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Abstract—Inverse Kinematics (IK) is one of the most funda-
mental challenges in robotics. It refers to the process of deter-
mining the joint configurations required to achieve the desired
position and orientation (pose) of a robot end-effector. Although
numerous Data-Driven (DD) IK solvers have demonstrated en-
couraging results, they have not achieved the same accuracy when
compared to other IK methods for complex robot configurations
(e.g., numerical methods for higher Degrees of Freedom (DoF)).
In this work, we propose a new Learning-by-Example method,
and show that such a scheme considerably improves the IK
learning results when compared to other DD learners. In our
approach, the network input incorporates an example of joint-
pose pair along with the query pose to predict the desired robot
joint configuration. We show that the example joint-pose pair
does not need to be too close to the query – i.e. example and
query can be as far as 20 degrees apart in the joint configuration
space. Furthermore, we investigate the utilization of residual
and dense skip connections in Multilayer Perceptron for DDIK
solvers and employ the resulting networks for two redundant
robotic manipulators: a 7-DoF-7R commensurate robot and a
7-DoF-2RP4R incommensurate robot. Our experimental results
show that the resulting DDIK solver can reliably predict IK
solutions with accuracy better than 1mm in position and 1deg in
orientation.

Index Terms—Inverse kinematics, skip connections, fully con-
nected networks, residual networks, dense networks, robotic
manipulators.

I. INTRODUCTION

Programming serial robotic manipulators involves knowing
two main functions, namely: the Forward (FK) and Inverse
Kinematics (IK). The FK function (denoted as fFK(Q)) defines
a mapping fFK : Rn → SE(3) from the joint configurations
Q ∈Rn to the robot end-effector poses D ∈ SE(3). Computing
fFK(.) is relatively simple using the Denhavit-Hartenberg (D-
H) [1] or the Elementary Transform Sequence (ETS) method-
ologies [2], [3]. As the name implies, the IK function (denoted
as fIK(D)) defines the inverse mapping to the FK. Also, while
an fFK(.) solution is uniquely defined, an IK solution may
have an infinite number of solutions, while it can also be
difficult or even impossible to derive in a closed-form manner
(e.g. for complex robot configurations with high Degrees of
Freedom (DoF)) [4]. Due to the aforementioned reasons, the
IK problem has been the subject of much research. Several
IK methods have been proposed over the years and can be
divided into the following categories: Analytical, Geometri-
cal, Numerical, Optimization-Driven (e.g. soft or evolutionary
computing), Data-Driven, and Hybrid [5], [6].

Analytical and Geometrical IK methods provide a globally
optimal solution, and in most cases they can efficiently and
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Fig. 1: Illustration of the input-output mapping schemes investigated in this
paper for learning IK problems using Deep Neural Networks (DNN). In: (a)
A traditional query pose D to joint Q mapping, versus (b) The proposed
Learning-by-Example, where the example pair (De,Qe) is provided to guide
the learning of query pose D to joint Q mapping. In this work, D ∈ R6 and
Q ∈ RnDoF=7.

reliably anticipate situations with multiple solutions. However,
these methods are only applicable to simpler robot models
with few DoFs [7], [8], as it is well known that closed-
form solutions become more complex and difficult to derive
for non-trivial robotic designs with higher number of DoFs.
Furthermore, when one exists, analytical expressions must be
uniquely derived for each robotic design.

On the other hand, IK methods based on numerical (e.g.,
pseudoinverse-based [9], selectively damped least-squares
[10], etc.) and Soft-computing (e.g., genetic algorithm [11],
particle swarm optimization [12], etc.) approaches iteratively
update the vector of joint configurations until convergence
using nonlinear search techniques. Unfortunately, these meth-
ods are sensitive to various user-defined design parameters;
they are likely to get locked in local minima; and they may
be subject to high computational costs and long convergence
times [7], [8]. For example, the performance of numerical IK
methods may be affected by initial joint configurations, chosen
gains, and predefined pose tolerances as stopping criteria.
Furthermore, the outcomes from Numerical IK approaches
are highly affected by null space reference postures in the
case of redundant manipulators [13], [14]. In the same sense,
the performance of Soft-Computing methods is significantly
influenced by the design of the fitness function, while Data-
Driven IK (DDIK) methods, which employ machine learning
and/or deep learning techniques, depend on the quality of
previously generated datasets to learn a one-to-one or one-to-
many mapping between the desired/queried end-effector poses
and corresponding joint configurations – i.e. one pose to one
joint configuration [4], [15] or one pose to multiple joint
configurations [16], [17]. Finally, any of these IK methods
can be combined to create a Hybrid IK method [18], [19],



however, they have been shown to carry over some of the
same flaws of their parents’ methods.

