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This thesis examines the theoretical and computational problems associated with map 
building and localization for autonomous vehicles. In particular, components of a system 
are described for performing terrain-aided navigation in real time for high speed vehicles 
or aircraft. Such a system would be able to dynamically construct a map of distinctive 
naturally-occurring environmental features while simultaneously using those features as 
landmarks to estimate the position of the vehicle. 

In order to develop such a system, a variety of challenges are addressed. Specifically: 

1. A new approach for nonlinear filtering is described that is not only easier to implement, 
but substantially more accurate than the conventional methods. 

2. A new approach is developed for avoiding problems associated with correlations among 
the position estimates of mapped features. Such correlations prevent the application 
of standard real time filtering methods and constitu te the key challenge in the area of 
large scale map build ing. A byproduct of this development is a new general-purpose 
filtering and data fusion technique. 

3. A new data structure is developed for storing the map so that sensor observations can 
be associated with candidate features in the map in real time. This data structure 
is shown to be capable of supporting real time performance for maps having many 
thousands of features. 

4. A new combinatorial result is derived that facilitates the decision process for determin­
ing which mapped feature is most likely to have produced a given sensor observation. 

Applications of the above results to other more general engineering problems are also d is­
cussed. 
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Extended Technical Abstract 
This thesis considers technical issues associated with the estimation of the state of a physical 

system or systems based on a sequence of sensor measurements. Although autonomous map building 
is the primary application of interest, the technical contributions of this thesis are generally appli­
cable to a wide variety of filtering, control, and data association problems. This e.'Xtended abstract 
is intended for persons who are already familiar with these areas, and in particular for persons 
interested in Kalman filtering. 

Definitions, As.m.mptinns, and Other Details 

We treat a system X as a random vector x (-) with an unknown distribution function. We define 
an estimate of X to be a pair (a , A ) in which the vector a is a purported mean vector of the 
distribution function associated with the random ,·ector <p(x (·)], where <p(·] is some known/modeled 
transformation of the true state of the system. The matrix A is defined to be a conservative 
estimate of the covariance of the distribution function of the transformed state about the mean 
vector a . Specifically, 

A 2'.: E [(a - cp[x (·)])(a - cp[x(·)])T], 

where a matrix inequality of the form A :::: X for posit ive definite or semidefinite matrices A and 
X holds if and only if A - X is positive definite or semidefinite. In other words, the estimated 
covariance matrix A is always an overestimate of the expected squared difference between the true 
mean of the unknown distribution function and the estimated mean a. 

The function cp[·] defines t he subspace of interest out of the potentia1ly infinite state space 
within which the system X can be described. For example, the state of a car could be defined by 
its make, model, color, year of manufacture, weight, materials, price, etc., but it is typically defined 
in enp;ineerinp; applications in terms of a small number of variables such as position and kinematics. 
Implicitly, therefore, cp[·] projects the full state of the vehicle down to the subspace defined by the 
relevant variables and choice of units, e.g., meters/second versus kilometers/hour. 

Given some fixed choice of cp[·], the data fusion problem of interest is the following: Given two 
conse1·vative estimates of the state of a system, ( a , A ) and (b , B ), how can an improved fused 
estimate ( c , C ) be formed from the information provided by the two estimates? More specifically, 
the goal is to obtain a fused estimate in which C ~ A and C ~ B , and preferably the inequalities 
are strict. If A ::;:: B , then letting the fused estimate be ( a , A ) achieves this goal, but it ignores 
any information provided by the other estimate. If the fused estimate is to improve the state of 
knowledge about the system, i.e., h<ts covariance strict ly less th<m ei ther of the prior estim<ites, then 
information from both estimates must be exploited . 

If the errors associated with the prior estimates can be assumed independent, then the Kalman 
filter update: 

C [A - 1 + s -1r1 

c C [A-1a + s-1b) 

guarantees a conservative estimate such that C < A and C < B for any conservative estimates 
(a , A ) and (b , B ) with finite, nonzero covariances. 

If the given estimates are (1) conservative, (2) in the same state space, and (3) have independent 
errors, then the Kalman fi lter provides an optimal mechanism for solving the data fusion problem. 
The applicability of the Kalman filter, however, depends on the ability to satisfy these conditions in 
practice. We will explain the implications of these conditions and describe additional mechanisms 
and generalizations which avoid their most important practical limitations. We will then consider an 
additional condition, (4), t hat the two given estimates are of the same system. This latter condition 



111 

is an issue when the states of multiple systems a re being estimated and it is not known a priori from 
which system any given measurement was taken. 

Condition {1} - Estimates must be conservative 

If the data fusion mechanism is guaranteed to yield conservative fused estimates from conserva­
t ive prior estimates, t hen it is inductively crit ical to ensure that all estimates used in the process 
are conservative. In most cases, the only source of direct information about the system comes from 
sensor measurements. 

