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Abstract—Voice disorders are non-trivial when it comes to
their early detection. Symptoms range from slight hoarseness
to complete loss of voice, and may seriously impact personal
and professional life. To date, we are still largely missing
reliable data to help us better understand and screen voice
pathologies. In this paper, we present an ambulatory voice
monitoring system using surface electromyography (sEMG) and
a robust algorithm for pattern recognition of vocal gestures.
The system, which can process up to four sEMG channels
simultaneously, also can store large amounts of data (up to
13 hours of continuous use) and in the future will be used
to analyze on-the-fly various patterns of sEMG activation in
the search for maladaptive laryngeal activity that may lead to
voice disorders. In the preliminary results presented here, our
pattern recognition algorithm (Hierarchical GUSSS) detected
six different sEMG patterns of activation, and it achieved 90%
accuracy.

I. INTRODUCTION

Occupational voice users such as teachers, singers, etc.

are at highest risk for voice disorders largely due to the

extraordinary vocal load placed on the laryngeal system

while exercising their occupation [1]. Classic symptoms are

hoarseness, vocal effort, and vocal fatigue, which are related

to vocal hyperfunction [1]. Vocal hyperfunction may lead, in

some individuals, to phonotrauma, such as vocal nodules, or

to muscle tension dysphonia – i.e. excessive or dysregulated

laryngeal muscular activity underlying the vocal changes [2].

To date, we are still largely missing reliable data to help us

better understand what dysregulated muscular activity in the

laryngeal muscles means. This foundation is necessary to

study what differentiates pathological from normal muscular

activity during voice for speech. Ambulatory monitoring of

voice using surface electromyography (sEMG) of the extrala-

ryngeal muscles can be an innovative approach to advance

our understanding of vocal hyperfunction and ultimately to

monitor vocal hyperfunction in heavy voice users.
In fact, in the past decade, research intensified the de-

velopment of devices suitable for ambulatory monitoring of

daily speech. Commercial systems were made available to

monitor vocal intensity using accelerometers and gyroscopes;

voice fundamental frequency (F0) and vocal duration using

microphones and frequency transforms, [3], [4]. These non-

invasive monitors also have biofeedback capabilities and

have recently been designed for smartphone platforms [5].

However, there is a lot more happening during a speech than

what can be captured by microphones and inertial sensors.
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The coordinated contraction of muscle during speech

controls a host of biologic functions. As muscles contract,

they undergo changes in electrical potentials, which can

be monitored by electromyographic (EMG) devices. When

studying a single muscle, the optimal signal to noise ratio is

typically obtained when the electrodes are placed inside the

muscle – a technique available in the healthcare or laboratory

setting, but with limited use in people’s everyday lives. A

less invasive strategy is to place Surface EMG (sEMG) on

the skin near the muscle(s) of interest. This method has more

real-world practicality, but it comes at the expense of noisier

signals and exacerbated occurrences of cross-talk between

adjacent electrodes. That is because the biologic functions

that are subserved by muscular activity do not result from

the action of a single muscle, but from the activity of several

muscles working in a coordinated fashion.

Recently, the interest in many areas of human-computer

interfacing [6], prosthesis [7] and even voice pathology [8],

[9] has shifted towards the use of devices that can monitor

muscle activity1. However, when it comes to recognizing

patterns of muscle activity in a reliable, accurate and robust

manner, much remains to be done.

In this paper, we present a system for monitoring and

recognizing patterns in multiple sEMG signals. A simpler

version of the algorithm proposed here has already been used

to recognize hand gestures and to operate power wheelchairs

[10], [11]. Here, we employed an improved version of that

algorithm using four sEMG sensors. We also developed a

small device to collect data as subjects go about their daily

lives without subjecting them to invasive laboratory testing.

The device can wirelessly connect to any smart phone or

computer, but it can also provide immediate feedback to

the user – either to effect a behavioral change, to monitor

progress after an intervention, or to provide early detection

of health problems.