In recent years, DDIK solvers have gained increasing in-
terest from the robotics community because once the training
has been accomplished to a significant level of accuracy, DDIK
solvers can more quickly and efficiently compute IK solutions
when compared to other approximate methods – e.g. without
relying on iterative processes. However, they still fall short to
produce accurate IK predictions in real-world IK applications
that require sub-millimeter position and sub-degree orientation
accuracy [4], [20].

In this work, we focus on learning one-to-one IK mappings
with a new Learning-by-Example scheme that incorporates
joint-pose examples into the network training (Figure 1).
Moreover, motivated by the success of ideas such as residual
and dense skip connections in other domains [21]–[23], we
integrate the aforementioned types of connections into the
MLP architecture, as depicted in Figure 2 to further improve
the learning of IK solvers. Our findings reveal that the result-
ing networks trained with the proposed Learning-by-Example
model well outperformed their counterparts trained without the
example pairs, and that the MLP architectures with residual
and dense skip connections are even more capable of learning-
by-example. So, in that sense, the main contributions of this
research are as follows:

• we introduce a Learning-by-Example strategy, that uses
an example pair with pose and joint configurations along-
side with the query pose to predict the associated joint
configuration. Different from the work by Xing et al. in
[24], which utilizes sequences of previous and current
poses and previous joints to predict current joint in the
same sequence (path), we demonstrate that the sole re-
liance on example joint-pose pairs in the robot workspace
yields high(er) accuracy in the investigated DDIK solvers.

• we incorporate residual and dense connections within a
baseline MLP architecture – with and without Learning-
by-Example – to approximate the Inverse Kinematics (IK)
of both commensurate and incommensurate redundant
robotic manipulators [25], [26].

• we demonstrate that sample joint-pose pairs do not need
to be at close proximity to the query joint-pose pair;
in fact, these can be as far as 20 degrees in the joint
configuration space to still yield sub-millimeter accuracy
in pose.

• we conduct a comprehensive performance comparison
between three models: a Plain MLP, a Resnet-like MLP
(RMLP), and a Densenet-like MLP (DMLP), evaluat-
ing their efficacy in predicting an IK solution when
trained with and without an example joint-pose pair.
The evaluation primarily focuses on the accuracy of the
reconstructed end-effector Cartesian poses (positions and
orientations) from the predicted joints.

• we compare the investigated DDIK solvers to three nu-
merical solvers that differ based on their inverse Jacobian
methods: Selectively Damped Least Squares (SD) [10],
Singular Value Filtering (SVF) [9], and Mixed Inverse

(MX) [27].
The remaining of this paper is organized as follows: Section

II provides a quick survey on the recent milestones of DDIK
solvers for robotic manipulators. Section III details the main
network architectures, the generated datasets, and the network
input schemes employed in this work. In Section IV, we
present and analyze the results of all our experiments. And,
in Section V, we conclude this paper with insights on current
limitations and future work directions.

II. RELATED WORK

As previously noted, DDIK solvers, also known as
Learning-based IK methods; applied to serial robotic ma-
nipulators, have gained lots of interest from the robotics
community in recent years. Since the seminal work of Guez
and Ziauddin [28], who employed a Multilayer Perceptron
(MLP) to solve the IK of two commensurate manipulators
having 2- and 3-DoF; various DDIK solvers have been in-
troduced ranging from traditional Machine Learning (ML)
techniques (e.g., Support Vector Machines [29]) to modern
deep learning approaches (e.g., Transformers [24]). About
these recent developments, Dalmedico et al. [15] approached
the IK learning problem of a 4-DoF commensurate manip-
ulator with a shallow MLP. By constraining the workspace
and employing only the position as input to the network, they
were able to predict IK solutions with less than 1cm average
reconstructed position errors. Volinski et al. [30] employed
various Artificial and Spiking Neural Networks for the IK
learning problem of a 6-DoF commensurate manipulator. In
their work, they constrained the robot’s workspace during the
dataset generation and exclusively trained the networks using
a pair of end-effector positions apart from each other within
3cm, while not taking into account the orientations. Dembys
et al. [4], [6] conducted a comparative IK study based on
four commensurate and incommensurate robots (4- to 7-DoF),
three Neural Networks (NN) architectures (all-joints-MLP,
individual-joints-MLP, and individual-joints-ANFIS) and two
dataset types (constrained and unconstrained in the robot
workspace). They employed both position and orientation as
inputs when training the networks. Their conclusion high-
lighted that the examined NN architectures displayed signifi-
cant errors compared to numerical methods, were not a fruitful
approach as DDIK solvers, and needed more investigations.
Ames et al. [17] proposed a DDIK solver that leverages the
recent advances from the Normalizing Flows domain, namely:
IKFlow. They employed a generative Conditional Invertible
Network (cINN) in an attempt to learn a one−to−many map-
ping to accommodate multiple IK solutions. They employed
ten robots with various complexities (between 4- and 10-DoF),
very deep cINN architectures (between 108 and 240 layers
by considering the coupling layer width and the number of
coupling layers), and were able to reach around 3mm average
pose and 1deg average orientation accuracies of all the inves-
tigated robots. More recently, Kim and Perez [19] employed a
hybrid IK solver combining an autoencoder architecture and a
Numerical IK method for a 7-DoF robotic arm. The Numerical
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Fig. 2: Example Deep Neural Networks investigated as DDIK solvers; left:
Plain Multilayer Perceptron (MLP) as a baseline, middle: Residual-like MLP
(RMLP), and right: Dense-like MLP (DMLP). FC 1024 refers to a Fully
Connected layer having 1024 neurons.

