and phase angle ¢ of the axis of maximum
tangenital distortion given by the relationship

tand = — Py/Pe.

Graphical representations of the radial dis-
tortion function Ky#® and the decentering pro-
file function Jyr? are provided in Figure 5 for
each of the six cases in Table 2. Standard de-
viations of the plotted curves, though not
plotted, generally do not exceed one micro-
meter at the maximum radial distance of 75
mm.

Figure 5 shows clearly the systematic na-
ture of the variation of radial and decentering
distortion with object distance. The radial
distortion for the Symmar lens, it will be
noted, is rather large, growing at infinity focus
to 430 pm for » =75 mm. This is precisely why

we selected the Symmar for the investigation;
the laws governing variation of distortion
with object distance would clearly be much
more difficult to verify experimentally with a
lens of low distortion. Results listed in Table
2 are employed in Tables 3 and 4 to compute
the distortion functions 8r4, 8743, 674,6 from the
calibrated distortion functions 8rs, drs. Agree-
ment between observed and computed values
is very good, being generally better than two
percent. In computing the values v, to be
used in Equation 16, we employed the rela-
tion s« =Cs/Cs given by Equation 14 rather
than the alternate relation given by 18. This
is because precise values of ¢ were available by
direct measurement (from the number of
turns of the focussing barrel). These values in
inches are

c3 = 6.222
Cy = 5.950
cg = 5.692
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TABLE 3. CoMPARISON OF CALIBRATED DISTORTION
FOR s=4 FreT witH REesurts COMPUTED
rroM EqQuaTioN 3 UsiNGg CALIBRATED
D1sTORTION FUNCTIONS FOR §;=3 FEET

AND $2=06 FEET.

v o7y 874 Difference

(mm) Observea (um)| Computed (u,) o-¢C

—. 719X 1083 — 730X 10513 (um)
15 — 2.4 — 2.5 0.1
30 — 19.4 — 19.7 0.3
45 — 65.5 — 66.5 1.0
60 —155.2 —157.8 2.6
75 —303.2 —308.0 4.8

Note: Because f=>5.300 inches the value of oy
in Equation 3 turns out to be equal to .480 for
51=23 feet and s,=06 feet.

which leads to the values
yis = 936
vie = 1.047.

Because of the inexactness of the focussing
process, somewhat poorer values would have
been obtained from the application of Equa-
tion 18. In retrospect, we now appreciate that
the values of s employed for the experimental
set up should have been computed from the
measured values of ¢. The various expressions
for s, would then have produced identical
values. It seems quite possible that even bet-
ter results might have been obtained in Ta-
bles 3 and 4 had this precaution been taken.
Asitis, the results are in good agreement with
theoretical expectations.

Although we have yet to develop a specific
theoretical model to account for the variation
of decentering distortion with object dis-
tance, some observations on our experimental
findings are in order. First we note in Figure
4 that a small systematic change in the profile
function does accompany changes in focal
setting (the spread of 6 um between the pro-
files at » =75 mm for 3 feet and =« is too great
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to be accidental). On the other hand, the
variation of decentering distortion within the
photographic field appears to be too small to
be of practical significance. As far as the
phase angle of decentering is concerned, one
would not expect to find any variation in ¢
with focus after due allowance has been made
for the rotation of the lens. Table 2 shows
this substantially to be the case. There is no
significant variation at all in ¢ between Cases
2, 3, 4; here the orientation of the lens is un-
changed for all three calibrations. For the
other cases, the relative change in ¢ is small,
but not small enough to be insignificant. We
believe this to be attributable to a slight mis-
alignment between the axis of the lens and the
axis of the focussing barrel. The variation in
tilt that would thus be introduced by the fo-
cussing operation could well compromise the
recovery of ¢ to the small extent observed.

It will be recalled that the coordinates of
the principal point x,,y, were carried as ad-
justable parameters in the derivation of the
plumb-line method. Upon application of the
reduction we found, however, that these
parameters are inherently indeterminate if
parameters for decentering distortion Py, P»
are also carried as adjustable parameters.
Even if P;,P, are suppressed, the recovery of
Xp,¥p is very weak, being accurate ounly to
about 200 um (one sigma) in the particular
reductions considered above. Indeed the re-
coverability of x,,¥, in the plumb-line calibra-
tion depends directly on the magnitude of the
radial distortion; the greater the distortion,
the better the recovery of x,,v,. Because of
such considerations, we assigned an a priors
sigma of 100 ym to x,, ¥, in all of the plumb
line adjustments reported in Table 2. Despite
this allowable degree of variation in x,,y,, the
amount of adjustment in x,,v, was less than
1 um in all cases. This indicates that any
actual variation in x,,9, was, in fact, being
projectively absorbed by the values of P; and
P, resulting from the adjustment.