The system was connected to the anterior neck of the

subject since many complex physiological motor functions

occur within the neck (e.g. voicing, speaking, and swallow-

ing). Besides, the muscles in this area are located relatively

close to the skin and are quite appropriate for surface

EMG. Our goal was to demonstrate that the neck offers an

excellent location from which to build our understanding

of complex laryngeal patterns underlying voice for speech

and non-speech behaviors through sEMG signals. Indeed the

preliminary results presented here show that despite the very

1http://glneurotech.com/bioradio/bioradio-wireless-physiological-monitor
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a) b)

Figure 1. ECHO device depicted from two top angles: a) with and b)
without the case cover.

complex muscle groups on the neck, meaningful recognition

based on sEMG signals is still possible. For that, data was

collected from a single subject for six different vocal patterns,

or gestures, and using four sEMG channels. The gestures

were then classified by our improved hierarchical classifier

and an average accuracy of over 90% was achieved.

II. BACKGROUND AND RELATED WORK

A. Voice/Speech Disorders

Classic symptoms of behavioral voice disorders are related

to vocal hyperfunction. In some individuals, vocal hyper-

function may lead to phonotrauma, such as vocal nodules,

or to muscle tension dysphonia. For example, excessive

extralaryngeal muscle activity and a chronic high laryngeal

position during speech are characteristic of muscle tension

dysphonia [2]. Surface EMG is a noninvasive tool that

has been used in voice, speech, and swallowing research,

however the body of literature continues to be limited [9],

[8]. The new frontier will be to adapt this methodology for

ambulatory monitoring of extralaryngeal muscle activity and

patterns during voice and speech production. As pointed out

earlier, surface EMG of the anterior neck is well suited to

capture general information on the muscular activity of the

larynx, which can be related to magnitudes and patterns with

relevance to upward and downward movements of the larynx

in the neck. Presumably, excessive muscle activity or lack of

variability in laryngeal movements may be related to vocal

fatigue, which in particular plagues occupational voice users

such as teachers [1]. The research question to be addressed

is whether ambulatory sEMG devices can reliably associate

patterns of extralaryngeal muscle activity with voice tasks

underlying speech and non-speech behaviors (e.g. voiced

sounds, throat clear). If so, the methods will be applied

clinically to differentiate between normal and maladaptive

laryngeal patterns associated with voice problems.

B. Pattern Recognition of sEMG Signals

The work in [10] introduced the idea of Guided Under-

determined Source Signal Separation (GUSSS) and the

GUSSS ratio. In [10], the focus was on discriminating

different Muscle Unit Activation Potential Trains, or MUAPT

patterns, that emerge when different gestures are performed.

As many systems do, it was assumed that an sEMG sensor

captures a combination of statistically independent MUAPTs

due to cross talk [12], [13]. But unlike most methods in

the literature, the system in [10] relied on a single sensor.

This was possible because the main characteristic of the

GUSSS ratio is that it can indicate the presence or absence

of a particular signature or MUAPT pattern within a sensed

sEMG signal. The term “Guided” in GUSSS refers to the fact

that the sought-out signature is “injected” into the observed

signal in order to obtain a corresponding ratio. A low ratio

indicates that the signature is most likely present within the

sensed signal. A high ratio, on the other hand, indicates that

the signature is not being detected in the signal.

Later, a framework for controlling a power wheelchair

using the GUSSS method was developed and tested in

[11]. The framework proposed a control system based on

the recognition of hand gestures. The use of hand gestures

was simply to illustrate the fact that any muscle activation

pattern or signature derived from a natural and repetitive

muscle movement can be employed by the system. In the

case of a person with severe impairment, any other muscle

movement could be used instead (e.g. eyebrow movement).

Compared to other systems found in the literature, which use

multiple sEMG sources for classification, the method in [11]

compared quite reasonably, reaching up to 92% accuracy for

three gestures.

More recently in [14], a hierarchical system based on

the GUSSS was developed to achieve higher classification

accuracy for a greater number of gestures. The hierarchical

method employed tuples of gestures rather than comparing

each gesture against every other gesture. This approach

allowed the system to compare first the gestures that were

easily distinguishable from other gestures, leading to a better

accuracy of the system even as the number of gestures

increases, reaching up to 86% accuracy for nine gestures.