IK solver was used to refine the network predictions by
employing them as initial joint configurations. Xing et al. [24]
attempted to learn the IK of multiple robots with a Transformer
architecture. The network input was made of a sequence of
previous poses, previous joints, and current poses to predict a
sequence of current joints. However, their dataset was made of
only robot structures with at most 6-DoF (≤ 6-DoF) and they
reported results for only 3-DoF robots. Drawing inspiration
from the success of skip connections-based NN architectures,
particularly ResNet [21] and DenseNet [22] in domains such
as Image Classification and Image Recognition, we investigate
two MLP-based architectures. The first is constructed with
residual skip connections, denoted RMLP, and the second
utilizes dense skip connections, referred to as DMLP. These
architectures are then employed to approximate the one-to-one
IK of robotic manipulators.

III. PROPOSED METHODOLOGY

A. Dataset Generation

To the best of the authors’ knowledge, there are no well-
accepted and publicly accessible benchmark datasets to train
DDIK solvers for robotic arms, in contrast to various other
Deep Learning-related challenges (e.g., Image Classification
[31], Image Segmentation [32], Lidar Odometry [33], etc.).
Most of the currently available DDIK Solvers are trained based
on different dataset generation schemes that rely on the D-H
methodology and the fFK to create a mapping between the

(a) 7-DoF-7R robot (b) 7-DoF-2RP4R robot

Fig. 3: Illustrations of the generated trajectory-based datasets for the investi-
gated robots with a joint variation v = 1o, visualized here for 100 trajectories
of 100 samples each. The number of samples has been reduced in the plots
for visualization purposes (better viewed when zoomed in), however all the
generated datasets had 1.000.000 samples.
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(b) 7-DoF-2RP4R robot

Fig. 4: Average difference in X , Y , Z, Ro, Pi, and Ya between the example
pose (in the joint-pose pair, or De and Qe) and the query pose D versus
joint variations v. This average was collected for each robots investigated and
applied to during the generation of the training/testing datasets.

input poses D and output joint configurations Q. In this work,
we generated trajectory-based datasets as depicted in Figure
3. For each investigated robot, the corresponding dataset was
made of 10.000 trajectories of 100 steps each. Similar to
[24], we randomly sample an initial joint configuration for
each trajectory from the full unconstrained robot workspace
and acquire the next joint configuration in the trajectory by
deviating the joint state within a revolute joint variation ±v ∈
[1deg,20deg] or a prismatic joint variation ±v ∈ [1mm,20mm]
of the current joint values. In total, each of the generated
datasets had 1.000.000 samples. We decided to set 80% for
training, 10% for validation, and 10% for testing. Figure 4
shows the resulting average distances between the example
pose De and the pose of interest D based on the joint variations
chosen when generating the dataset. The goal behind varying
the joint variation v was to show how far the example joint-
pose pair needs to be from the query for the investigated
network to provide reliable IK solutions.

B. Network Architectures

We investigated different types of MLP-based NN architec-
tures — Plain MLP (Figure 2, left), Residual MLP (Figure 2,
middle) denoted RMLP, and Densely Connected MLP (Figure
2, right) denoted DMLP — for the IK learning problem. The



TABLE I: D-H Parameters of the commensurate and incommensurate serial
robots used for the experiments. The angles θ and α are expressed in deg,
while the variables d and a are expressed in mm.

i θ d a α

1 θ1 333 0 0
2 θ2 0 0 -90
3 θ3 316 0 90
4 θ4 0 82.5 90
5 θ5 384 -82.5 -90
6 θ6 0 0 90
7 θ7 107 88 90

(a) 7-DoF Panda arm

i θ d a α

1 θ1 0 0 90
2 θ2 0 250 90
3 0 d3 0 0
4 θ4 0 0 90
5 θ5 140 0 90
6 θ6 0 0 90
7 θ7 0 0 0

(b) 7-DoF GP66+1 arm

primary distinctions between RMLP and DMLP stem from
the specific skip-connections utilized and the arrangement of
these connections within the network architecture. In RMLP,
summation-based skip connections are employed and the
network is made of stacked residual blocks. Each residual
block is chosen to have two fully connected (FC) layers,
where the first FC layer is followed by a ReLU activation
and another FC layer; the output this second FC layer is
summed with the output from the previous residual block
before being passed to another ReLU activation. In DMLP,
skip connections based on concatenation are utilized, and a
transition layer is employed to decrease the dimensionality
following the concatenation. Each dense block is chosen to
have five FC layers where the input to a FC is made of
a concatenation of the outputs of all the previous layers.
By choosing these two skip connection-based networks, the
goal was to investigate if adding shortcut connections to a
baseline MLP would improve its performance. That is, after
choosing the baseline MLP model, RMLP and DMLP models
were designed to have the same number of layers for fair
comparison as depicted in Figure 2 and reported in Section
IV.

