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Abstract
Manual analysis and diagnosis of COVID-19 through the

examination of Computed Tomography (CT) images of the
lungs can be time-consuming and result in errors, especially
given high volume of patients and numerous images per pa-
tient. So, we address the need for automation of this task by
developing a new deep learning-based pipeline. Our moti-
vation was sparked by the CVPR Workshop on ”Domain
Adaptation, Explainability and Fairness in AI for Medi-
cal Image Analysis”, more specifically, the ”COVID-19 Di-
agnosis Competition (DEF-AI-MIA COV19D)” under the
same Workshop. This challenge provides an opportunity to
assess our proposed pipeline for COVID-19 detection from
CT scan images. The same pipeline incorporates one of the
architectures in the EfficientNet ”family”, but with an added
Spatial Attention Mechanism: EfficientNet-SAM. Also, un-
like the traditional/past pipelines, which relied on a pre-
processing step, our pipeline takes the raw selected input
images without any such step, except for an image-selection
step to simply reduce the number of CT images required for
training and/or testing. Moreover, our pipeline is compu-
tationally efficient, as, for example, it does not incorporate
a decoder for segmenting the lungs. It also does not com-
bine different models nor combine RNN with a backbone, as
other pipelines in the past did. Nevertheless, our pipeline
outperformed all approaches presented by other teams in
last year’s instance of the same challenge using the valida-
tion subset. It also placed 5th in this year’s competition,
ranking less than 1.3% below the 1st place and close to
3.5% above the 6th place based on the macro-F1 score.

1. Introduction
The recent COVID pandemic has affected people differ-
ently in terms of severity. In order to move from suspected
to confirmed COVID-19 cases, initial diagnosis and man-

agement often relied on pulmonary images from a Com-
puted Tomography (CT) scan, as it remains the most ef-
fective diagnostic tool. However, the inefficacy of manual
analysis becomes obvious when thousands of individual CT
scans need to be processed in short periods of time, which
happens especially during a pandemic, with physicians hav-
ing to assess numerous patients daily. In that case, the need
to automate the diagnostic process becomes as obvious as
the potential for mistakes to happen. Thankfully, the emer-
gence of deep learning models in recent years has enabled
their use as supportive tools in clinical diagnosis and exam-
ination.

Numerous studies in recent years have applied deep
learning to CT scan image analysis. Zhang et al.(2022)
utilized the VGG19 architecture. They incorporated the
GlobalMax-Pool 2D Layer, achieving good performance
in various metrics like sensitivity, specificity, and accu-
racy relative to traditional CNN models and vision trans-
former (ViT) models [30]. Zhang et al.(2021) introduced
a transformer-based framework for automated COVID-19
diagnosis, comprising two primary stages: initial lung
segmentation using UNet, followed by classification [29],
which performed better with respect to other state-of-the-art
methods. Li et al.(2020) introduced a 2D CNN for extract-
ing features from individual slices in a CT scan, with subse-
quent fusion of slice-level features through a max-pooling
layer and achieved improved performance in classifying
COVID-19 from CT scan images and achieved 0.95 area un-
der the receiver operating characteristic curve (AUC) [16].
In the study by Shi et al.(2021), an attention mechanism
encompassing both channel-wise attention (CA) and depth-
wise attention (DA) was incorporated into a modified 3D
Resnet18, achieving 0.99 AUC. These studies underscore
the effectiveness of deep learning models in COVID-19 CT
image classification tasks [21].

Targeting the need for high-quality datasets, Kolliaz et



al. introduced the COVID-19-CT-DB dataset [1, 2, 9–15],
providing a substantial collection of labeled COVID-19 and
non-COVID-19 data to tackle the demand for extensive
training data in deep learning models. However, the chal-
lenge to the architecture of deep learning models arises from
the diverse resolutions and numbers of slices in CT images,
which depend on the imaging system.

A few approaches have been suggested to tackle this
issue. Chen et al.(2021) proposed two methods to assess
CT scan image slice importance [4]. Their first method, a
2D approach known as Adaptive Distribution Learning with
Statistical Hypothesis Testing (ADLeaST), integrates statis-
tical analysis with deep learning for COVID-19 CT scan
image classification, ensuring stable predictions by map-
ping images to a specific distribution. However, 2D detec-
tion is influenced by positive slices without clear symptoms
during training. So, their subsequent 3D method incor-
porated self-attention structures (Within-Slice-Transformer,
Between-Slice-Transformer) into a 3D CNN architecture.
Still, the method faced the challenges of insufficient train-
ing samples and overfitting due to its large model architec-
ture. Hsu et al.(2023) improved this method by incorporat-
ing a multi-model ensemble method [7], which we adopted
in our approach in terms of the image selection step and the
use of an Efficient CNN.