III. DEVICE DESCRIPTION

The proposed EMG multi-Channel Hardware for Otolaryn-

gology (ECHO) is an Otolaryngology REcording, Analysis

and Diagnostic device (OREAD) to log sEMG data from

multiple differential sEMG sensor channels. One key feature

of the ECHO-OREAD device is that it maintains a small form

factor (8.5cm\, x\,6cm\, x\,4.5cm ) in order to be portable

so that it can be used in a variety of applications. The

device is connected to a rechargeable lithium-ion battery

to maintain portability. Figure 1 shows two pictures of the

ECHO-OREAD device sitting on top of the rechargeable

battery and Figure 2a shows two sets of signals from all

four channels captured with ECHO-OREAD for the Cough
and /t/ gestures, with electrode placement as described in

Section III-B.

A. Hardware

The hardware of the device consists of a Raspberry Pi

board with a custom built PCB docked on top. The custom

built PCB contains circuitry for analog to digital conversion

and four channels of sEMG inputs. The circuit provides

amplification and individual, manual control of the gains for

each channel. The channels are also filtered in order to reject

undesirable frequencies. Once the signals are amplified and

filtered, they are digitized and transferred to the Raspberry Pi

through its GPIO connector. Additional buttons on the top of

the device can be used to control the behavior of the boards,
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Channel 1 Channel 2 Channel 3 Channel 4

Cough

/t/

Figure 2. a) Four channels of sEMG signals for gestures Cough and /t/ ; and b) Basic diagram of the custom PCB for the ECHO-OREAD device.

such as resetting the acquisition and reinitializing the boards.

Figure 2b shows a basic diagram of the custom PCB built

for the ECHO-OREAD device.

B. Electrode Placement

As seen in Figure 3, surface electrodes were placed

according to established guidelines for sEMG recordings

[15] with special consideration of recommendations proposed

for voice, speech, and swallowing research [9]. Dispos-

able 10mm Ag/AgCl surface electrodes (Bio-Medical Instru-

ments, Warren, MI) were placed in bipolar configurations

for single differential recordings from the anterior neck

musculature. Two identical electrode pairs were placed on

the left and right side of the neck to capture suprahyoid

(submental) and infrahyoid muscular activity corresponding

to elevations and depressions of the larynx during voice

for speech, respectively [16]. The first electrode for the

submental muscle site was placed approximately 1cm from

midline in the submandibular area superior to the hyoid bone

[17], [18], [19], [20] The second electrode of the submental

pair was placed in line with the fibers of the muscle and

with an interelectrode distance of approximately 1cm [15],

[8], [9]. The submental location captures muscle activity from

the anterior belly of the digastric, mylohyoid, and geniohyoid

muscles.

For the infrahyoid muscle site, the first electrode was

centered over the thyroid cartilage just below the thyroid

notch and approximately 1cm off midline [17], [18], [8],

[9]. The infrahyoid location captures muscle activity from

the sternohyoid and omohyoid muscles with additional ac-

tivity captured from the thin muscle sheath called platysma

overlying most of the neck [19], [9]. Due to the small sizes

of the individual muscles making up the submental and

infrahyoid musculature as well as the multilayered structure

of the muscles, sEMG can only capture muscle group activity

and not activity from individual muscles. Moreover, it is not

realistic to record activity from deeper muscles such as the

thyrohyoid and cricothyroid [9]. The ground electrode was

placed on the superior bony prominence of the left shoulder.

For voice and speech recordings, a placement of the ground

electrode close to the electrodes is preferred [9].

The quality of electrode placement was confirmed with

tasks that produce target activations such as a swallow

(submental and infrahyoid activity) and production of a front

vowel (/i/, submental) and back vowel (/u/, infrahyoid).

IV. PROPOSED METHOD

This research expands on the classification approach pre-

sented in [14] to prove the validity of performing sEMG

classification based on extralaryngeal muscle activity in the

anterior neck, which underlies voice production for speech

and non-speech behaviors (voiced and unvoiced sounds,

throat clear, swallowing). A major difference between this

approach and the one in [14] is that here four sEMG channels

were used instead of just one. The proposed framework

is illustrated in Figure 4 and it consists of a two-level

hierarchical classifier: 1) a GUSSS-based classifier; and 2)

a Multi-Class Support Vector Machine (SVM).
As it can be seen in Figure 4, the first level in the hierarchy

involves a number of GUSSS-based classifiers. Basically,

these classifiers function as confidence generators, inputting

feature vectors extracted from the raw sEMG signal and

outputting N confidence vectors
−→
λ , where the elements

of the vector indicate the confidence that a sEMG signal

contains one of the signatures in the tuples – a tuple is a group

with an arbitrary number of signatures: e.g. doubles, triples,

etc. All of the obtained confidence vectors are concatenated

into a second feature vector, which is then input to the

classifier at the second level of the hierarchy. The output

of the second level classifier is the final class assigned to the

observed sEMG signal. The following sub-sections describe

in further detail the classifiers at each level, as well as their

training process.