C. Loss Function

All the investigated networks were trained by minimizing
the Mean Squared Error (MSE) loss denoted here by LQ as
shown in Equation 1:

LQ =
1
N

N

∑
i=1

∥∥Qi − Q̂i
∥∥2

2 (1)

where Q̂ and Q are respectively the predicted and ground truth
joint configurations, and N is the total number of samples in
the training set.

D. Evaluation Metrics

The network performances were evaluated by finding the
reconstruction pose errors defined as the difference between
the homogeneous transformation T̂ = fFK(Q̂) and T = fFK(Q)
as described bellow:

Terror = T ∗ T̂−1

Terror =

[
Rerror terror
03x1 1

]
(2)

where terror is the position error and Rerror corresponds to the
rotation error that has been converted to its corresponding

Roll-Pitch-Yaw (RPY) orientation representation for all the
results we reported in Section IV.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present a series of experiments aimed
at showcasing the benefits of Learning-by-Example and the
integration of residual and dense connections in an MLP-
based DDIK solver. Specifically, our proposed architectures
were applied to solve the IK learning problem of two 7-DoF
redundant manipulators: a 7-DoF-7R commensurate Panda
robot arm and a 7-DoF-2RP4R incommensurate GP66+1
robot arm. Table I provides their respective D-H parameters.
We implemented all the investigated models using PyTorch
and have made the code publicly accessible on the GitHub
repository associated with the paper1 to allow reproducible
research. All the reported results in this section are an average
of 10 different runs of the investigated networks with different
random seed values. We also evaluated the performance of the
investigated DDIK solvers against three established numerical
methods, each employing a different approach for the inverse
Jacobian calculation: Selectively Damped Least Squares (SD)
[10], Singular Value Filtering (SVF) [9], and the Mixed Inverse
(MX) [27]. We refer the readers to [9], [10], [27] for more
details on these methods.

A. Architectures and Parameters

As mentioned before, we chose the Plain MLP performing a
one-to-one mapping between the pose and joint configuration
spaces (Figure 1a) as the baseline model. The MLP was
chosen to have 12 hidden layers with 1024 hidden neurons, the
optimizer type was Adam, the learning rate was set to 0.001,
and the activation function at all layers was Rectified Linear
Unit (ReLU) — except for the output layer which did not
have an activation function. The input poses were normalized
between -1 and 1 while the output joint values were kept to
their generated values in radians. The baseline MLP model
was trained for 1000 epochs with the LQ loss (as shown in
Equation (1)) and a batch size of 128 while utilizing an early
stopping strategy with a patience tolerance of 100 epochs. For
a fair comparison, we maintained the same training strategy
described above for the training of all the investigated models
with both input schemes depicted in Figure 1.

For the numerical solvers, we set the number of iterations to
500, the attenuation factor to α = 1 and the target pose error
to 1mm in position and 1deg in orientation. We also used the
joint values from the example joint-pose pair to be the initial
joint configuration when solving for the query pair.

B. Influence of the input schemes

We propose to employ a Learning-by-Example strategy to
train the investigated networks with an example pair of joints
Qe and pose De in addition to the pose D of interest to
predict the corresponding joints Q. We argue that the provided
example pair carries enough privileged information to help the

1https://github.com/jacketdembys/iksolver

https://github.com/jacketdembys/iksolver
https://github.com/jacketdembys/iksolver
https://github.com/jacketdembys/iksolver


TABLE II: Experimental IK results obtained using the 100.000 samples from the test set of the 7-DoF Panda robot arm for all the investigated datasets. The
orientation representation employed when training the networks is Roll-Pitch-Yaw. For the avg, min, and max values, the lower the better (↓) while for the
percentage of error values less than 1(mm/deg), the higher the better (↑). The Learning-by-Example results are provided for v = 1deg.

