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It has been recognized for over half a century that quantum
mechanics defines the ultimate limits for sensing devices, and
products of that recognition are now on the horizon of practical
implementation. One of the most promising of those products
is quantum radar, which offers a capability to significantly
improve the tradeoff between energy and detection sensitivity
compared to classical alternatives. We provide a back-of-the-
envelope and implementation-agnostic analysis to glimpse the
kinds of expected improvement that a quantum radar could
provide for applications of interest. Our analysis relies on
relatively simplistic models that are only intended to facilitate an
intuitive grasp of quantum-vs-classical distinctions. Such analyses
of course cannot lead to definitive conclusions, but we believe they
provide evidence that in some contexts quantum radar can be
expected to offer realizable practical advantages over classical
alternatives. We conclude with a discussion of theoretical and
practical obstacles and a high-level summary of what can be
said about the present status of quantum radar.

Keywords: Quantum Information, Quantum Sensing, Quantum
Radar, Electronic Warfare, Radar Countermeasures.

I. INTRODUCTION

The broad area of study referred to as Quantum Information
Science (QIS) is concerned with the generalization of classical
technologies to obtain improved versions that exploit the
larger class of physical properties that can be modeled by
quantum physics. In the case of computation this involves
the generalization of physical devices capable of representing
and manipulating binary states (0 or 1) to obtain devices
capable of representing and manipulating a more general class
of states that can only be understood using the equations of
quantum phenomena. The topic of this paper, Quantum Radar,
is analogous in that the goal is to generalize the states that are
observable using classical radar methods so that the equations
of quantum physics can be applied to increase the amount of
available information per unit of expended illumination energy.

The objective of this paper is to describe at a high level the
fundamental elements of quantum radar and provide insights
about why it has the potential to outperform classical radar.
Our goal here is not to establish definitive statements regarding
what may or may not be practically realizable in a given
timeframe but rather to provide a level of analysis sufficient
to appreciate why quantum radar is of interest and why
there is room for debate about its near-term prospects for
practical applications. More specifically, our analysis relies on
relatively simplistic models that are only intended to facilitate
an intuitive grasp of quantum-vs-classical distinctions. In this
regard our analyses should be interpreted as offering only
back-of-the-envelope evidence that quantum radar is worthy
of practical consideration.

The structure of the paper is as follows: We begin with
a brief introduction to quantum correlations and the extra
information they potentially offer. We then provide a general
overview of how a quantum radar can exploit this extra infor-
mation. This is followed by high-level analyses of the potential
advantage of quantum radar over classical alternatives in a
set of practical scenarios. We conclude with a discussion of
the theoretical and practical issues that must be addressed in
order to satisfy the assumptions that underpin the tentative
conclusions of our analysis.

II. QUANTUM CORRELATIONS

The most important quantum phenomenon exploited by a
quantum radar is quantum entanglement. Let us assume that
we have two non-interacting particles A and B separated
by an arbitrarily long distance. In the classical world, the
measurement of the state of A will not affect the state of
B. That is, the measurement of the state of B is independent
of the measurement of the state of A. On the other hand,
in the quantum world, the measurement of the state of A
could affect the state of B. In contrast to the classical world,
the measurement of the state of B could depend on the
measurement of the state of A. When this happens, it is said
that A and B are entangled, and this is a purely quantum
property.

A more formal understanding of quantum correlations with-
out discussing quantum dynamics can be offered by intro-
ducing the concept of mutual information. Information theory
defines the mutual information I(A : B) of two variables A
and B as the amount of information obtained about A through
the measurement of B [60]. Let us first consider a perfect
classical correlation between two binary random variables x
and y. Such a correlation can be expressed as:

p(x, y) = pxδxy =
1

2
δ00 +

1

2
δ11 (1)

where δab is the Kronecker delta function. In this case it can be
shown that the mutual information is given by Ic(x : y) = 1.
Thus, a perfect classical correlation has a mutual information
equal to 1.

On the other hand, a perfect quantum correlation is ex-
pressed by a perfectly entangled quantum state denoted by

|ψxy〉 =
|ψ00〉+ |ψ11〉√

2
(2)

and it can be shown that the mutual information is given
by Iq(x : y) = 2. That is, perfect quantum correlations
have twice as much mutual information as perfect classical
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correlations. Increased mutual information between entangled
particles immediately suggests improved sensing modalities
that can exploit this additional information. In the case of
quantum radar, this involves the generation of entangled pairs
of photons in the microwave regime.

Clearly, entanglement correlations are an important property
for quantum sensing in general and for quantum radar in
particular. For example, imagine a state of two entangled
photons. One of these photons is held while the other is
sent to interrogate some region of space. Our measurement
device will measure both the signal photon if it is reflected
back to the detector from an object in the environment and
background noise photons present in the environment. Because
the two original photons are in an entangled state, they contain
more mutual information and thus can be more effectively
distinguished from noise photons received by the detector than
is possible with two perfectly correlated classical entities.

Therefore, quantum entanglement provides an additional
source of information that is not available to classical radar.
Similarly, entanglement can be used to “hide” the signal pho-
tons in the environment noise such that entanglement correla-
tions are the key to detecting them. Although it is impossible
to predict with certainty the extent to which this theoretical
advantage can be realized in practice, entanglement-based
sensing technologies could lead to practical benefits in the near
future. This optimism is buttressed by recent progress in har-
nessing quantum entanglement for communications [32], [51],
metrology [12], [16], [17], electromagnetic sensing [23], [30],
clock synchronization [15], magnetometry [46], seismology
[41], [42], and gravimetry [34], [45], [58], with investigated
applications extending into space [70] and challenging oceanic
environment [47], [48], [71], [72].

III. A GENERAL OVERVIEW OF QUANTUM RADAR

As should be expected, the potential advantage of quantum
radar over classical radar comes from exploiting information
available from entangled photons in the microwave regime. In
this section we discuss how quantum radar offers a capability
to significantly improve the tradeoff between energy and detec-
tion sensitivity compared to classical alternatives, and we will
avoid equations and concentrate our discussion on concepts
for illuminating expected theoretical performance. A more
detailed presentation of the equations that govern quantum
radar performance are discussed in subsequent sections.

A basic conceptual description of a quantum radar is shown
in Figure 1 and is somewhat inspired by the theory of quantum
illumination [2], [52]. At this point it is important to remark
that quantum illumination is a protocol to detect the presence
or absence of a target at a very specific position of space.
As such, quantum illumination on its own is not a quantum
radar. However, some of the upper bounds found in quantum
illumination can serve as rough estimates to the bounds of
future quantum detection and ranging systems.

The quantum radar process begins with a device that gen-
erates a pair of highly correlated entangled photons: an idler
and a signal photon. The idler photon is kept in a quantum
memory, i.e., a piece of quantum hardware able to faithfully

Fig. 1. Conceptual description of an entanglement-based monostatic standoff
quantum radar.

hold the quantum state of the idler photon, while the signal
photon is transmitted toward some region of space. If a target
is present along the transmission path then the signal photon
may be reflected back toward the quantum radar. At any given
time the quantum radar receiver may measure a reflected signal
photon or a noise photon from the environment. Because
there is no a priori way to distinguish signal photons from
noise photons, each received photon is compared – in a very
loose sense that will be made more precise later – to the
idler state in the quantum memory. Entanglement correlations
eventually allow statistical information from signal photons
to be probabilistically distinguished from the noise as the
comparison process is integrated over a sequence of many
detections.