Although most measuring devices/processes are based on well understood physical principles, it 
is not generally possible to analytically characterize all possible sources of measurement error. For 
e,xample, a measuring device can be affected by random variables associated with the manufacturing 
process which produced it. Even if statistics about the manufacturing variables can be determined, 
that is not enou.e;h to allow conservative covariances to be determined for measurements taken from 
any particular device. 

The typical way to quantify the measurement accuracy of a sensor is to take many sample 
measurements of systems whose true states a re known. By comparing the known states to the 
measurements, it is possible to estimate an enor covariance matrix. By taking more and more 
measurements, it is possible to obtain increasingly more accurate covariance estimates. It is also 
possible, with some weak additional assumptions, to estimate from the number of samples tested 
how much larger to scale the empirically determined covariance to ensure with high confidence that 
it is t ruly conservative. 

In summary, it. is possible t.o empi1·ically <let.ermine I.he covariance of I.he error dist.ribut.ion 
associated with a measurement process to almost any level of precision. It is not possible to determine 
it exactly from any finite number of samples because there may be extremely infrequent occasions 
when the sensor yields measurements with enormous errors. However, the covariance of an unknown 
distribution is much more amenable to empirical determination than are other distribution statistics, 
e.g., maximum bounds, which often do not exist (as opposed to covariance, which exists for almost 
any distribution associated with a real-world measurement process). 

Condition (2) - Estimates must be defined in the same state space 

:V.Cost measurement processes provide information in a local coordinate frame different from the 
state space of interest. For example, a radar typically provides measurements in a local spherical 
coordinate frame centered at the position of the radar. Thus its estimates are defined in terms of 
the target's range and bearing from the radar. If the target's state is being maintained in a global 
Cartesian coordinate frame, then the measurement estimates cannot be used directly. An analogous 
situation arises with the time-indexed coordinate frame of a dynamical system in which an estimate 
of the state of the system at t ime tk must be fused with information from a measurement taken at 
a subsequent t ime tk+I. 

If an estimate in one coordinate frame can be t ransformed to t he coordinate frame of another 
estimate, then the two estimates can be fused in the common coordinate frame. For example, if 
a matrix H transforms an estimate (a , A ) into the coordinate frame of an estimate (b , B ), then 
a Kalman fused estimate can be generated directly in the coordinate frame of (b , B ). It is also 
straightforward to show that a Kalman estimate in the coordinate frame of (a , A ) can be generated 
as: 

C [A - 1 + H TB -1Hr1 

c C [A- 1a + H TB - 1b) . 

However, this straightforward application of the Kalman filter depends on the fact that a linear 
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transformation H applied to any distribution with mean and covariance (a , A ) will produce a dis­
tribution with a mean and covariance (H a , HAHT). In other words, the first two central moments 
of a distribution are linear statistics. 

The problem that arises in most practical situations is that t he transformat ions of interest are 
nonlinear. For example, the transformation from the spherical coordinate frame of a sensor to a 
global cartesian coordinate frame is highly nonlinear. The same is usually true for estimating t he 
future state of real-world dynamical systems. Without knowledge of the exact underlying distribu­
tion associar.ed with an estimate, it is not generally possible to determine a nonlinearly transformed 
mean and provably conservative covariance for an arbitrary nonlinear transformation. Because the 
underlying distribution is not generally known, approximate estimates must be made based only on 
mean and covariance information. 

The traditional method for obtaining approximate nonlinearly transformed estimates is to gen­
erate an approximate transformation matrix H by linearizing the true nonlinear transformation 
h[·]. More specifically, the estimated transformation of an estimate ( a , A ) would be (h[a], HAHT), 
where H is the J acobian v h[·]. The Kalman filter using linearized transformations is referred to 
as the extended Kalman filter (EKF). It can be shown empirically that linearization often produces 
very poor estimates with nonconservative covariances. The poor estimates are due in part to the 
fact that the transformation of the mean does not in any way exploit covariance information. 

An intuitively (and empirically verifiable) better mechanism for applying nonlinear transforma­
t ions is to transform a proxy distribution having the same mean and covariance as the estimate. 
Specifically, a discrete distribution of points/vectors {x1 , ... , xn} can be generated so as to have 
mean a and covariance A , and then can be directly transformed as {h[x 1], ... , h[xn]}. Assuming 
that the proxy distribution transforms similarly to the true distribution, the mean and covariance 
of the transformed set of points should be a good approximation to the mean and covariance of the 
true transformed mean and covariance. 