Model
Position (mm) Orientation (deg)

X Y Z Ro Pi Ya
avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑ avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑ avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑

Without Learning-by-Example

MLP 82.2
(0.0/1025.2) 1.22% 89.4

(0.0/1071.3) 1.21% 69.2
(0.0/654.1) 1.57% 28.6

(0.0/179.8) 4.49% 16.3
(0.0/88.7) 4.91% 33.2

(0.0/179.9) 3.12%

RMLP 126.6
(0.0/1376.4) 0.62% 125.9

(0.0/1443.1) 0.62% 98.2
(0.0/856.8) 0.78% 45.5

(0.0/180.0) 1.83% 26.3
(0.0/89.7) 2.47% 56.2

(0.0/180.0) 1.34%

DMLP 117.8
(0.0/1318.0) 0.67% 117.5

(0.0/1405.4) 0.65% 92.8
(0.0/814.5) 0.81% 41.1

(0.0/180.0) 1.96% 25.8
(0.0/89.7) 2.55% 50.9

(0.0/180.0) 1.43%

With Learning-by-Example strategy (v = 1deg)

MLP 0.7
(0.0/22.9) 77.29% 0.7

(0.0/20.1) 77.23% 0.5
(0.0/14.0) 85.44% 0.2

(0.0/3.0) 99.79% 0.2
(0.0/3.2) 99.78% 0.2

(0.0/3.7) 99.64%

RMLP 0.1
(0.0/6.4) 99.99% 0.1

(0.0/6.5) 99.99% 0.0
(0.0/2.9) 99.99% 0.0

(0.0/0.8) 100% 0.0
(0.0/1.0) 100% 0.0

(0.0/1.5) 99.99%

DMLP 0.3
(0.0/5.7) 97.61% 0.3

(0.0/6.7) 97.62% 0.2
(0.0/3.2) 99.65% 0.0

(0.0/0.8) 100% 0.0
(0.0/0.9) 100% 0.1

(0.0/1.2) 99.99%

Numerical Methods [25] (v = 1deg)

SD [10] 0.2
(0.0/23.6) 99.99% 0.2

(0.0/15.8) 99.99% 0.1
(0.0/10.1) 99.99% 0.0

(0.0/1.8) 99.96% 0.0
(0.0/0.1) 100% 0.0

(0.0/0.1) 100%

SVF [9] 0.2
(0.0/1.0) 100% 0.2

(0.0/1.0) 100% 0.1
(0.0/0.7) 100% 0.0

(0.0/1.7) 99.96% 0.0
(0.0/0.1) 100% 0.0

(0.0/0.1) 100%

MX [27] 0.2
(0.0/1.0) 100% 0.2

(0.0/1.0) 100% 0.1
(0.0/1.0) 100% 0.0

(0.0/1.9) 99.93% 0.0
(0.0/0.8) 100% 0.0

(0.0/0.9) 100%

TABLE III: Experimental IK results obtained using the 100.000 samples from the test set of the 7-DoF GP66+1 robot arm for all the investigated datasets.
The orientation representation employed when training the networks is Roll-Pitch-Yaw. For the avg, min, and max values, the lower the better (↓) while for
the percentage of error values less than 1(mm/deg), the higher the better (↑). The Learning-by-Example results are provided for v = 1deg.

Model
Position (mm) Orientation (deg)

X Y Z Ro Pi Ya
avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑ avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑ avg ↓

(min/max) ≤ 1 ↑ avg ↓
(min/max) ≤ 1 ↑

Without Learning-by-Example

MLP 25.7
(0.0/542.7) 3.38% 25.6

(0.0/484.5) 3.35% 31.4
(0.0/695.6) 2.73% 4.2

(0.0/167.3) 17.59% 4.2
(0.0/79.0) 17.73% 4.9

(0.0/173.0) 15.44%

RMLP 36.4
(0.0/762.9) 2.20% 36.6

(0.0/773.5) 2.17% 42.6
(0.0/846.1) 1.80% 6.9

(0.0/175.1) 10.32% 6.6
(0.0/84.9) 10.64% 7.7

(0.0/178.5) 9.25%

DMLP 32.6
(0.0/612.1) 2.45% 32.5

(0.0/618.1) 2.44% 37.0
(0.0/757.4) 2.08% 6.3

(0.0/174.0) 11.08% 6.1
(0.0/83.0) 11.28% 7.1

(0.0/178.3) 10.00%

With Learning-by-Example (v = 1deg)

MLP 0.7
(0.0/13.2) 77.88% 0.7

(0.0/13.6) 77.81% 0.7
(0.0/15.8) 73.90% 0.1

(0.0/1.4) 99.99% 0.1
(0.0/1.4) 99.99% 0.1

(0.0/1.7) 99.98%

RMLP 0.1
(0.0/4.5) 99.96% 0.1

(0.0/5.1) 99.96% 0.1
(0.0/6.0) 99.91% 0.0

(0.0/0.5) 100% 0.0
(0.0/0.7) 100% 0.0

(0.0/0.6) 100%

DMLP 0.2
(0.0/3.2) 99.54% 0.2

(0.0/3.1) 99.54% 0.2
(0.0/4.0) 98.94% 0.0

(0.0/0.4) 100% 0.0
(0.0/0.5) 100% 0.0

(0.0/0.5) 100%

Numerical Methods [25] (v = 1deg)