In the idealized setting each signal photon will either return
due to an encounter with a target or will not return and signify
the absence of a target along the line-of-sight observation path.
In a real-world context some reflected signal photons will not
be perfectly-reflected back toward the radar while some that
should be perfectly-reflected will be lost due to environmental
attenuation, e.g., by being absorbed or scattered/deflected
by the intervening atmosphere. Rough back-of-the-envelope
calculations suggest that the integration process will require
in excess of 109 entangled photons to have a probability of
detection of 0.8 for a static target (2m diameter flat circular
target with 0.1 reflectivity oriented in the specular direction)
located 25km away in low visibility atmospheric conditions
(300m visibility due to fog or clouds) using a quantum
radar operating in the X-band frequency (3.2cm) and a 2m
diameter receiver/transmitter. Each set of 109 photons is called
a quantum radar signal package.

An ideal source of entanglement would produce entangled
pairs on demand; that is, with near 100% certainty the source
produces exactly 1 entangled pair at the push of a button. How-
ever, such sources are in their infancy and not commercially
available. In optical frequencies, where most work on photon
entanglement has been carried out, one can generate entangled
pairs via Spontaneous Parametric Downconversion (SPDC)
using a pulsed laser through a non-linear crystal [31]. Pulsing
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Fig. 2. Theoretical Pd vs. SNR for entangled quantum radar (red) and
classical radar (blue).

the laser allows one to timestamp the event; however, each
pulse has a very low probability of containing a photon pair
[26]. Even with this limitation, using a PPKTP crystal and a 2
ps pulsed laser, it is possible to generate 105 entangled pairs
per second for each milliwatt of pump power [27], [28]. For
a conservative model using off-the-shelf technology, we can
assume a pump power of 100mW, and we will therefore have
the capability to generate 107 entangled pairs per second. Each
of these photons is temporally separated and their integration
can be carried out with standard equipment.

In the microwave regime the situation is far less advanced,
with the study of how to generate entangled microwave pho-
tons only receiving significant attention in the last few years. In
addition, microwave frequencies impose a limit on the number
of distinguishable/independent optical modes available [19].
Indeed, the number of distinguishable modes (M ) available
for a single illuminator-detector is M = W × T , where W
is the bandwidth and T the period of the signal. Assuming
that a quantum sensor operates in the X-band at 10 GHz, and
works with a 40% fractional bandwidth, then the bandwidth
is approximately 4 GHz. If the signal pulses are emitted with
a period of 1 µs then M ≈ 4 × 103, i.e., much less than
the M ≈ 109 required in the previous example. In general,
the number of distinguishable modes available in the primary
radio-spectrum bands is impractically small. To overcome
the constraints imposed by small M , it has been proposed
a distributed architecture of quantum sensors for which the
effective size of M can be increased [33], [35]. A different
approach to this problem is the use of multiple-input multiple-
output channels using beam-splitters [25].

In order to determine the expected performance of a quan-
tum radar, we use theoretical models that will be described in
more detail in subsequent sections [40]. According to these
models, the advantage of quantum radar (red) as compared
to classical radar (blue) is shown in Figure 2 in terms of the
detection probability (Pd) vs. the signal-to-noise ratio (SNR) in
decibels. In the quantum case the theoretical SNR is computed
using signal packages, not individual photons. The detection
probability curve for classical radar has been empirically well-
characterized in the form of Albersheim’s formula [67], [68],
while the detection probability for quantum radar has been

derived using standard methods from quantum detection and
estimation theory [22]. We notice that the quantum expression
for the detection probability has been experimentally validated
in the optical and microwave regimes [54]. These expressions
are expected to remain valid for a wide range of frequencies
because the underlying theory of quantum electrodynamics is
valid for all frequencies.

Clearly, the attenuating environment; target reflectivity; en-
vironmental noise; signal beam divergence; electronic noise;
and other sources of noise due to imperfect electronics and
optical equipment will reduce the SNR of both systems. To
avoid enumerating a comprehensive list of assumptions regard-
ing the operational environment and the quality of available
technology, in this section we will only discuss the theoretical
performance relative to SNR. That is, the notion of SNR in
Figure 2 is taken to encapsulate all possible sources of noise,
including atmospheric attenuation, target reflectivity, and target
cross section. Thus, the comparison offered by this figure is
valid as long as both systems exhibit the exact same SNR.

Examining the curves in Figure 2 we can observe that in
the extremely high SNR regime (above 15dB) the detection
probability of the two sensors is about the same and very close
to 1 (i.e., we can determine almost perfectly the presence of a
target). In the extremely low SNR regime (below -15dB), the
detection probability of both sensors is also about the same
but very close to 0 (i.e., we have the same probability of
determining the presence of the target as if we used a coin
flip). In both extreme situations quantum radar does not offer
any advantage over classical radar.

It is in the low SNR, at around 3dB, where quantum radar
can be seen to provide a higher detection probability than clas-
sical radar. At 0dB, for instance, quantum radar can provide
a significant detection probability (Pd about 0.65) while the
detection probability using classical radar is practically zero
(though we could always increase the power of the classical
radar signal to achieve a higher detection probability). Thus,
the real advantage of quantum radar is simply being able to
detect the presence of a target using less transmitted energy,
i.e., with a smaller number of photons.

The advantage of quantum radar in the low SNR regime
(-5dB to 10dB) appears to be a fundamental property of these
systems. For example, recent theoretical studies on synthetic
aperture quantum radar and quantum radar Doppler filters to
reduce the effects of clutter consistently predict a quantum
advantage strictly limited to the low SNR regime [49], [50].

It must be emphasized that these comparisons are only valid
when both systems exhibit the exact same SNR. Thus, no
further assertions can be made about the relative performance
of classical and quantum radar systems simply based on Figure
2. For example, a classical radar implemented with low-noise
electronics could have an SNR of 10dB when observing a
target 1km while a quantum radar built with noisy electronics
could have the same SNR only for a target 10m away. After a
careful link budget analysis, however, quantum radar appears
to emerge as an intriguing theoretical concept with potentially
important practical applications. For example, under certain
conditions quantum radar could help to determine with high
probability the presence of an adversary while maintaining
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a low probability that the sensing will be detected by that
adversary. Lower power requirements are also desirable for
space-borne applications where power consumption is a highly
important consideration [70]. Furthermore, the underlying
physical principles of quantum radar could also be used to
design low-brightness medical imaging devices to minimize
patient exposure to the probing radiation.

Although the previous analysis has been entirely theoretical,
recent research suggests that robust quantum radar systems
are potentially viable [14], [55], [64], [65]. For example,
recent theoretical and experimental results indicate that it is
possible to generate, entangle, detect, perform interferometry,
and conduct signal processing and sensing using a large
number of entangled photons in the optical and microwave
wavelengths [2], [13], [62], [73]. Actually, some quantum illu-
mination experiments with optical and microwave wavelengths
have already been successfully carried out and they have
demonstrated improved performance over classical detection
methods [3], [64].

Therefore, there does not appear to be any fundamental
obstacle to the physical realization of a quantum radar. As
will be discussed in the next section, however, there are many
important challenges that remain to be solved and are crucial
for the successful development of quantum radar.

IV. QUANTUM HYPOTHESIS DISCRIMINATION

In this section we will briefly describe how certain entangled
photon states can be characterized by covariance matrices and
how they are used for target detection.

A. Covariance Matrix of Photon States

Consider a Gaussian entangled state as the one produced
in spontaneous parametric down-conversion (SPDC)1 and let
|Ψsi〉 denote the state of a system made of a zero-mean
Gaussian package of signal (s) and idler (i) photon states.
Formally, in an occupation number Fock space, this state is
given by:

|Ψ〉si =

∞∑
n=0

√
Nn
s

(Ns + 1)n+1
|n〉s|n〉i (3)

where Ns is the average photon number, and |n〉s and |n〉i
denote the photon state of n signal and n idler photons
respectively [31], where the subindices i and s refer to the
idler and signal photons, respectively.