TABLE 4. COMPARISON OF CALIBRATED DISTORTION FUNCTIONS 875,y FOR s =4 FEET, s’ =3 FEET
AND FOR § =4 FEET, s’ =6 FEET WITH REsuLTs COMPUTED FROM EQUATION 16 USING
CALIBRATED DISTORTION FUNCTIONS FOR 53 =3 FEET AND s’ =6 FEET

8743 84,3 Difference 8746 8746 Difference
r Observed (um) Computed (um) 0-C Observed (um) | Compuled (um) 0-C
(mm) |~ 600 %108 5 | —.689X 108 Gm) | —TA0XL06 3 | —753XA0848 | (um)
15 — 2.4 — 2.3 —0.1 — 2.5 — 2.5 0.0
30 — 18.9 — 18.6 —-0.3 — 20.0 — 20.3 0.3
45 — 63.7 - 62.8 —-0.9 — 07.4 — 68.7 1.3
60 —150.9 —148.8 —-2.1 —159.7 —162.6 2.9
75 —294.7 —290.7 —4.0 —312.0 —317.8 5.8
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GENERAL CONSIDERATIONS

In some practical situations the variation
in distortion between the near and far photo-
graphic fields can amount to as much as 10
percent of the distortion at midfield. One
might use this as an argument for selecting a
lens of low distortion for close-range applica-
tions. Thus, if maximum distortion were only
10 ym, a 10 percent variation in distortion
would not exceed a negligible 1.0 um. How-
ever, one must be careful in such an assess-
ment to use the Gaussian distortion function
and not the equivalent distortion function
that camera makers prefer to advertise. With
the latter, the principal distance is adjusted
to transform the Gaussian distortion function
(Kir3+ Ko+ - - - ) into a projectively equiv-
alent form (K,'r+Kr*+K,'r"+ - - - ) which
passes through zero at some arbitrarily speci-
fied radial distance.

Although the equivalent distortion func-
tion for a given lens may indeed reach an ad-
vertised maximum of, say, only 10 um, it
should be appreciated that the corresponding
Gaussian distortion function could well have
amaximum 10 times larger. If so, a 10 percent
variation in distortion between near and far
fields would actually amount to as much as
10 um rather than the 1.0 um alluded to
above. Our experience has shown that there is
really no compelling reason to require that
specially designed lenses of low distortion be
employed in close-range photogrammetry.
The fact is that almost any well regarded
commercial lens can produce first-class results
if radial and decentering distortion are prop-
erly taken into account. As evidence of this,
we would cite our experience in analytical
triangulations performed with the 135 mm
Symmar lens employed in calibrations con-
sidered above. Here, we have consistently ob-
tained 7ms closures in plate coordinates of
under 2.5 um. Yet, this lens costs about $100
and is affected by a pronounced degree of
radial and decentering distortion.

Strangely enough, lenses that are inferior
by certain normal standards can be better
suited to certain tasks than much more ex-
pensive, very highly corrected lenses. In
close-range observations of parabolic anten-
nas, for example, we have found that a lens
having a curved field conforming approxi-
mately to the surface being measured is to be
preferred over a lens with a flat field. Of
course, curvature of field can be contrary to
that of the subject, in which case it is detri-
mental. Thus, a lens having curvature of field
well-suited to observations of parabolic re-
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flectors would be ill-suited to external ob-
servations of a spherical surface and vice
versa. One significant consequence of our
findings is that the spectrum of lenses suitable
for metric applications is so broadened that
one has many relatively inexpensive alterna-
tives to choose from in matching lenses with
projects.

CONCLUSIONS

The analytical plumb-line method of cali-
brating radial and decentering distortion ex-
cells in operational convenience and is cap-
able of producing results fully as accurate as
those obtainable from extensive stellar cali-
brations. The application of the method to a
series of close-range calibrations has served to
support the theoretical development shown
in a foregoing section by virtue of which one
can account for the variation of distortion
with focal setting and with object distance.
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