SD [10] 0.1
(0.0/1.0) 100% 0.1

(0.0/1.0) 100% 0.1
(0.0/1.0) 100% 0.0

(0.0/1.8) 99.99% 0.0
(0.0/0.0) 100% 0.0

(0.0/0.1) 100%

SVF [9] 0.1
(0.0/0.5) 100% 0.1

(0.0/0.5) 100% 0.1
(0.0/0.3) 100% 0.0

(0.0/1.5) 99.99% 0.0
(0.0/0.0) 100% 0.0

(0.0/0.1) 100%

MX [27] 0.1
(0.0/1.0) 100% 0.1

(0.0/1.0) 100% 0.1
(0.0/1.0) 100% 0.0

(0.0/1.8) 99.91% 0.0
(0.0/1.0) 99.99% 0.0

(0.0/1.0) 99.99%

network learn to predict Q. Here, we employ the trajectory-
based dataset generated with a joint variation v = 1deg for
the 7-DoF-7R robot, and v = 1deg for the revolute joints, and
v = 1mm for the prismatic joint of the 7-DoF-2RP4R robot.

That is, we trained the baseline MLP and the proposed
RMLP and DMLP networks for both robots with and without
example pairs. Figures 5 and 6 show the average position
(X ,Y,Z in mm) and orientation (Ro,Pi,Ya in deg) errors for all
the investigated networks against both input schemes; respec-
tively for the 7-DoF-7R and 7R-2RP4R robots. We observe
that Learning-by-Example strategy significantly improves the
average position and orientation errors for all the investigated

networks compared to the same networks trained without
example pairs.

Tables II and III show the average (avg), minimum (min),
and maximum (max) position (X ,Y,Z) and orientation errors
(Ro,Pi,Ya) errors for all the investigated models against
both input schemes, respectively for the 7-DoF-7R and 7-
DoF-2RP4R robot arms. For both robots, the RMLP- and
DMLP-based DDIK solvers trained with the Learning-by-
Example strategy outperformed the Plain MLP by predicting
more IK solutions with less than 1mm average position and
1deg average orientation errors. The same Tables II and III
also demonstrate that the proposed DDIK solvers achieve
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Fig. 5: Mean Absolute Position (X , Y , Z) and Orientation (Ro, Pi, Ya) Errors
for the 7-DoF-7R Panda robot. The numbers on the bars represent the actual
position errors for each model. The models labeled (E) denote the results
obtained with the Learning-by-Example strategy following the input scheme
illustrated in Figure 1.

TABLE IV: Distribution of Mean Absolute Position (X , Y , Z) and Orientation
(Ro, Pi, Ya) Errors for the 7-DoF Panda Robot within three error ranges:
≤ 1mm, (1,10]mm, and > 10mm for position errors and ≤ 1deg, (1,3]deg,
and > 3deg for the orientation errors. All the values in the table are expressed
in percentages (%) of the solutions falling within the specified error ranges.
The Learning-by-Example results are provided for v = 1deg. For each error
range, (↓) denotes the lower the percentage, the better the model while (↑)
denotes the higher percentage, the better the model.

Error
in

Error
Range

Learning without Example Learning-by-Example
MLP RMLP DMLP MLP RMLP DMLP

X
≤ 1 ↑ 1.22 0.62 0.67 77.29 99.99 97.61

(1,10] ↓ 11.09 5.63 5.92 22.69 0.01 2.39
> 10 ↓ 87.68 93.74 93.41 0.02 0.00 0.00

Y
≤ 1 ↑ 1.21 0.62 0.65 77.23 99.99 97.62

(1,10] ↓ 10.84 5.58 6.00 22.75 0.01 2.38
> 10 ↓ 87.94 93.80 93.35 0.02 0.00 0.00

Z
≤ 1 ↑ 1.57 0.78 0.81 85.44 100.00 99.65

(1,10] ↓ 13.90 6.93 7.30 14.56 0.00 0.35
> 10 ↓ 84.54 92.29 91.88 0.01 0.00 0.00

Ro
≤ 1 ↑ 4.49 1.83 1.96 99.79 100.00 100.00

(1,3] ↓ 8.96 3.58 3.87 0.21 0.00 0.00
> 3 ↓ 86.56 94.59 94.17 0.00 0.00 0.00

Pi
≤ 1 ↑ 4.91 2.47 2.55 99.78 100.00 100.00

(1,3] ↓ 9.73 4.90 5.00 0.22 0.00 0.00
> 3 ↓ 85.37 92.64 92.45 0.00 0.00 0.00

Ya
≤ 1 ↑ 3.12 1.34 1.43 99.64 100.00 100.00

(1,3] ↓ 6.21 2.61 2.84 0.35 0.00 0.00
> 3 ↓ 90.67 96.05 95.73 0.01 0.00 0.00

performance comparable to SD [10], SVF [9] and MX [27]
numerical solvers.