We can define a parameter λ as:

λ ≡
√

Ns
Ns + 1

(4)

which can be used to parametrize a series expansion of the
Gaussian state. Thus, if λ� 1, then:

|Ψ〉si ≈
√

1− λ2|00〉+ λ|11〉 (5)

This equation represents a quantum state made of 0 idler and
0 signal photon states with probability ≈ 1 − λ2, and a state

1SPDC may not be the best or most optimal way to generate microwave
photons. However, we can expect that the outgoing pair of entangled photons
will be described by the same type of mathematical expressions.

with 1 idler and 1 signal photon state with probability ≈ λ2. In
practice, λ ≈ 10−2 [31]. And therefore Ns ≈ 10−4 � 1. That
is, these entangled states are very “diluted states” of signal
and idler photons in the sense that their average number is
very small.

A general two-mode Gaussian state can be represented
through a Wigner-distribution covariance matrix that has the
following form:

Γsi =
1

4


Ss 0 Cs 0
0 Ss 0 Ci
Cs 0 Si 0
0 Ci 0 Si

 (6)

given in terms of only four parameters [53]. In a sense, the
Si terms can be understood to be related to the intensity of
the idler component, while the Ss are related to the signal
photon intensity. On the other hand, the Ci and Cs terms are
related to the degree of entanglement or correlation between
both components.

Mathematically, quantum entanglement is understood as a
characteristic of quantum states over two different variables
that cannot be separated as the product of two individual
states (one for each variable and independent of the other).
Thus, most criteria to measure the degree of entanglement in
a quantum system is related to a measure of the separability
of the state of the system as the product of the state of
the individual components. Following this rationale, it can
be shown that the necessary and sufficient condition for
entanglement between the signal and idler photons in the
Gaussian state can be simply written as:

(SsSi − C2
s )(SsSi − C2

i ) < (S2
s + S2

i ) + 2|CsCi| − 1 (7)

which is usually referred as Simon’s criteria [66]. This is the
mathematical criterion for two photon Gaussian state to be
expressed as the product of two individual and independent
photon states.

For simplicity, we can also define:

f ≡ (SsSi−C2
s )(SsSi−C2

i )− (S2
s +S2

i )−2|CsCi|+ 1 (8)

as a measure of entanglement/correlation between the compo-
nents of the system, and Simon’s entanglement criteria reduces
to f < 0. That is, the Gaussian system is entangled if f < 0
and it is not entangled if f ≥ 0.

For the case under consideration, we have:

S ≡ Si = Ss = 2Ns + 1 (9)

and:
Cq ≡ Cs = −Ci = 2

√
Ns(Ns + 1) (10)

which satisfies the inequality and therefore, as expected, |Ψ〉si
is an entangled state. In addition, one can easily find the
approximate value of Cq for which the state showcases mini-
mum entanglement. It is found that this bound corresponds to
approximately Cc = 2Ns. Therefore, if Ns � 1 then Cq ≈ Cc
and the entanglement is negligible. On the other hand, if
Ns � 1 then Cq � Cc and the state is highly entangled. In
other words, low brightness (Ns � 1) Gaussian states from
SPDC showcase strong nonclassical signatures and a high
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degree of entanglement [22] while high brightness (Ns � 1)
Gaussian states from SPDC have minimal entanglement.

B. Target Detection

As discussed above, the signal photon state may be bounced
back toward the detector and be registered/measured, or the
detector may just measure noise photon states. Therefore we
have two detection hypotheses:
• Hypothesis H0: there is no target within range of the

detector. In this case, the detector will only measure
noise photon states. In this case the Wigner distribution
covariance matrix is given by:

Γ
(0)
ri =

1

4


B 0 0 0
0 B 0 0
0 0 S 0
0 0 0 S

 (11)

where:
B = 2Nb + 1 (12)

with Nb representing the average number of noise pho-
tons. From this the entanglement criterion function is:

f
(0)
ri = 16NsNb(Ns + 1)(Nb + 1) ≥ 0 (13)

which means that the state is not entangled.
• Hypothesis H1: the target is within range but only a

portion of the photons κ return to the detector. In this
case, the Wigner distribution covariance matrix is given
by:

Γ
(1)
ri =

1

4


A 0 Cr 0
0 A 0 − Cr
Cr 0 S 0
0 − Cr 0 S

 (14)

where:

A = 2(κNs+Nb)+1 Cr = 2
√
κNs(Ns + 1) (15)

and the separability criterion function is given by:

f
(1)
ri = −16Ns(Ns + 1)(κ−Nb)(Nb + 1) (16)

which means that the state is not entangled if κ ≤ Nb.
In the case of microwaves, the number of noise photons

correspond to Nb ≈ 104. Indeed, solar radiation has a strong
contribution to noise in the microwave regime. In such a case,
f
(1)
ri is always positive, which means that no entanglement

survives the noisy microwave environment produced by solar
radiation. Therefore, the states at the detector may not be
entangled under both hypotheses. Indeed, the environment
obliterates any degree of entanglement by the time the signal
photon state returns to the detector. Nonetheless, some of
the initial quantum correlations expressed in the highly non-
classical state with covariance matrix Γsi persist even after
total annihilation of the entanglement [22].

The next step is to discriminate between both hypotheses. In
theory this could be accomplished by measuring the operator
Â given by:

Â = ρ̂
(1)
ri − ρ̂

(0)
ri (17)

where ρ̂(1)ri and ρ̂(0)ri are the density matrices that correspond to
hypotheses 1 and 0, respectively [20]. These density matrices
are related to the covariance matrices Γ

(0)
ri and Γ

(1)
ri . If the

measurement yields a positive value then the target is declared
to be within range. On the other hand, if the measurement
yields a negative number, the target is declared to be out of
range. Needless to say, it is not a simple task to find the
eigenvalues of Â. As a consequence, as will be shown in
the following section, in the most general case our theoretical
analysis can only determine upper bounds on the detection
error probability.

V. DETECTION ERROR PROBABILITY BOUNDS

The detection error probability ε represents the probability
that the sensor registers a false detection, i.e., registers a
detection when no target is present or fails to register a
detection when a target is present. In other words, ε reflects
the probability that the conclusion implied by a particular sen-
sor observation (detect or no-detect) is wrong. Alternatively,
(1− ε) represents the probability that the conclusion implied
by the observation is correct.

In the limit of a non-informative sensor that returns es-
sentially random results, the probability that the conclusion
implied from a particular observation is incorrect is equivalent
to a coin toss, i.e., ε = 0.5. This is a somewhat counterintuitive
measure in the sense that ε = 0 and ε = 1 represent limits that
can only be achieved by a perfect sensor, albeit with the latter
case representing a situation in which the labels for detect and
no-detect events have been reversed. We choose this measure
because it has mathematically convenient properties and is
reasonable as long as it is assumed that ε is less than or equal to
0.5, which should be true for any realistic properly-calibrated
sensor.

As will be shown later, thermal background noise tends
to dominate over shot noise and dark counts in low-SNR
scenarios for standoff detection, so to simplify our analysis
we will define a high-noise scenario as being in the regime
in which the joint impact on SNR of noise sources other than
background radiation is negligible.

In the case of Gaussian signal states described in the
previous section, the detection error probability can be derived
using conventional quantum optical models. We will consider
two cases, a “quantum” case in which the signal and idler
photons are entangled, and a “coherent” case which does not
use entangled photons. In the second case, even though there
is no entanglement, we assume that we still have photon-by-
photon control. As such, this case can be understood as the
best possible sensor that does not use entanglement. While
such a coherent sensor may be expensive and unnecessary in
practice, it offers a bound to better understand the performance
of other sensors that do not use entanglement.