It is easy to verify that the set of vectors a ± VnAi,, generated from then columns (or rows, 
depending on the chosen root) of the square root of then x n covariance matrix A , does in fact 
represent a distribution with the desired first and second moments. The fact that such a distribution 
consisting of O(n) points exists is important because it allows the transformation to be computed 
with same order of calculations as is required for an ordinary linear transformation. In other words, 
the improved estimates of the method are obtained at little or no computational cost beyond that 
of linearization. 

The improved accuracy of this new method, which is referred to as the Unscented Transfor­
mation, has been demonstrated in a variety of applications. Analysis has also been performed to 
explain why this improved accuracy is to be expected. However, more accurate estimates do not 
necessarily imply that the covariance estimates are conservative. When dealing with nonlinearly 
transformed estimates, it is necessary to enlarge the estimated covariance to account for errors as­
sociated with the t ransformation process. In general this is a tuning process that requires empirical 
analysis analogous to that required to determine the noise characteristics of a measuring device. 

Condition (3) - Estimate errors must be independent 

The independence assumptions associated with the Kalman filter are usually considered to be 
relatively innocuous for practical applications because of the following misconceptions: 

• It is widely believed that in most applications the error associated with each new sensor mea­
surement is independent of the error in the current system estimate, which is derived from 
previous measurements. The problem is that any nonlinear transformation will introduce 
Lime-correlaLed errors. For example, if each updaLe of Lhe sysLem esLimaLe involves Lhe non­
linear transformation of a measurement from the coordinate frame of the sensor, the errors 
associated with that transformation will be t ime-correlated. Specifically, while the errors in 
each raw measurement may be independent of those of previous measurements, the errors in 



v 

the transformed measurements are not independent. Because the system estimate is derived 
from previously transformed measurements, its errors are also not independent of those of the 
current transformed measurement. There are many other even more subtle avenues by which 
correlated errors may enter the estimation process. 

• If estimates are not independent, it is widely believed that augmented Kalman filter equations 
can be applied to incorporate cross covariance information to yield conservative estimates. 
The problem is that while such augmented equations have been derived, they require exact 
knowledge of estimate cross covariances. Unlike covariances which can be conservatively over­
estimated, any deviation from the use of true cross covariance information in the augmented 
Kalman filter equations can lead to erroneous (nonconservative) estimates. In other words, 
not only is it generally impossible to determine the degree of cross covariance between two 
estimates, the augmented Kalman equations do not admit approximations to be used. Texts 
on the Kalman filter typically assume independence and casually suggest that all other cases 
can be addressed with the augmented equations. This is a significant misrepresentation of the 
situation. 

It is possible to re-examine much of the applied literature on the Kalman filter and explain observed 
poor results (though often purported to be good results by the authors) in terms of violations of 
the strict Kalman independence assumptions. In fact, the performance of the Kalman filter is often 
observed to be relatively unstable, and very sensitive to the effects of tuning, despite theoretical 
analysis suggesting that it should exhibit strong stability. The problem is that a subtle violation of 
independence assumptions can severely undermine the integrity of a Kalman filter. Because there 
is no general way to avoid such violations, an alternative to the Kalman filter is required to fuse 
estimates wit.h unknown ciegrees of c:orrelat.ion. 

It turns out that it is possible to derive an alternative to the Kalman filter that avoids indepen­
dence assumptions. In fact, the equations are very similar: 

C (wA - 1 + (1 - w)B - 1r 1 

c C (wA - 1a + (1 - w)B - 1b), 

where 0 ::; w :::; 1 is a scalar parameter selected to minimize any chosen measure of the size of the 
covariance matrix C. This update mechanism (and its various algebraic formulations and general­
izations) is referred to as Covariance Intersection. It can be shown that the resulting covariance C 
is guaranteed to be conservative with respect to the estimated mean c for any choice of w regardless 
of the degree of correlation between the prior estimates. This is t rivially verifiable for the limiting 
values w = 0 or w = 1 because the result is one of the prior estimates. 

In order to ensure that the system estimate never degrades after a measurement update, i.e., 
to ensure nondivergence, it is necessary at each update to select a value for w that minimizes a 
fixed measure of covariance size. In other words, it is necessary to ensure that the updated system 
covariance estimate is always less than or equal to, according to the chosen measure, the prior system 
covariance. For a variety or reasons, it is usually best to choose w so as to minimize the determinant 
of C . Fort uitously, the optimum value of w for minimizing the determinant can be computed very 
efficiently. 

Covariance Intersection provides a mechanism for solving a much larger class of estimation/filtering 
problems than the Kalman filter. General nonlinear filtering can be performed rigorously using Co­
variance Intersection as long as conservative covariances can be generated for nonlinearly transformed 
estimates. The Kalman filter , as has been discussed, cannot be applied rigorously because correlated 
errors of unknown magnitude are introduced and propagated by nonlinear transformations even if 
the estimated covariances are conservatiYe. 