For the 7-DoF-7R robot, RMLP achieved average position
errors of 0.1mm, 0.1mm, 0.0mm respectively in X , Y , Z and
average orientation errors of 0.0deg, 0.0deg, 0.0deg respec-
tively in Ro, Pi, Ya. For this same robot, the percentages of
solutions obtained with RMLP within 1mm position error were
99.99%, 99.99%, 99.99% respectively for X , Y , Z; and within
1deg orientation error, 100%, 100%, and 99.99% respectively
for Ro, Pi, Ya. While DMLP achieved average position errors
of 0.3mm, 0.3mm, 0.2mm respectively in X , Y , Z and average
orientation errors of 0.0deg, 0.0deg, 0.1deg respectively in
Ro, Pi, Ya. For this same robot, the percentages of solutions
obtained with DMLP within 1mm position error were 97.61%,
97.62%, 99.65% respectively for X , Y , Z; and within 1deg
orientation error, 100%, 100%, and 99.99% respectively for
Ro, Pi, Ya.

For the 7-DoF-2RP4R robot, RMLP achieved average po-
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Fig. 6: Mean Absolute Position (X , Y , Z) and Orientation (Ro, Pi, Ya) Errors
for the 7-DoF-7R GP66+1 robot. The numbers on the bars represent the actual
position errors for each model. The models labeled (E) denote the results
obtained with the Learning-by-Example strategy following the input scheme
illustrated in Figure 1.

TABLE V: Distribution of Mean Absolute Position (X , Y , Z) and Orientation
(Ro, Pi, Ya) Errors for the 7-DoF GP66+1 Robot within three error ranges:
≤ 1mm, (1,10]mm, and > 10mm for position errors and ≤ 1deg, (1,3]deg, and
> 3deg for the orientation errors. All the values in the table are expressed in
percentages (%) of the solutions falling within the specified error ranges. The
Learning-by-Example results are provided for v = 1deg. For each error range,
(↓) denotes the lower the percentage, the better the model while (↑) denotes
the higher percentage, the better the model.

Error
in

Error
Range

Learning without Example Learning-by-Example
MLP RMLP DMLP MLP RMLP DMLP

X
≤ 1 ↑ 3.38 2.20 2.45 77.88 99.96 99.54

(1,10] ↓ 27.75 19.18 21.09 22.11 0.04 0.46
> 10 ↓ 68.87 78.62 76.46 0.01 0.00 0.00

Y
≤ 1 ↑ 3.35 2.17 2.44 77.81 99.96 99.54

(1,10] ↓ 27.69 18.93 21.05 22.19 0.04 0.46
> 10 ↓ 68.97 78.90 76.51 0.01 0.00 0.00

Z
≤ 1 ↑ 2.73 1.80 2.08 73.90 99.91 98.94

(1,10] ↓ 22.63 15.97 18.10 26.08 0.09 1.06
> 10 ↓ 74.64 82.22 79.81 0.02 0.00 0.00

Ro
≤ 1 ↑ 17.59 10.32 11.08 99.99 100.00 100.00

(1,3] ↓ 30.86 19.71 21.14 0.01 0.00 0.00
> 3 ↓ 51.54 69.97 67.78 0.00 0.00 0.00

Pi
≤ 1 ↑ 17.73 10.64 11.28 99.99 100.00 100.00

(1,3] ↓ 30.95 20.21 21.49 0.01 0.00 0.00
> 3 ↓ 51.32 69.15 67.23 0.00 0.00 0.00

Ya
≤ 1 ↑ 15.44 9.25 10.00 99.98 100.00 100.00

(1,3] ↓ 27.88 17.92 19.29 0.02 0.00 0.00
> 3 ↓ 56.68 72.83 70.71 0.00 0.00 0.00

sition errors of 0.1mm, 0.1mm, 0.1mm respectively in X , Y ,
Z and average orientation errors of 0.0deg, 0.0deg, 0.0deg
respectively in Ro, Pi, Ya. And, for this same robot, the
percentages of solutions obtained with RMLP within 1mm
position error were 99.96%, 99.96%, 99.91% respectively for
X , Y , Z; and within 1deg orientation error, 100%, 100%,
and 100% respectively for Ro, Pi, Ya. While DMLP achieved
average position errors of 0.2mm, 0.2mm, 0.2mm respectively
in X , Y , Z and average orientation errors of 0.0deg, 0.0deg,
0.0deg respectively in Ro, Pi, Ya. And, for this same robot,
the percentages of solutions obtained with DMLP within 1mm
position error were 99.54%, 99.54%, 98.94% respectively for
X , Y , Z; and within 1deg orientation error, 100%, 100%, and
100% respectively for Ro, Pi, Ya.