We begin by focusing on the the low-brightness, high-noise,
low-reflectivity regime in which:

Ns � 1 (18)
Nb � 1

κ� 1
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where as before, Ns is the average photon number per mode,
κ represents photon loss from both target absorption and
atmospheric attenuation, and Nb gives the average background
number of photons. These permit upper bounds to be obtained
for the detection error probabilities εq and εl for entangled-
photon and coherent (non-entangled) sensors, respectively, as

εq ≤ Pq ≡
e−MκNs/Nb

2
(19)

and

εl ≤ Pl ≡
e−MκNs/4Nb

2
(20)

where M is the number of signal photons emitted to produce
a detect or no-detect conclusion [22]. To clarify the notation,
the total signal is given by the product M×Ns. For all of our
analyses we will fix Ns = 10−4 and Nb = 104, and we will
scale the signal only with M .

It can be observed that the difference between both upper
bounds is a factor of 4 in the denominator of the exponent,
which implies that entanglement-based quantum radar offers
a 6 dB advantage in the error-probability exponent over the
optimal coherent receiver that does not use entanglement.

It is important to remark that most of the subsequent
analysis is entirely based on the detection error probability
bounds described by equations (19) and (20). In addition, we
clarify that when we compare an entanglement-based quantum
radar with a coherent sensor as defined above, we will always
assume that both operate with the exact same number of
photons M and the same signal photon density Ns. Clearly, it
is much simpler to generate a large number of non-entangled
photons, but our goal is to compare both systems operating
with the same energy.

The upper bounds presented above suggest that the average
SNR per signal pulse for both types of sensor can be approx-
imated as:

SNR ≈ MκNs
Nb

(21)

As long as SNR is not large, the upper bounds for εq and
εl are valid to within a relatively small percentile error and
the approximation will tend to capture the dominant effects
of noise in the regime of interest (between -25 and 25 dB).
Based on this observation, and more importantly because of
its mathematical simplicity, we will assume its use throughout
the following analyses.

Alternatively, we could define snr as the signal-to-noise
ratio per signal photon as:

snr ≈ κNs
Nb

(22)

Under our characterization of what constitutes a challenging
noisy environment, the average snr per signal photon is ap-
proximately −90 dB, which includes all environmental sources
of attenuation. Thus, to achieve an order-one effective SNR
per signal pulse the system will need M ≈ 109 photon states,
whether they be entangled in the case of a quantum radar or
unentangled in the case of a coherent sensor. In other words,
each observation – i.e., total integration of information leading
to a detect or no-detect conclusion – requires on the order of

109 photons to be emitted, e.g., ∼ 109 Gaussian entangled
photon states in the case of a quantum radar.

VI. THEORETICAL COMPARISON

Let us now examine the theoretical performance of three
radar types in a challenging regime typical for standoff sensing
applications:
• A quantum radar that uses entangled photon states (a

signal and an ancilla);
• A coherent radar that uses non-entangled photon states

but allows single-photon control; and
• A classical radar system described by Albersheim’s for-

mula.
To compare these three sensors we will use detection error
probability as our measure of performance. The detection error
probability for the first two sensors has already been presented
in the previous section, so now we need to obtain an equivalent
expression for the classical radar case.

Following our general approach of exploiting simplifying
approximations to make the flow of analysis easier to follow,
we will use Albersheim’s empirically-derived formula to ex-
press the approximate average per-pulse SNR for a classical
radar when integrated over n independent pulses:

SNRn =
A+ 0.12AB + 1.7B

n
(23)

with

A = ln

(
0.62

Pfa

)
(24)

B = ln

(
Pd

1− Pd

)
where Pd is the probability of correct detection and Pfa is the
probability of false alarm [67]. From this the detection error
probability bound Pc can be defined to be

Pc ≡
1− Pd

2
. (25)

The accuracy of Albersheim’s approximation is reported ( [67],
[68]) to be within 2 dB for 0.1 ≤ Pd ≤ 0.9 and 10−7 ≤
Pfa ≤ 10−3. Based on these range of values, for subsequent
comparison analysis we will favorably assume a conservative
value of Pfa = 10−7 that is optimistic with respect to the
true performance of a classical radar system described by the
Albersheim’s equation.

Figure 3 compares the relative performance of the three
sensors based on the theoretical models that determine the
upper-bound detection error probability. For the classical case
we have extrapolated the line that corresponds to the Alber-
sheim’s equation to smaller values of the detection probability
(0.0126 ≤ Pd ≤ 0.999).

It can be observed that in the low SNR and low-brightness
regime the quantum sensor significantly outperforms the co-
herent and the classical sensors, and these results are consistent
with those previously reported in the literature [22], [37].
This advantage comes from the quantum sensor’s ability to
extract additional entanglement-derived information from the
relatively small fraction of signal photons that are received.
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Fig. 3. Theoretical upper bound on the detection error probability ε for a
quantum radar with M = 109 entangled photon states (Pq - solid line), a
coherent unentangled photon state radar (Pl - dashed line), and a classical
radar described by the Albersheim’s formula (Pc - dotted line) with respect
to SNR in dB.

As the SNR becomes very small the detection error proba-
bility of all three sensors rapidly approaches the same non-
informative limit of 0.5. As the SNR becomes very large
the performance of the three sensors similarly converge but
to the idealized limit in which the detect versus no-detect
status of each observation is always correctly assigned. It
has been argued, however, that in theory the performance
of the quantum sensor should dominate between these two
limits because its signature will be amplified by additional
entanglement-derived information [37], [44], but at present
there is no way to determine whether this advantage can
actually be realized in practice, i.e., whether entanglement-
derived information can exceed the information cost incurred
by the practical overhead required to obtain it.

VII. SIZE OF THE QUANTUM PULSE

Figure 4 shows the upper-bound detection error probability
ε as a function of log10M (log of the number of signals) for
entangled (solid line) and unentangled (dashed line) photon
states when the signal-to-noise ratio per photon is snr =
−90 dB. It can be seen that both sensors converge to the non-
informative limit of ε = 0.5 as M becomes very small while
in the case of very large M the advantage of the quantum
sensor is lost because the coherent sensor will tend toward
the same maximum information limit due to the plentiful
availability of unentangled photons. In other words, there
is decreasing benefit gained from additional entanglement-
derived information because there is no shortage of classical
information available to both sensors from the large number
of received photons.

This motivates the determination of the optimal number of
signal photons to maximize the potential advantage achievable
by a quantum sensor in the high-noise regime under consid-
eration. This is of interest because it can be used to identify
a particular context in which a quantum advantage is most
likely to be achieved in practice. As already mentioned, it is
the tradeoff between improved information exploitation and
the practical constraints incurred by a more complex system
that will determine whether a true quantum advantage can be

8 9 10 11
log(M)

0.1

0.2

0.3

0.4

0.5

ϵ

Fig. 4. Upper bound on the detection error probability when the signal-
to-noise ratio per photon is snr = −90 dB with respect to log10M for
entangled (solid line) and unentangled (dashed line) photon states.

Fig. 5. Difference in the detection error probability upper bounds for the
entangled and non-entangled photon states with respect to log10M when the
signal-to-noise ratio per photon is snr = −90 dB.

realized. Let ∆ε be the difference of the detection error upper
bounds for the quantum (entangled) and non-quantum sensors:

∆ε ≡ Pl − Pq. (26)

Thus the goal is to determine the value of M that tends to
maximize ∆ε.