A problem that illustrates the power of Covariance Intersection is simultaneous map building and 
localization. In this problem a vehicle with an onboard sensor, whose initial position is known in a 
global coordinate frame, must dynamically map the positions of observed features in its environment 
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while simultaneously using the estimated posit ions of re-observed features to update its own position 
estimate. The difficulty is that the position estimates of mapped features inherit errors due to the 
positional uncertainty of the vehicle. Consequently, the vehicle and mapped feature estimates are 
all correlated to an unknown degree unless cross covariances are maintained between every feature 
estimate and the vehicle estimate, and between every feature estimate and every other feature 
estimate. 

:Vlaintaining cross covariance information, which grows quadratically in the number of mapped 
features, is impractical for most real-time applications. However, the use of Covariance Intersection 
avoids the need to maintain cross covariances because it can fuse correlated estimates directly. As an 
example, if a stationary vehicle observes the posit ion of a mapped feature, successive observations 
will not improve the estimates of the posit ions of the vehicle or feature because no new information 
is being obtained. The application of a Kalman filter to fuse these correlated estimates, howeYer, 
will lead to spurious improvements as the vehicle and feature covariance estimates rapidly go to 
zero. The problem is that the Kalman filter assumes that each new measurement is an independent 
piece of information that can be exploited to yield an improved updated estimate. 

Condition (4) - Estimates must be of the same system 

T he simplest class of filtering problems involves the successive update of a system estimate with a 
sequence of measurements of that system. A more general class of problems involves the simultaneous 
filtering of multiple system estimates when it is not known from which system each measurement 
originated. Simultaneous map building and localization is an example of such a problem because it 
is not known to which feature each observation corresponds. Thus, in addition to the update/fusion 
step, a preliminary step must be performed to determine which estimate to update. This preliminary 
step is referred to as data association. 

There are two aspects of the data association problem: One is algorithmic, the other statistical. 
The algorithmic aspect of t he problem is often referred to as gating. Gating is performed in order to 
quickly identify the subset of systems from which a particular measurement might have originated. 
This is typically done by determining a region in the system state space that includes, with some 
sufficiently high probability, all feasible positions of the measured state. This allows all systems whose 
state estimates are outside of this region to be excluded as possible sources of the measurement. 

It turns out that if convex bounded regions can be associated with the n system estimates, 
then t hese regions can be represented in a data structure so that the regions intersecting the region 
associated with a given measurement can be identified in O(n1- 1/d + m) time, where d is the 
dimensionality of the state space and m is the number of identified estimate regions. If the bounded 
regions are defined as coordinate-aligned boxes, then the same worst case retrieval complexity can 
be achieved, but the average case efficiency can be substantially improved. The use of boxes also 
allows the data structure to be efficiently updated if system states change. This is necessary for the 
real-t ime estimation of dynamical systems. 

T he use of bounded regions to reflect uncertainty estimated in terms of covariance introduces 
the possibility that the true source of a highly deviant measurement may be erroneously excluded. 
There is no rigorous way to avoid this problem because lack of knowledge about the complete distri­
bution associated with each mean/covariance estimate makes it impossible to determine guaranteed 
bounds on the error associated with each state variable. Thus, a tradeoff must be made between 
computational efficiency and gating accuracy, i.e., to ma.."<lmize accuracy within given computational 
constraints. 

After gating, the other component of the data association problem is the determination of which 
candidate system estimate (or estimates) should be updated with the current measurement. This is 
referred to as the assignment problem. If there are n measurements of n systems, then it is possible to 
identify all feasible one-to-one mappings that are consistent with the coarse associations determined 
by the gating step. For example, if measurement 1111 gated only with the two system estimates S1 
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and S2, and measurement M2 only gated with S1, then the one-to-one mapping constraint implies 
that M1 can only be assigned to S2 . 

The difficulty associated with the assignment problem is that there may be multiple different 
feasible assignments. One way to resolve this ambiguity is to associate an assignment likelihood 
with each pair of system and measurement estimates by counting the number of feasible assign­
ments containing the pair. It turns out that this counting of assignments involves the calculation 
of a combinatorial quantity called the permanent. Unfortunately, there is no known efficient algo­
rithm for computing the permanent, nor is there even an efficient algorithm for computing accurate 
approximations to the permanent. However, it has been shown empirically that highly crude, but 
efficiently computable approximations to the permanent are sufficient to yield good approximations 
to the assignment problem. 

Summary 

The Unscented Transformation, Covariance Intersection filter, Priority kd-Tree for gating, and 
the permanent approximations for data association are all novel contributions of this thesis. They 
address problems associated with simultaneous map building and localization as well as many other 
general filtering and data fusion applications. 
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