Our work consists of a pipeline involving a simple step
for CT-slice selection, followed by feature extraction, and
classification. The method employs a novel Efficient CNN
with Spatial Attention Mechanism (EfficientNet-SAM).
Our approach gets away with the need for segmentation of
the lungs by enhancing and highlighting the regions of inter-
est through a spatial attention mechanism, which allows the
classification task to focus on a feature map extracted from
the most representative regions of the selected CT slices,
enhancing efficiency and accuracy. We have made the code
available in the dedicated GitHub repository associated with
this paper. 1.

2. Methods

This section provides an overview of the processing steps:
image selection, feature extraction through an efficient
CNN [3, 22], and the added Spatial Attention Mechanism.
The model we have utilized has Efficient Channel Attention
(ECA) [27] and employs Weight Standardized (WS) con-
volutions, incorporating extra scaling factors instead of uti-
lizing traditional normalization layers [18]. In other words,
besides the original channel attention, we integrated a spa-
tial attention mechanism to highlight the areas of the lung
relevant to the task at hand: COVID-19 detection. Subse-
quently, the entire proposed pipeline for COVID-19 detec-
tion from pulmonary CT scan is discussed. We used the

1https://github.com/rmf3mc/covid-comp24
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Figure 1. Image selection of pulmonary CT-scan images after de-
tection and ranking by maximum lung area. All images from a
given patient are analyzed, and their number is reduced to twelve
or forty images for training and testing.

provided challenge1 and challenge2 datasets to train, but
we kept the challenge1 validation set for testing [15]. Also,
we followed [8] for partitioning the same datasets.

2.1. Image Selection Step

The motivation for this step was threefold: 1) to select CT
images that display the maximum area of the lungs; 2) to
reduce unnecessary redundancy that is expected in adja-
cent CT slices; and 3) to reduce the total number of images
needed for training and evaluation. Our approach mirrors
the technique described by Hsu et al. (2023) [7], and is
illustrated in Figure 1. However, we did not perform any
preprocessing, and the selected images were employed in
their original (raw) format afterwards. In our methodology,
we investigated the use of different values for the number
Ntr of CT slices for the training phase and the number Nvt

for the validation and testing phases. That is, initially, we
select the 50% of CT scan slices that showcase the largest
lung area. For this subset, we then varied Ntr and Nvt while
ensuring that they are evenly distributed across the 50%, for
training and testing purposes, respectively, and selected the
best values obtained in terms of the F1 score. As we will ex-
plain later, the strategy that best performed was keeping all
50% of the CT scans for training, while randomly selecting
Ntr of those for each epoch; and to evenly space Nvt CT
slices for evaluation.

2.2. EfficientNet-SAM

EfficientNet represented a breakthrough in neural network
architecture designed by emphasizing both performance
and efficiency [3]. Developed by Google AI researchers,
it introduced a scalable model that achieved state-of-the-art
accuracy on various computer vision tasks, while maintain-
ing a smaller number of parameters and computational cost
compared to other models like ResNet or Inception [22].

EfficientNet achieved this by using a compound scaling
method that efficiently balances model depth, width, and
resolution, resulting in models that are significantly more
efficient in terms of both accuracy and computational re-

https://github.com/rmf3mc/covid-comp24
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Figure 2. Flowchart of our novel EfficientNet-SAM method to extract features from CT scan images of lungs.

sources. This innovative approach has made EfficientNet a
popular choice for various applications, from image classifi-
cation to object detection and segmentation, enabling more
practical deployment on resource-constrained devices with-
out sacrificing performance.

Considering these advantages, we chose to use a mem-
ber of the family of Efficient CNNs called Efficient Chan-
nel Attention (ECA) in place of the Squeeze-Excitation ap-
proach, while incorporating SiLU activations and diverging
from the more commonly used GELU activations [28]. We
also added a spatial attention mechanism, as it will be ex-
plained in the next subsections.

2.3. Attention Mechanism

Attention mechanisms (AM) in general have revolution-
ized the field of deep learning, particularly in natural lan-
guage processing and computer vision [22, 25]. Spatial
AM, in particular, enhance deep learning models by allow-
ing them to focus on relevant components of the input data
and their spatial relations. Inspired by human cognition,
it assigns varying weights to different elements based on
their importance for the task. This approach helps in im-
proving accuracy and context understanding [5, 6]. In our
approach, we took inspiration from the study done by Wang
et al.(2021) [26] to enhance that original model with the ad-
dition of spatial attention, and create the EfficientNet-SAM.