Figure 5 shows how ∆ε varies with respect to log10M
(still with an assumed signal-to-noise ratio per photon snr =

-100 -90 -80 -70
snr (dB)

0.05

0.10

0.15

0.20

Δ ϵ

Fig. 6. Difference in the detection error probability upper bounds for the
entangled and non-entangled photon states with respect to the signal-to-noise
ratio per photon snr in dB when M = 109.
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−90 dB) and there is a single clear and maximizing value.
This value, which we will denote as M̃ , can be analytically
determined from:

d

dM
∆ε =

1

2

(
αe−Mα − α

4
e−Mα/4

)
= 0 (27)

to give

M̃ =
4 ln 4

3 α
∝ 1

α
(28)

where α ≡ SNR. With a signal-to-noise ratio per photon of
snr = −90 dB we obtain log10 M̃ ≈ 9.2668, which can
be seen to be consistent with peak value shown in Figure 5.
Notice that at this signal-to-noise ratio per photon and with
the optimal number of photons M̃ , we obtain a signal-to-noise
ratio per pulse of SNR ≈ 2.668 dB.

It is important to observe that at this M̃ the desired
maximizing value for ∆ε is:

∆̃ε =
3

8
4−1/3 ≈ 0.2362 . (29)

Again, this is consistent with what is observed in Figure
5 as Pl(M̃) ≈ 0.3150 and Pq(M̃) ≈ 0.0787. It should
be noted that the value of ∆̃ε is virtually independent of
the signal-to-noise ratio per photon of snr and therefore
∆̃ε represents the largest advantage regardless of the level
of noise. Figure 6 shows the difference in the upper bound
detection error probabilities in the quantum and non-quantum
cases. As should be expected, there is an optimal value of the
signal-to-noise ratio per photon snr for a given M and ∆̃ε
bounds the maximum achievable quantum advantage.

VIII. IMPACT OF EARTH ATMOSPHERIC ATTENUATION ON
PERFORMANCE

In this section we further narrow the focus of analysis to
consider only atmospheric attenuation at the exclusion of all
other possible sources of noise in the case of a perfectly-
reflecting target. As before, our goal is to provide a simplified
characterization of the independent impact of a particular
source of sensor performance degradation so that the impact
on available entanglement-derived information can be more
clearly understood. From this section forward we will mostly
concentrate our discussion on the entanglement-enabled quan-
tum radar and what we have called a “coherent” radar which
offers photon-by-photon control without entanglement. As
explained before, this is the the best possible sensor that does
not exploit entanglement and is used purely to establish an
upper bound on the performance of a classical radar.

Given these assumptions the snr for a single photon state
that traverses a round-trip distance r is

snr =
κNs
Nb

=
Ns
Nb

e−χr (30)

where κ represents the losses due to atmospheric attenuation
or target reflectivity. In this section we are interested in
examining effects of the atmosphere, so we assume a perfectly
reflective target and only consider losses due to atmospheric
scattering and absorption. The parameter χ represents the
assumed attenuation constant for the atmosphere within the

Visibility (m) λ =1.25cm λ =3.2cm λ =10cm

30 0.2878 0.0460 0.0046

90 0.0576 0.0092 0.0009

300 0.0104 0.0016 0.0002

TABLE I
IMPACT OF CLOUDS ON THE ATTENUATION COEFFICIENT χ (1/KM) FOR

DIFFERENT RADAR WAVELENGTHS (ASSUMING AN AMBIENT
TEMPERATURE IN THE VICINITY OF 0◦C).

Fig. 7. λ = 3.2cm radar attenuation as a function of range (in km) through
clouds with visibility 30m (solid line), 90m (dashed line), and 300m (dotted
line).

surveillance region and Ns is the average number of Gaussian-
state signal photons. Notice that to better illustrate the impact
of the atmospheric attenuation, we are assuming a perfectly
reflective target. Based on the SPDC experiments [31], we
will use the value Ns ≈ 10−4, thus leaving us to identify the
practically relevant values of χ. Typical values for the case
of clouds or fog for different wavelengths are given [68] in
Table I.

Figure 7 shows attenuation as a function of distance for
λ = 3.2cm, which is inside the radar X-band (2.5-3.75 cm;
8-12 GHz), through cloudy environments of different visibility
ranges. The solid line represents the case of dense clouds with
only 30m of visibility, i.e., a human would only be able to
resolve objects out to a range of 30 meters. The dashed line
corresponds to 90m visibility, and the dotted line corresponds
to 300m visibility. As shown in Figure 7 , χ ≈ 0.046 km−1

for radar wavelengths of λ = 3.2cm in low visibility (30m)
conditions.

Atmospheric attenuation strongly limits the effectiveness of
radar, but this offers a potential advantage for low-brightness
quantum sensing in stealth applications. More specifically,
when there is a need for low-brightness target illumination
the value of entanglement-derived information increases.

Using log10 M̃ ≈ 9.2668 obtained earlier to maximize the
quantum advantage for the signal-to-noise ratio per photon
snr = 10−9, we obtain a signal-to-noise ratio of SNR≈
2.7 dB. Then, the respective upper bound detection error prob-
abilities for the entanglement-based quantum sensor; coherent
sensing with photon-by-photon control; and a classical radar
obeying the Albersheim equation are respectively:

Pq ≈ 0.08 (31)
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Fig. 8. Detection error probability bounds Pq (solid line) and Pl (dashed
line) as a function of range r (in km) to the target.

Pl ≈ 0.32

Pc ≈ 0.43

Notice that in this specific case, entanglement information
gives the quantum sensor a 4x improvement over lidar and
5.38x improvement over classical. However, as we discussed
before, in general entanglement-based quantum radar offers
a 6 dB advantage in the error-probability exponent over the
optimal coherent receiver that does not use entanglement. And
therefore, the maximum advantage offered by a quantum radar
over any other sensor that does not use entanglement is approx-
imately 6 dB. Calculating the maximum travel distance that
satisfies our required average photon number of Ns ≈ 10−4,
we find that attenuation from a 50km round trip reduces the
number of photons received at the detector to 1.85× 104.

Figure 8 shows the detection error probability bounds Pq
and Pl with M̃ photons under low visibility conditions. The
quantum advantage is clearly significant in a window around
the 25km range-to-target distance but decreases rapidly beyond
60km and is negligible beyond a distance of 80km, at which
both sensors become essentially uninformative. For a target at
100km only 0.01% of the transmitted photons return to the
detector, and at 132km only 1 photon is expected to return.

The plots of Figure 8 suggest that the behaviors of Pq and
Pl are nearly identical up to a horizontal shift, i.e., up to a
difference in range-to-target distance. The reason can be seen
by considering

Pq(r) =
e−M̃Nsκ(2r)/Nb

2
Pl(r) =

e−M̃Nsκ(2r)/4Nb

2
(32)

where κ(2r) represents the total photon attenuation as a
function of the entire traversal distance of returned photon
states (2r). Thus

Pq(r) = Pl(r − z) (33)

which is equivalent to

e−M̃Nsκ(2r)/Nb = e−M̃Nsκ(2r−2z)/4Nb (34)

and consequently:

4κ(2r) = κ(2r − 2z) =⇒ eχ2z = 4 (35)

=⇒ z =
ln 4

2χ
(36)

which corresponds to z ≈ 15 km. In the case of the assumed
attenuation coefficient, this says that if the classical sensor
achieves a particular detection error probability for a target
at distance r, the quantum sensor will achieve the same
probability for a target at distance (r+ 15) km. Of course the
specific value of the quantum range advantage is determined
by the assumed attenuation coefficient, but it is theoretically
nonzero for any detection error probability within the open
admissibility interval between 0.0 and 0.5. In fact, this can be
interpreted as a measure in units of distance of the information
potentially available from entanglement in the source photons.