A. Class Signatures and Optimal Choice of Tuples
Let us assume that there is a labeled training set with C×T

signals – i.e. T signals from each of the C possible classes

Figure 3. Muscle groups on the human neck: diagram and actual view of
electrode placement.
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(muscle patterns or gestures). First, a signature for each class

is obtained. The current approach is to do an averaging of

the T training signals grouped per class. That is, for each

class c, a single signature: sc = 1
T

( ∑
xl in class c

xl

)
is created,

where xl is the lth training signal of class c.

Each GUSSS-based classifier is associated to a tuple

of classes, where the sizes and members can be chosen

arbitrarily depending on the gestures, user, muscle activity

patterns, etc. The rationale behind the tuples is the following:

when a large number of C classes are considered at the

same time, there might be much confusion between some

of the classes. However, it is possible to find subsets of

classes for which the confusion between such classes is

minimized. So, the goal of the tuples is to allow similar

classes to be separated. However, it is also desirable to group

as many classes as possible per tuple in order to reduce the

complexity of the algorithm. For this paper, the selection

of the optimal number and the membership in the tuples

was done empirically after trial-and-error. In the future, an

automated method for choosing tuples will be explored.

B. sEMG Segmentation and Level 1 Feature Vectors

As mentioned before, the input to each of the GUSSS-

based classifiers is a feature vector extracted from the in-

coming sEMG signal. The features used and the way to

obtain the feature vector for a particular tuple, denoted τi,
is described next. A same procedure applies to all N tuples

being considered. Figure 5 depicts a typical sEMG signal and

the features considered.

1) GUSSS Ratio: As explained in Section II, the main

idea of the GUSSS method is to identify particular signatures

within a measured sEMG signal. For any given sEMG signal

x, the GUSSS method seeks to identify the presence or not of

each possible signatures. This is done by iteratively injecting

signatures and obtaining ratios for each one of them. For all

ni = |τi| classes in tuple τi, the algorithm obtains the ratios

r1, . . . , rni . If signal x contains a pattern in class c, ratio rc
is expected to be smaller than all other ratios rj , for j �= c.

2) Segmentation of the sEMG Signals: Typically, the

sEMG signals for the gestures considered here last from

around 250 ms to 500 ms. To capture the structural informa-

tion of the sEMG signals, we divide them into D segments

of equal length. The features described next are calculated

for each segment of any given signal.

3) Mean Absolute Value: One feature commonly used for

sEMG signals is the Mean Absolute Value (MAV). The MAV

of a signal x (t) is obtained by calculating the average of the

absolute values of x at all instants t. For a discrete signal:

MAV =
1

K

K∑
k=1

|x (k)|

where K is the number of samples in a segment of x.

4) Zero Crossing: Another feature extracted from the

sEMG signals is the number of Zero Crossings (ZC), which

represents how many transitions from positive to negative (or

vice-versa) there are in a segment of the signal.

Figure 4. Proposed framework for the Hierarchical GUSSS Classifier used
in the ECHO-OREAD.

Figure 5. A typical sEMG signal segmented into 3 parts. The zero-crossings
are indicated in the top figure. The rectified signal and the MAVs of the
segments are shown in the bottom figure.

5) Complete Feature Vector Level 1: After all of the

features described above have been extracted, signal x is

represented by the following feature vector:

�vi = [r1, · · · , rni , m1, · · · , mD, z1, · · · , zD] (1)

where r1, . . . , rni are the GUSSS ratios for each class in

tuple τi. The MAVs and ZCs for each segment of the signal

are mk and zk, respectively, for k = 1, . . . , D.