2.4. Pipeline

Figure 2 depicts the feature extraction step of our classifi-
cation approach. Following the image-selection phase, an
Efficient CNN is utilized to extract image features, denoted
as fimg ⊆ RH×W×C , where H and W represent the image
height and width, and C is the number of channels. Next,
an attention map Am ⊆ RH×W is generated by a spatial
attention module, which identifies the most informative re-
gions in images. Using this attention map Am and the im-
age features fimg , attended features fatt ⊆ RH×W×C are
computed using spatial-wise multiplication, as in:

fatt(i) = fimg(i) ◦Am (1)

where i is the channel index in fimg and fatt, while ◦ rep-
resents spatial-wise multiplication.

The objective is to highlight the most informative regions
of the image and to mitigate the potential of false positives.
To achieve this, the model leverages (eq:2) the attended fea-
tures fatt and the original image features fimg , resulting in
a unified feature map fmerged ⊆ RH×W×C . This integra-
tion ensures that both the specific areas of interest and the
overall image features contribute to the final feature repre-
sentation.

fmerged(i) = αfimg + βfatt (2)

Equation 2 is subject to the constraint α+ β = 1, where
α and β are hyperparameters responsible for balancing the
contribution between the two feature maps. In this study,
after empirical analysis, we set α = 0.5 and β = 0.5 to
equally support the importance of the original and the at-
tended features in the Final Map [26].

As previously mentioned, this combination of attended
and original image features plays a crucial role in minimiz-
ing false positives. The final features used for classification,
ffinal ⊆ RC , are condensed by performing global average
pooling across each channel:

ffinal =
1

H ×W

H∑
i=1

W∑
j=1

fmerged(i, j, :) (3)

Finally, once our EfficientNet-SAM generates the final
feature map ffinal for the selected CT slice, the same fea-
ture map is forwarded to a dense-layer NN with a sigmoid
activation function. This last-stage NN is appended at the
end of the original pipeline in Figure 2. This final-stage NN
is also responsible for calculating the confidence of each se-
lected CT-slice in being classified as positive or negative for
COVID-19.

Figure 3 depicts the entire pipeline of the proposed
EfficientNet-SAM for COVID-19 detection from pul-
monary CT-scan images. Here, the longer, detailed pipeline
in Figure 2 is condensed into the block ”EfficientNet-
SAM”, after which the dense NN layer for the final clas-
sification of individual samples is appended. Next, one of
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Figure 3. Complete pipeline for the proposed EfficientNet-SAM,
for COVID-19 detection in pulmonary CT-scan images.

the three possible voting schemes (outlined by the dotted
rectangle in the figure) is applied for the validation and test-
ing phases– i.e. for the final diagnoses of the patients and
their samples.

2.5. Voting Schemes

During testing, for the set of Nvt selected CT-slices from
a single patient, a final diagnosis for the patient is pro-
duced based on one of three possible voting schemes: sim-
ple voting, ranked voting, or learner voting. This ”Decision
Block”, i.e. the block that yields the final patient-wise pre-
diction, is shown in Figure 3. The following subsections
detail each voting scheme.

2.5.1 Simple Average Voting

In this scheme, the final decision involves averaging all Nvt

confidences and setting a threshold t for the COVID diag-
noses. Consequently, if the average confidence exceeds this
threshold, we categorize the entirety of the patient samples
as COVID-19 positive; otherwise, it is considered negative.

The average confidence, Cavg, in classifying the images
as COVID-19 positive is calculated as follows:

Cavg =
1

n

Nvt∑
i=1

Ci (4)

The classification rule is defined by:

Classification =

{
COVID-19 Positive if Cavg > t

COVID-19 Negative otherwise
(5)

where t = 0.5.
We conducted tests using a variety of choices for Nvt:

the number of CT-scan slice used for testing; and for dif-
ferent threshold levels as previously described. The final
choice will be presented in the Results section.

2.5.2 Ranked Voting

For ranked voting, we first sort the confidences associated
with each CT-slice according to the most likely COVID-
positive diagnoses. Then, ranked voting is applied to the
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Figure 4. Impact of varying the threshold (t) values and the number
Nvt of CT-scan slice used for validation and testing on the Macro
F1 as a metric of performance

top P% of the positive diagnoses (i.e. the most decisively
towards COVID) and the bottom P% of the negative diag-
noses (i.e. the most decisively towards not COVID). We
also conducted multiple experiments to choose the value of
P, which will also be reported in the next section.