IX. QUANTUM STEALTH

Returning to considerations of stealth sensing, the goal is
to achieve a practical detection capability while limiting an
adversary’s practical ability to detect our radiated sensing
signals. Under our present set of assumptions, less than 1
of the M̃ transmitted photon states will survive attenuation
at a range of Re ≈ 264km, so intuitively the effective SNR
that an adversary detector must accommodate to identify our
location is quite formidable. In fact, if the finite operation time
of our sensor is less than the integration time necessary for the
adversary to achieve a detection then for all practical purposes
the sensing operation will be invisible to the adversary. This
motivates a definition of stealth in terms of a threshold for
detection by an adversary.

For example, we could choose a stealthiness threshold based
on a detection error probability that is nearly 0.5 so that
an adversary’s level of confidence in a possible detection
of our sensor will be comparable to that of a coin toss.
As can be expected – and will be seen – the difficulty we
face in satisfying such a threshold increases exponentially
as it approaches the 0.5 limit of perfect stealth. To make
the analysis concrete, we will arbitrarily choose 0.4 as the
acceptable detection error probability we are willing to allow
for the adversary. In a real-world application a meaningful
utility function would likely be available, e.g., relating to the
cost we would expect to incur if the adversary is able to
confidently detect our sensor.

Stealth sensing has strong foundational connections to
secure communication theory. For example, as is the case
in establishing provable levels of security in cryptographic
applications, worst-case assumptions must be assumed about
the technological capabilities of the adversary. In our case
this equates to assuming the adversary has perfect line-of-
sight detectors for measuring all photon states. Under this
assumption the interception error probability for an adversary
sensor at distance r from a quantum entangled photon emitter
platform is

πq =
e−M̃Nse

−χr/(4Nb)

2
(37)

which means that small πq implies that the adversary’s error
in determining the location of our platform is small. Thus
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in the limit of πq = 0 the adversary can potentially deter-
mine the presence of the platform with complete confidence.
Alternatively, in the limit of πq = 0.5 the adversary cannot
ascertain the presence of our platform with any confidence
greater than a coin flip, i.e., we achieve perfect stealth. Of
course this limit cannot actually be achieved in practice, so
we will have to determine whether there exists some lesser
value that satisfies the performance requirements of the overall
application. In summary, we wish to identify the largest value
less than πq = 0.5 that we can confidently impose on the
adversary.

To simplify our analysis, let us now consider a coherent
sensor that has the exact same detection error probability as
an entangled photon sensor. This can be done at the expense
of a larger number of unentangled photon states. Indeed,
let us recall that the difference between the detection error
probabilities upper bounds for entanglement-based quantum
radar and for non-entangled coherent sensing is a factor of 4 in
the denominator of the exponent. Thus, if the coherent sensor
uses four times the number of entangled photon states, then
both systems have the same detection error probability. Then,
the interception error probability for an adversarial sensor
located at a distance r from the coherent system operating
with 4M̃ photons is given by:

πl =
e−M̃Nse

−χr/Nb

2
(38)

which differs by a factor of 1/4 in the argument of the
exponential because the coherent sensor emits 4x as many
entangled photons as the number of unentangled photons
produced by the coherent sensor.

To reiterate, we are comparing an entanglement-based
quantum radar and a coherent sensor operating at the same
detection error probability. For this to happen, the coherent
sensor has to operate with 4 times more signal photons than
the entanglement-based quantum radar. The detection error
probability of an adversarial sensor is given by the expressions
πq and πl. Clearly, because the coherent system uses more
photons, it will be more likely to be detected by an adversary.

Indeed, assuming the adversary sensor is located at distance
r from our sensor then the relative performance obtained
using a quantum versus coherent sensor can be seen from the
behavior of πq (solid line) and πl (dashed line) as shown in
Figure 9. From this it can be verified that the stealth bound is
satisfied by the quantum sensor up to a range of 96km while
the lidar can do so only up to 66km. Thus the quantum sensor
provides an additional 30km of stealth sensing range, while at
ranges less than 66km both sensors satisfy the required level
of stealth.

As should not be surprising from our previous examination
of entangled-vs.-non-entangled detection error probabilities,
the plots of πq and πl are the same up to a simple shift:

πq(r) = πl(r + z) (39)

which is equivalent to

e−M̃Nsκ(r)/4Nb = e−M̃Nsκ(r+z)/Nb (40)

Fig. 9. An adversary sensor’s interception error probability at a distance r
(in km) from a quantum radar (πq , solid line) and a lidar (πl, dashed line).

Fig. 10. Jamming as an active detection countermeasure.

and thus
1

4
κ(r) = κ(r + z) =⇒ e−χz =

1

4
=⇒ z =

ln 4

χ
, (41)

which in our case represents a shift of z ≈ 30 km. The
conclusion to be drawn is that the analysis of an adversary’s
interception detection probability exactly mirrors that of our
previous analysis of sensor detection error probability.

X. QUANTUM ROBUSTNESS TO JAMMING

Although slightly more complex to analyze, the quantum
advantage seen thus far in the cases of detection and inter-
ception error probabilities extends also to robustness against
active sensing countermeasures by an adversary, i.e., active
jamming of our sensor [67], [68]. This involves adversarial
transmission of noise photons toward our sensor in order to
reduce the effective SNR available to our system. Figure 10
shows a concrete example of an adversary aircraft transmitting
jamming noise toward a sensor to limit its ability to detect
and/or track a target aircraft.

Jamming has been a major focus of classical radar research
for over 70 years and is commonly examined using a simple
mathematical expression referred to as the jamming equation
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[29]. Following the general spirit of this paper, we use this
simple jamming model to compare quantum and classical
detection, but we acknowledge that in reality the behavior of
jammers is much more complex. This equation relates a target
that is characterized by its assumed radar cross section σ;
electromagnetic jamming waves with power Pj and gain Gj ; a
transmitter that has power Pt and gain Gt; and a radar receiver
with gain Gr defined as a function of angular observation
variables θ and φ.

The signal power after being reflected by the target is
expressed by the following radar equation as:

P (t)
r =

PtGt Gr(θt, φt) λ
2σ

(4π)3R4
t

(42)

and a related equation can be derived that incorporates the
effect of a jamming signal of power P (j)

r :

P (j)
r =

(
PjGj
4πR2

j

)
×
(
λ2Gr(θj , φj)

4π

)
(43)

These two equations can then be used to define a signal-to-jam
ratio (SJR):

SJR =
P

(t)
r

P
(j)
r

=

(
PtGt
PjGj

)
×

(
R2
j

R4
t

)
×
( σ

4π

)
×
(
Gr(θt, φt)

Gr(θj , φj)

)
(44)

The distance at which SJR≈ 1, i.e., when the jamming system
is effectively able to mask the target’s return signal, is referred
to as the burnthrough range [29]. In other words, within
the context of this simple model, jamming by an adversary
will be effective when SJR < 1 as the radar will not be
able to separate the return signal of the target from the total
noise entering the system. More generally, jamming becomes
increasingly more effective as

Rj ≈ Rt =⇒
R2
j

R4
t

� 1 (45)

while a radar looking in the direction of the target becomes
increasingly more effective as

Gr(θt, φt)� Gr(θj , φj) =⇒ Gr(θt, φt)

Gr(θj , φj)
� 1. (46)

From this we can analyze the effectiveness of a quantum
radar compared to a non-entangled coherent system with the
SJR expressed similarly as

SJRq =
M̃P

(t)
r

P
(j)
r

=
M̃Nse

−χ2Rt

Nje−χRj
=
M̃Ns
Nj

e−χ(2Rt−Rj) (47)

where Nj is the number of noise photons injected into the
sensor by the jammer. If the jamming signal emanates from
target itself, i.e., Rt = Rj , then:

SJRq =
M̃Ns
Nj

e−χRt . (48)

In this case the burnthrough range condition simplifies to

SJRq =
M̃Ns
Nj

e−χRt < 1 =⇒ M̃Nse
−χRt < Nj (49)

Fig. 11. Detection error probabilities Pq (solid line) and Pl (dashed line) as
a function of the number Nj of jamming photons.