6) Statistics in each Tuple of Gestures: As it will be

shown shortly, the system uses the mean vector and covari-

ance matrix of each class within the tuples. So, the above

feature vectors are extracted for all T training signals in

each class and used to form ℵ
(
�μi
j ,
∑i

j

)
, representing the

distribution of class j in the tuple τi, where j = 1, . . . , ni,

and i = 1, . . . , N .

C. Distances and Confidence Values

As it was mentioned before, the output of the first level

in the hierarchy is a set of confidences that are concatenated

to form a second feature vector for the next level. These

confidences, which are based on Mahalanobis distances, are

obtained by each one of the GUSSS-based classifiers.

First, an input signal y is fed into each one of the tuples

described above. Then, for each tuple τi, a feature vector

�vi (eq. 1) is calculated. Finally, the GUSSS-based classifiers
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calculate Mahalanobis distances to the mean vectors �μi
j of

the classes in tuple τi, that is:

dij =

√(
�vi − �μi

j

) (∑i
j

)−1 (
�vi − �μi

j

)T
, j = 1, . . . , ni

If, for example, distance dij is small (close to zero), the

confidence that signal y belongs to class j would be high.

To obtain the actual confidence values, the complementary

error function is used:

λ(dij) = erfc

(
dij√
2

)

where erfc(x) = 1− erf(x).

For the GUSSS-based classifier corresponding to tuple τi,
the confidence that signal y belongs to class j is given by

λi
j = λ(dij). In the end, the classifier produces ni confidence

levels: �λi =
(
λi
1, . . . , λ

i
ni

)
.

Level 2 Feature Vector: After confidence values are ob-

tained for all N tuples, the second feature vector is created

as follows: �u =
[
�λ1, �λ2, , · · · , �λN

]
D. Multi-Channel Hierarchical GUSSS

For the enhanced version of the Hierarchical GUSSS with

multiple channels used in this research, the steps detailed

above are replicated for each channel, leading to a set of

vectors −→u . These channel vectors are then averaged in order

to form a single confidence feature vector to serve as the

input to the multi-class SVM.

E. Level 2 Classifier: Multi-Class SVM

The final classification method consists of a multi-class

SVM. To train the SVM, the−→u vectors are computed for

all training signals, for all classes. When it comes to clas-

sification, an incoming signal −→y is fed through level 1 in

the hierarchy to obtain the confidences and to create the −→uy

feature vector. The latter is fed to the multi-class SVM in

order to generate the final class assignment.

V. EXPERIMENTS AND RESULTS

In this section, the application of the proposed framework

for classification of voice related sEMG patterns is shown.

For these experiments, up to six vocal gestures and one

resting condition were used. The gestures tested included

the following: Cough, Throat Clear, /t/, /s/, /i/, /u/. During

the rest period, the subject was asked to be as relaxed as

possible, and try to minimize any motion in the throat or

mouth area. The sEMG signals of interest, i.e., the ones to

be associated with each gesture, are those generated during

the transition from the resting condition to the actual vocal

gesture and back to resting. In order to further validate the

proposed hierarchical approach, two sets of experiments were

carried out. The first experiment used a distance classifier and

the second, the proposed hierarchical approach.

A. Data Collection

The main goal of these experiments was to validate the fact

that meaningful classification can be achieved from extrala-

ryngeal sEMG signals of the anterior neck. Therefore, sEMG

signals were collected under well-controlled conditions. One

test subject was asked to perform 50 repetitions of each

of the six selected gestures. The subject performed all of

the gestures of a given type at an interval of about 1.5
seconds per gesture and then rested for a few minutes before

attempting the next gesture. Four pairs of sEMG electrodes

and a ground electrode were placed as explained in Section

III-B and seen in Figure 3.

For the experiments presented here, the data was collected

using both the National Instruments digitizer as well as the

ECHO-OREAD. Classification was only completed on the

data from the National Instruments digitizer as a proof-of-

concept. The signals were divided into 3 segments (i.e. D =
3), as described in Section IV-B2.

B. Results Using the Distance Classifier

For this experiment, a 10-fold cross validation was per-

formed. Each time 90% of the signals from all collected

gestures were used for training. The remaining 10% of the

signals were then classified using a simple distance classifier.