2.5.3 Learner-Based Voting

For this final scheme, we bypass the dense-layer NN (re-
fer to Figure 3) and connect the EfficientNet-SAM directly
to a Learner. That is, after obtaining the feature map
from the EfficientNet-SAM for each selected CT-slice of
the same patient, the same features are input directly into
a Single-Head Attention (SHA) transformer. This SHA-
Transformer, i.e. the Learner-Based Voting, will then de-
termine whether all patient samples should be classified as
COVID-19 positive or negative.

3. Results
In this section, we report the results from all three voting
schemes derived from the EfficientNet-SAM pipeline. We
also compare and evaluate how our proposed model per-
forms against other teams’ models from previous years on
the validation dataset.

As previously mentioned, in order to decide the best pa-
rameters for the pipeline, we first conducted various exper-
iments to evaluate the effects of the threshold levels (t) for
deciding COVID, the number of CT slices (Nvt) used for
validation and testing, and the percentage of top/bottom
confidence votes (P) on the performance of the pipeline.
As Figure 4 demonstrates, the optimal performance as mea-
sured by the Macro F1 score was achieved when choosing a
threshold t = 0.45 and employing Nvt = 10 slices. This re-
sult is consistent with a second experiment, depicted in Fig-
ure 5, in which the same threshold t = 0.45 was obtained
for different percentages P of top and bottom confidences
used for voting – chosen to be P = 25%. A third experi-
ment on Ntr, the number of CT slices used for training, was
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Method AUC Macro-F1
Simple Average Voting 0.9713 93.67
Ranked Voting 0.9717 93.35
Learner-Based Voting 0.9645 93.67

Table 1. Comparative results from three voting schemes derived
from the EfficientNet-SAM.

also performed. In this case, the best result was obtained for
the entire 50% of the pre-selected CT-scan slices. However,
a value of Ntr = 40 of randomly selected images was used
for each epoch in training.

The results for the three voting schemes using the
choices of parameters above are presented in Table 1. Here,
the first column contains the type of voting, and the second
and third columns provide the AUC and Macro-F1 scores
obtained using the validation dataset for the respective vot-
ing scheme.

Finally, we compare the performance of models pro-
posed in previous years against the Simple Average Vot-
ing. These results are presented in Table 2. The Macro-F1
scores listed in Table 2 are the ones reported by the respec-
tive teams’ publications (see citations on the table). As the
reader will notice, our model outperformed all other teams’
competing models on the validation dataset. In this year’s
competition, our method placed 5th – only 1.26% behind
the first place, according to the macro F1 score, and 3.49%
above the 6th place. It should be pointed out, however, that
the team that ranked first relied on the STOIC dataset [24],
which includes 2,000 CT scans for training and validation
[19]. In other words, our approach was trained exclusively
on the provided dataset – i.e. it was trained on less than half
of the data used by this other team.

Method Macro-F1
Eff-mix-conv-E [7] 0.922
EDPS-COVID-19-CT-LS [23] 0.932
IPSR-4L-CNN-C [17] 0.851
ResNet3D-18 + MHA [20] 0.9021
Ours 0.9367

Table 2. Comparison between our EfficientNet-SAM method, us-
ing simple average voting, and previous year’s approaches, using
Macro-F1 score on the validation set.

4. Conclusion
In this study, we presented a pipeline with three different
voting schemes after the feature extraction and classifica-
tion using a novel Efficient CNN with Spatial Attention
Mechanism (EfficientNet-SAM). Our framework aimed at
enhancing the detection of COVID-19 from pulmonary CT
images. The voting mechanisms included: a simple aver-
age voting, a ranked voting – both of which are based on
the confidence levels from the EfficientNet-SAM classifica-
tion module over a number (Nvt) of CT scan slices – and
a Learner-based voting, which learns directly from the fea-
ture map from the same CT slices. Based on the Macro-
F1 scores reported by last and this year’s teams, we have
demonstrated that our model is one of the best models for
the challenge. In future work, we will include analysis and
visualization tools to demonstrate the role of our spatial at-
tention mechanism and how it highlights the important parts
of the lungs related to the disease. This will allow us to
study further the balance between attended (from the at-
tention mechanism) versus the original features (from Ef-
ficientNet) and how to provide more attention to more rele-
vant areas of the lungs. Also, further investigation into why
the Learner-based voting could not outperform the simple
voting scheme is warranted. Finally, the use of EfficientNet-
SAM for other applications, such as leaf venation, has al-
ready started and will be expanded in order to evaluate the
usefulness of this network beyond what has been demon-
strated so far.
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