Fig. 12. Additive noise sources affecting the photodetector [61].

and the resulting signal-to-noise ratio SNR available to the
sensor becomes

SNR =
M̃Ns e

−χRt

Nb +Nje−χRj
. (50)

In the case of a target at 25km (under the same as as-
sumptions as in our previous examples) the burnthrough range
condition is Nj > 18532. Figure 11 shows the effect of
jamming on the detection error probabilities Pq and Pl. In
the clear case of no jamming, i.e., Nj = 0), it can be seen
that Pq ≈ 0.08 and Pl ≈ 0.32, as we previously determined. It
can also be seen that the detection error probability approaches
the noninformative limit of 0.5 as Nj increases.

The first vertical grid line in Figure 11 corresponds to Pq ≈
0.16 and Pl ≈ 0.37 at which the burnthrough range condition
is Nj = 18532. Continuing with our prior chosen threshold
of 0.4 on the adversary’s allowed detection error probability,
we see from the second vertical grid line that the adversary
would require Nj ≈ 33990 noise photons to effectively jam
the classical sensor but a factor of 7 more noise photons (Nj ≈
230705) to jam the quantum sensor.

XI. NOISE IN QUANTUM RADAR

We consider six major sources of noise in the scenarios
of interest here: quantum shot noise, optical excess noise,
optical background noise, photodetector dark current noise,
photodetector excess noise, and electronics noise [1], [9], [11],
[24], [61], [63]. These are assumed to be additive as depicted
in Figure 12.
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Fig. 13. SNR (dB) as a function of target distance r (in km).

As a concrete example, consider the signal-to-noise ratio
in the case of N = 105 effective signal photon states (corre-
sponding to M = 109 emitted signal states of small photon
density Ns = 10−4), noise photon density Nb = 104, signal
photon wavelength λ = 3.2cm, effective noise bandwidth
∆ν = 1Hz, atmospheric attenuation χ = 0.046km−1, target
reflectivity η = 0.6, and dark count rate R = 1Hz. As
will be discussed in the following section, these are realistic
values for a scenario involving observations from a low-
brightness quantum radar within a low-visibility volume of
the atmosphere. In the case of a target at distance r the SNR
is determined by the photon round-trip distance of 2r and
it is shown in Figure 13. As should be expected, the SNR
decreases exponentially with increasing target distance as a
result of atmospheric attenuation and scattering.

The relative impact of the three most important noise
sources can be examined in terms of the average number of
photons contributed by each:

Nσ ≡ 2 ∆ν

η
(51)

Nβ ≡ 2 ∆ν

η

Nb
Ne−χr

Ndc ≡ 2R

η2 N e−χr

It can be expected that the number of photons lost will increase
exponentially with target distance and thus the SNR will
decrease commensurately. At very large distances the sensor
will primarily register dark counts or will detect photons
based on the thermal background because virtually all signal
photons will be lost. This means that the surveillance volume
must be determined based on a chosen SNR threshold. Figure
14 reveals that solar background radiation dominates other
sources in the regime of practical detection capability, which
should not be surprising.

Clearly there are myriad important practical factors that will
significantly impact any performance comparison of future
real-world implementations of a quantum radar to its clas-
sical alternatives beyond what could be incorporated into our
analysis. However, we can examine some of our simplifying
assumptions, e.g., ignoring of the contribution dark counts
and shot noise in our assumed number of noise photons Nb.

Fig. 14. Values of Nσ (solid line), Nβ (dashed line) and Ndc (dotted line)
as a function of target distance r (in km).

Fig. 15. Detection error probability bounds assuming a more complete noise
model Pqf (solid line) versus a pure solar-produced background noise Pqb
(dashed line) as a function of target distance r (in km).

Because the dark count contribution can be expected to be
very small in our example scenarios (target ranges less than
100km) we can effectively model the joint contribution of dark
count and shot noise as:

Nb −→ Nb +NsMe−χr. (52)

Figure 15 shows the detection error probability bounds using
this more complete noise model Pqf compared to pure solar
background noise Pqb as a function of target distance r (in
km). It can be observed that the higher-fidelity model implies
significantly worse detection error probabilities in the regime
of high SNR when the target range r is small because shot
noise becomes increasing dominant. The impact of the higher-
fidelity noise model (i.e., with Nb ≈ Nb +NsMe−χr) on the
relative advantage in detection error probability of quantum
(Pqf ) over classical (Plf ) is shown in Figure 16. It can be seen
that the breakthrough threshold of 0.4 is reduced to 47km for
quantum and 26 km for classical, but the quantum advantage
in range improves from 15 km to 21 km compared to our
simplified background-only model.

XII. THE CHALLENGES AHEAD

In summary, our analysis – despite its many assumptions
and limitations – presents a compelling case for undertaking
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Fig. 16. Detection error probability bounds using the full noise model for
the entanglement-based Pqf (solid line) and non-entangled Plf (dashed line)
sensor with respect to the distance r (in km).

the substantial scientific and engineering efforts necessary to
determine the extent to which the theoretical quantum advan-
tage can be realized in real-world systems. These include:
• Entangled Microwave Photon Generation: By far the

most critical challenge is the fast and efficient generation
of entangled photons in microwave frequencies. As we
have shown based on purely theoretical considerations, a
signal package with more than 109 entangled photons is
required to determine the presence of a target 25km away
with detection probability of about 0.8 in low visibility
conditions. If the target is in motion, which is the most
realistic scenario, the entire signal package needs to be
generated, emitted, and processed in a short period of
time so that the process can be repeated multiple times.
This means that it will likely be necessary to generate
more than 109 entangled photons per millisecond if the
target is in motion at a range of around 25km (the
exact amount will of course depend on many factors
such as the target speed, the target cross section, and the
quantum radar wavelength). While the use of nonlinear
crystals to generate entangled optical photons is very
well understood from a theoretical and experimental point
of view, much less is known about how to do so in
the microwave regime. Potentially viable proposals have
been made for the use of quantum dots; resonant QED
cavities; and down conversion from optical frequencies;
but presently the generation of even a small number of
entangled microwave photons remains a huge scientific
and technological challenge [44]. In addition, an ideal
source of entanglement for sensing applications would
produce entangled pairs on demand; that is, with near
100% certainty the source produces exactly 1 entangled
pair at the push of a button; however, such sources are
in their infancy and not commercially available.

• Distinguishable Optical Modes: A related challenge is
the number of distinguishable optical modes available on
each millisecond-long signal package [19], [35]. Because
quantum radar exploits the photon-level correlations be-
tween entangled signal and idler photons, it is necessary
to have these photons in distinguishable optical modes

so they can be properly sorted out by the system. In the
case of X-band photons, for instance, with a 40% frac-
tional bandwidth and a 600 MHz frequency bandwidth,
a millisecond signal package can only have about 4,000
distinguishable optical modes. This is substantially below
the required 109 required for optimal quantum sensing
at 25km and could lead to extremely large integration
times [19]. Even though there have been some proposals
to address this problem, including the design of virtual
modes in a parallel architecture and using multiple-input
multiple-output channels using beam-splitters, consider-
able research is still required to overcome this obstacle
[25], [33], [35].

• Quantum Memories: As described in Figure 1, the idler
photon needs to be stored in a robust and reliable quantum
memory. This memory has to faithfully hold the quantum
state of the idler photon for a period of time determined
by the time of travel of the signal photon. In addition,
the process of comparing the idler and received signal
photons requires the construction of non-trivial quantum
operators that act on both photon states. These operations
are accomplished using quantum gates similar to those
required for a quantum computer. Fortunately, current
research on fault-tolerant quantum computation is making
progress toward near-term practical and dependable long
decoherence-time quantum memories and fault-tolerant
gates [21]. In addition, some proposals such as “quantum
noise radar” may circumvent the need of a quantum
memory [64].