For both robots, Tables IV and V show the distributions
of errors within three error ranges expressed in terms of per-
centages of predicted IK solutions found to be less than 1mm,
between 1mm and 1cm, and greater than 1cm for the position
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Fig. 7: Mean Absolute Position (top plot) and Orientation (bottom plot)
Errors for the 7-DoF-7R Panda robot showing the impacts of joint variations
v. The error bands represent the minimum and maximum values across 10
different runs of the MLP, RMLP, and DMLP models with diverse random
initializations, while the solid dotted lines depict the average values of those
runs. The models labeled (E) denote the results obtained with the Learning-
by-Example strategy following the input scheme illustrated in Figure 1. The
SVF [9] and MX [27] numerical solvers were run once by using the example
joint as the initial configuration.

errors; and less than 1deg, between 1deg and 3deg, and greater
than 3deg for the orientation errors. It can be observed that
while MLP, RMLP, and DMLP trained with the Learning-by-
Example strategy perform better than the same models trained
without example pairs; RMLP and DMLP outperform MLP in
terms of percentages of IK solutions within the defined error
ranges. From our observations, we found that residual and
dense skip connections help in improving the performance of
MLP-based DDIK solvers, particularly with the Learning-by-
Example strategy. Overall, we note that RMLP outperforms
DMLP by a small margin.

C. Influence of the distance from the example pair

To understand how far the example joint-pose pair needs to
be from the query pose in the proposed Learning-by-Example
strategy, we generated various datasets with increased joint
variations v. These variations increase the distance between
the pose in the example joint-pose pair and the query pose
as illustrated in Figure 4. As mentioned before, we trained
all the investigated networks for each of these datasets 10
times with different random initializations (random seeds).
Figures 7 and 8 show minimum, average, and maximum
pose errors as error bands based on the variations of v. We
observed that as v increases, the IK predictions of the plain
MLP-based DDIK solver get worse than those of RMLP
and DMLP, hence showing the advantages of incorporating
residual and dense skip connections. For the 7-DoF-7R robot,
up to v = 20deg, RMLP (orange error band in Figure 7) and
DMLP (green error band in Figure 7) exhibit average position
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Fig. 8: Mean Absolute Position (top plot) and Orientation (bottom plot)
Errors for the 7-DoF-2RP4R GP66+1 robot showing the impacts of joint
variations v. The error bands represent the minimum and maximum values
across 10 different runs of the MLP, RMLP, and DMLP models with diverse
random initializations, while the solid dotted lines depict the average values
of those runs. The models labeled (E) denote the results obtained with the
Learning-by-Example strategy following the input scheme illustrated in Figure
1. The SVF [9] and MX [27] numerical solvers were run once by using the
example joint as the initial configuration.

and orientation errors respectively around 1mm and 0.2deg;
while around v = 12deg, the errors for MLP (blue error band
in Figure 7) start getting larger. For the 7-DoF-2RR4P robot,
up to v = 20deg for the revolute joints and v = 20mm for
the prismatic joint, RMLP (orange error band in Figure 7)
and DMLP (green error band in Figure 7) exhibit average
position and orientation errors respectively around 2mm and
0.1deg; while around v = 5deg, the errors for MLP (blue error
band in Figure 8) start getting larger. For both robots, SD
[10], SVF [9] and MX [27] numerical solvers were run once
by using the example joint as the initial configuration and
performed similarly to the proposed RMLP and DMLP DDIK
solver as presented in Figures 7 and 8. Although the number of
iterations for the numerical solvers increased in some cases as
v grew larger, their performance remained consistent, as they
continued iterating to achieve the desired pose error unless the
maximum number of iterations was reached.

V. CONCLUSION

In this paper, we addressed the complex problem of Inverse
Kinematics (IK) with a Data-Driven and Learning-by-Example
framework, while investigating the utilization of residual and
dense skip connections within an MLP-based learner for
robotic manipulators. The resulting network architectures have
demonstrated much improved results in approximating IK
solutions of two redundant robotic manipulators: a 7-DoF-7R
commensurate robot and a 7-DoF-2RP-4R incommensurate
robot [25], [26]. For the Learning-by-Example cases, we
introduced an input scheme that incorporates a joint-pose



pair alongside the pose of interest, showcasing a simplified
yet effective approach that achieves reliable IK solutions.
Through a comprehensive performance comparison between
the Plain MLP, ResNet-like MLP (RMLP), and DenseNet-
like MLP (DMLP) models, we demonstrated that the skip
connections-based networks performed better than the plain
MLP when employing the proposed example-based input
scheme. On the other hand, we demonstrated that the mod-
els trained with the proposed Learning-by-Example strategy
significantly outperformed the same networks trained without
example pairs and achieved similar performance to Selectively
Damped Least Squares (SD), Singular Value Filtering (SVF)
and Mixed Inverse (MX) numerical solvers. Furthermore, we
demonstrated that the example joint-pose pair does not need
to be close to the example joint-pose of interest. That is, up
to v = 20deg for revolute joints and v = 20mm for prismatic
joints; RMLP and DMLP still provide reliable IK solutions.
For future work, we plan to investigate collision avoidance
and singularites when applying the proposed framework to
redundant robotic manipulators. Furthermore, we also plan
to leverage the proposed framework for multi-robots inverse
kinematics learning with a single deep neural networks.
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