The distance classifier was used for comparison purposes

against our hierarchical method, and the resulting Confusion

Matrix can be seen in Table I. This method achieved an

overall classification accuracy of about 73%. It should be

pointed out here the confusion between both the /i/ and /u/

vocal gestures and the Cough, as indicated by the first entries

on the fifth and sixth rows of the confusion matrix (Table I).

C. Results Using Hierarchical GUSSS

In order to validate the classification of the signals, the

improved Hierarchical GUSSS classifier was tested with the

same data as before, for the distance classifier. Again, for

each experiment, a 10-fold cross validation was performed.

Each time 90% of the data were used for training and

the remaining 10% were then classified using the proposed

Hierarchical GUSSS. The results in Table II, also in the form

of a Confusion Matrix, demonstrate the higher classification

performance of the hierarchical method in comparison with

the distance classifier. It is specially noticeable the ability

of the Hierarchical GUSSS to distinguish the previously

confused /i/, /u/, and Cough. This is attributed to the tuples’

ability to isolate similar vocal gestures, which are later

classified at level 2 of the hierarchy based on the confidences

from the individual tuples.

VI. DISCUSSION, FUTURE WORK AND CONCLUSIONS

The overall accuracy achieved using the four sEMG chan-

nels and a simple distance classifier was 73.33%. This result

alone validates the claim that meaningful classification can be

achieved by applying our GUSSS method to sEMG signals

collected from the anterior neck. However, the improved

performance of over 90% achieved by the Hierarchical

GUSSS further demonstrates the potential of the proposed

system, including the ECHO-OREAD device as a tool for

detection and diagnosis of voice disorders. The improvement

is mostly noticeable due to the better discrimination of

similar gestures – i.e. /i/, /u/ and Cough. The reason for

this improvement is that the hierarchical method employs

tuples of gestures instead of comparing each gesture against

every other gesture. This improved discriminant power of the
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Table I
CONFUSION MATRIX FOR A SIMPLE DISTANCE CLASSIFIER. THE VALUES ARE AVERAGE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION.

Classified

Cough Throat Clear /t/ /s/ /i/ /u/

Actual

Cough 96.97 3.33 0.00 0.00 0.00 0.00

Throat Clear 16.67 80.00 0.00 3.33 0.00 0.00

/t/ 0.00 0.00 90.00 8.33 1.67 0.00

/s/ 3.33 1.67 8.33 86.67 0.00 0.00

/i/ 35.00 3.33 0.00 1.67 50.00 10.00

/u/ 28.33 13.33 3.33 1.67 16.67 36.67

Overall 73.33

Table II
CONFUSION MATRIX FOR THE HIERARCHICAL GUSSS CLASSIFIER. THE VALUES ARE AVERAGE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION.

Classified

Cough Throat Clear /t/ /s/ /i/ /u/

Actual

Cough 98.33 1.67 0.00 0.00 0.00 0.00

Throat Clear 3.33 93.33 3.33 0.00 0.00 0.00

/t/ 0.00 0.00 95.00 5.00 0.00 0.00

/s/ 0.00 0.00 6.67 93.33 0.00 0.00

/i/ 1.67 0.00 3.33 0.00 76.67 18.33

/u/ 1.67 0.00 1.67 0.00 13.33 83.33

Overall 90

Hierarchical GUSSS can be further exploited by an automatic

selection of the tuples.

Despite the many promising implications for the future,

the first aspect that needs to be explored is the use of

the device for both intra- and inter-subject gesture recog-

nition, including data from both sexes and across lifespan.

In that sense, reference levels for muscle recordings such

as maximum voluntary muscle contractions (MVC) should

also be considered as a normalization technique to allow for

comparisons between subjects [15], [9]. In that case, each

MVC trial should be repeated a number of times with a rest

period between trials to limit fatigue.

Also, a larger gesture set should be explored, for example,

isometric resistive mandible depression task (depression of

jaw against manual resistance provided by the participant

with lightly closed lips and teeth [9].

Finally, the effects of different positions of the sEMG

sensors and variations on the number of sensors used should

also be explored – i.e. a reduced number of sEMG sensors

for both aesthetics and subject comfort. All these improve-

ments can make the ECHO-OREAD the first effective, non-

invasive and ambulatory tool for the detection and tracking

of normal and maladaptive conditions underlying speech and

non-speech laryngeal behaviors, including swallowing.
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