• Single Photon Detectors: Equally fundamental for the
design of a fully functional quantum radar is the devel-
opment of improved single photon detectors with very
high detection efficiencies yet very small dark currents
and excess noise. As with the case of quantum memories,
such devices are receiving a significant level of research
focus because of their need in other quantum technologies
such as secure quantum key distribution [44].

• Signal Processing: The signal photon is expected to
traverse an attenuating environment, so at near 0 dB SNR
most of the signal photons will be scattered or absorbed
by air molecules and will never reach the detector.
Furthermore, some of these photons may be received out
of synch with the idler photons stored in the quantum
memory. Consequently there is a strong need to develop
robust signal processing techniques able to extract as
much useful target information as possible from the few
signal photons that are received by the detector. This
requires identification of the specific encodings of the
signal photons that provide the best resilience to corrup-
tion under the environmental conditions of relevance to
the application of interest [10]. In addition, we need to
develop robust techniques to optimize the integration time
of the information from all the returning signal photons.

• Detection and Ranging Protocols: To date, no efficient
quantum ranging protocol has been developed. While
quantum illumination offers very interesting advantages,
it is only a detection protocol, i.e., is only concerned
with determining if a target is present or not at a specific
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point of space). Ranging protocols to actually estimate the
distance to the target have proved to be very challenging
to design. The likely reason is that most entanglement-
based standoff quantum sensing devices appear to require
single-photon control, where each signal photon and its
entangled idler counterpart need to be identified to extract
target information from the entanglement correlations. It
is clearly not feasible to illuminate and probe a large
region of space using these techniques. However, intrigu-
ing proposals such as “progressive quantum scanning”
(exploiting some existing information about the target)
and “quantum noise radar” (exploiting the entanglement
represented by the statistical properties of a group of
photons) appear to be able to circumvent this problem to
some degree [43], [64]. Nonetheless, further research in
this area is required for the design of quantum detection
and ranging devices when no other target information is
available.

• Quantum Hardware: In general, most detection and
ranging protocols will require sophisticated quantum
hardware to perform operations and measurements on the
photon states. For example, basic quantum illumination
requires a very specific type of joint measurement [22].
Even though quantum illumination has been demon-
strated experimentally, this was done using a suboptimal
receiver that only achieved a 3 dB advantage (instead
of the predicted 6ḋB) [18]. Short of a general-purpose
quantum computer, even the most simple design of an
optimal quantum illumination receiver requires sophis-
ticated quantum operations on the pair of entangled
photons [74]. Therefore, it is necessary to develop robust
quantum hardware to implement any sophisticated quan-
tum detection and ranging system. Fortunately, quantum
hardware is currently being developed within the context
of quantum computation [59].

• Target Interaction: Besides their interaction with the
attenuating environment, some of the signal photons
may also interact with the target before being reflected
back to the detector. In general, the target may have a
sophisticated geometry and may be moving in a non-
trivial manner [69]. Also, the target may be composed
of layered materials with specific electromagnetic prop-
erties. Thus, we need to improve our understanding of
the details of these kinds of photon-target interactions so
they can be modeled with higher fidelity, e.g., for better
quantum radar cross section models that provide more
than simply “target in/outside range” classifications [4]–
[8], [37], [49]. For example, it is important to determine
how Doppler or other signatures in quantum radar can
be used to determine the presence of moving parts in the
target (e.g., fan or helicopter blades); to reduce the effects
of clutter (e.g., due to hail or radar countermeasures); or
for target discrimination (e.g., to determine if there is
a single target or many clustered targets). Even though
radar cross sections is an important issue for classical
radar systems, quantum interactions and measurement
protocols could lead to novel effects not seen in the
classical domain.

• Quantum Attenuation Models: As quantum radar is
a standoff sensing technique, the signal photons are
expected to traverse a noisy and attenuating environ-
ment [40], [44]. That is, signal photons will be lost to
absorption and scattering produced by molecules in the
environment. Currently the classical interaction between
signal photons and the environment is modeled with a
macroscopic bulk material approximation [44]. However,
the transition to quantum-based sensing modalities offers
an opportunity to develop and exploit higher-fidelity
attenuation models using the fully quantized Maxwell’s
equations in presence of material media [56], [57]. Such
models could create or significantly improve the quantum
advantage over classical in some scenarios and therefore
represents a potentially high-impact research topic. Once
again, even though attenuation is an important issue for
classical radar systems, certain quantum interactions with
the environment could lead to novel effects not seen in
the classical domain.

• Sensor System Design: Finally, it is important to note
that quantum radar cannot be expected to replace clas-
sical radar and other traditional sensing methods. In any
realistic context it will be necessary to design a mixed
system of quantum and classical sensor components that
best leverages their relative advantages with respect to
the scenario of interest [38], [39]. In some sense this may
seem less daunting than the previous challenges because
the characteristics of quantum sensing technologies can
in theory be incorporated into the component spreadsheet
of the system design optimization process just like any
other classical component. However, it is likely that
the distinctly non-classical performance characteristics of
quantum technologies will radically change the nature
and complexity of the problem [38]. In fact, it may prove
necessary to apply quantum optimization technologies to
obtain practical solutions in a reasonable amount of time.

• System Information Exploitation: The fact is that what
constitutes the “best” system for a given application
depends critically on the filtering and tracking algorithms
that will process the information provided by the system
[38], [39]. If this information is partially quantum in
nature then traditional estimation and filtering methods
will have to be generalized accordingly to optimally
exploit that information [38]. Clearly, improvements to
these methods will affect the relative performances of
different system configurations, and therefore will impact
the optimization problem to be solved by the sensor
system design process, i.e., the problems of sensor system
design and system information exploitation are not really
independent.

XIII. CONCLUSIONS

This paper provides a simple back-of-the-envelope and
implementation-agnostic analysis to glimpse the kinds of ex-
pected improvement that a quantum detection and ranging sys-
tem could provide for applications of interest. Such analyses
of course cannot lead to definitive conclusions, but we believe
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they provide evidence that in some contexts quantum radar
can be expected to offer realizable practical advantages over
classical alternatives.

As quantum entanglement offers an advantage on the small
signal-to-noise regime (approximately from -15 to 20 dB), the
applications of quantum radar may be limited to those that
require the detection of targets using the minimum amount
of energy that is possible. For example, stealth sensing for
military applications or for medical imaging where it is
desirable to keep radiation levels to a minimum. On the other
hand, if no low energy sensing constraints exist, then classical
radar will be preferable to quantum radar. Indeed, in the large
signal-to-noise regime, the classical radar will operate with a
similar detection probability as quantum radar, but without the
enormous technological complexities involved with quantum
hardware.

Of course, as we already mentioned, there are many sci-
entific and engineering challenges that need to be addressed
before we can assert the true advantage of quantum radar
systems. Based on our previous discussion, we can now
enumerate what we believe are the most important conclusions
to be drawn from our examination of quantum detection and
ranging:

1) Quantum entanglement represents a new and radically
different source of information that theoretically can
permit a quantum radar to significantly outperform its
classical counterparts in multiple ways.

2) Analyses that are roughly analogous to back-of-the-
envelope calculations provide a glimpse of the kinds
of improvement that a quantum radar can provide in
practical applications of interest.

3) Many practical engineering obstacles remain to be
solved before the full potential of quantum radar can
be realized.

4) All things considered, a strong case can be made that
quantum radar research represents a “high risk” / “high
payoff” endeavor that justifies further scientific and
engineering consideration, investigation, analysis, and
discussion.
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