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Abstract—Symptoms of voice disorder may range from slight
hoarseness to complete loss of voice; from modest vocal effort to
uncomfortable neck pain. But even minor symptoms may still im-
pact personal and especially professional lives. While early detec-
tion and diagnosis can ameliorate that effect, to date, we are still
largely missing reliable and valid data to help us better screen
for voice disorders. In our previous study, we started to address
this gap in research by introducing an ambulatory voice monitor-
ing system using surface electromyography (sEMG) and a robust
algorithm (HiGUSSS) for pattern recognition of vocal gestures.
Here, we expand on that work by further analyzing a larger set
of simulated vocal dysfunctions. Our goal is to demonstrate that
such a system has the potential to recognize and detect real vocal
dysfunctions from multiple individuals with high accuracy under
both intra and intersubject conditions. The proposed system relies
on four sEMG channels to simultaneously process various patterns
of sEMG activation in the search for maladaptive laryngeal activity
that may lead to voice disorders. In the results presented here, our
pattern recognition algorithm detected from two to ten different
classes of sEMG patterns of muscle activation with an accuracy as
high as 99%, depending on the subject and the testing conditions.

Index Terms—Biomedical monitoring, Biomedical telemetry,
Electromyography, Medical diagnosis, Source Separation, Pattern
recognition.

I. INTRODUCTION

OCCUPATIONAL voice users are at the highest risk for
voice disorders largely due to the extraordinary vocal

load placed on the laryngeal system while exercising their oc-
cupation [1]. Classic symptoms are hoarseness, vocal effort, and
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vocal fatigue, which are related to vocal hyperfunction [1]. In
turn, vocal hyperfunction may lead to phonotrauma—e.g., vocal
nodules—or to primary Muscle Tension Dysphonia (MTD)—
i.e., excessive or dysregulated laryngeal muscular activity un-
derlying the vocal changes [2]. So, the ability to differentiate
normal and abnormal patterns of laryngeal muscular activity in
daily life could improve our ability to detect and understand
the pathophysiological processes leading to MTD, and thereby
improving the diagnosis of this voice disorder.

In parallel to that, it is well known that as muscles contract,
they undergo changes in electrical potentials, which can be mon-
itored by electromyographic (EMG) devices. When studying a
single muscle, the optimal signal to noise ratio is typically ob-
tained when the electrodes are placed inside the muscle—a tech-
nique available in the healthcare or laboratory setting, but with
limited use in people’s everyday lives. A less invasive strategy
is to place surface EMG (sEMG) electrodes on the skin near the
muscle(s) of interest. Recently, the interest in many areas such as
human–computer interfacing [3], prosthesis [4], and even voice
pathology [5], [6] has fomented development of devices that can
monitor muscle activity, and systems like the Delsys’ Trigno,
Great Lakes Neurotechnologies’ BioRadio, and the Shimmer’s
Shimmer3 wearable sensors are just a few of the many examples
in the market today.

Given the benefits of detecting MTD and the proliferation of
sEMG devices in the context of other muscle-related dysfunc-
tions (ALS, Cerebral Palsy, etc. [7]), it stands to reason that
sEMG can be a powerful, noninvasive and well-suited tool also
in the study of MTD. In that sense, even though reliable detec-
tion of sEMG signals in extralaryngeal muscular activity that
can be associated to high risk of voice disorders is a nontrivial
and scarcely investigated area, it should also be the foundation
to study differences between normal and maladaptive muscular
activity during voice production for speech.

In the past decade, research intensified the development of
devices suitable for ambulatory monitoring of daily voice use.
Commercial systems were made available to monitor vocal du-
ration, voice intensity, and voice fundamental frequency (f0)
using accelerometers, microphones, and frequency transforms
[8]–[10]. Some of these noninvasive monitoring system even
provide biofeedback capabilities and have been ported to smart-
phone platforms [11]. However, the richness and complexity
of vocal patterns during speech go well beyond what can be
captured by microphones and inertial sensors. In that sense,
and with limited use to extralaryngeal activity, one of the latest
developments was a smartphone-based vocal health monitor in
which collection of frequency and inertial data was calibrated to
aerodynamic parameters, in particular glottal air flow [11]–[14].
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On the other hand, vocal effort is thought to be partially the re-
sult of compensatory extralaryngeal activity to produce stronger
or more consistent voice during vocal fatigue [15]. Hence, even
though the detection of vocal effort and fatigue as early signs
of MTD is often elusive in the isolated screening or clinical set-
ting [12], classifying sEMG signals can help to answer unique
research questions about magnitude and pattern of that same
extralaryngeal activity and their correlation with MTD.

Finally, while we agree with recent statements that sEMG
has not reached its full potential for application to clinical and
basic research in voice, speech, and swallowing [6], ambulatory
monitoring of voice using sEMG on extralaryngeal muscles can
be an innovative approach to advance our understanding of vocal
hyperfunction and ultimately to monitor its occurrence in heavy
voice users. Indeed, the broader and more pertinent issue at hand
is to further research on how to best process and analyze data
from any voice ambulatory monitoring system and to determine
the data’s clinical utility [10], [12], which is also the focus of
this research, in the context of sEMG signals.

As alluded to earlier, sEMG is a less invasive strategy than its
nonsurface counterpart, with more real-world practicality. How-
ever, it comes at the expense of noisier signals and exacerbated
occurrences of crosstalk between adjacent electrodes. That is
because the biologic functions that are subserved by muscular
activity do not result from the action of a single muscle, but from
the activity of several muscles working in a coordinated fashion.
Moreover, when it comes to recognizing the crosstalk patterns
of muscle activity in a reliable, accurate, and robust manner,
much remains to be done. In our previous study [16], an am-
bulatory sEMG device named EMG multichannel hardware for
otolaryngology (ECHO) was proposed to log sEMG data from
multiple differential sEMG sensor channels. The system was
connected to the anterior neck of the subject since many com-
plex physiological motor functions underlying voice, speech,
and swallowing occur within the neck. Also, the muscles in this
area are located relatively close to the skin and are quite appro-
priate for sEMG. Our goal in [16] was to demonstrate that: 1) an
ambulatory sEMG device can help to build our understanding
of complex laryngeal patterns underlying voice for speech and
nonspeech vocal behaviors through sEMG signals; and 2) the
neck offers an excellent location to capture such signals. The
new hierarchical algorithm called HiGuided-Underdetermined
Source Signal Separation (HiGUSSS) was then tested for a sin-
gle test subject and it achieved a classification accuracy of over
90% for six gestures.

So, in this paper, two new research questions have been raised:
1) whether sEMG devices can reliably associate a larger number
of patterns of extralaryngeal muscle activity with voice tasks
underlying speech and nonspeech behaviors; and 2) whether
they can differentiate between multiple vowel sounds produced
in a normal manner compared with a pressed (low air flow)
manner for intra and intersubject testing. It should go without
saying that the answer to these questions can lead to a method
applicable clinically to the detection of normal and maladaptive
extralaryngeal patterns associated with voice problems.

In order to answer these questions, we drastically expanded
on the testing and validation of the system proposed in [16] by:

1) more than doubling the number of test subjects (ten) with
different ages and genders; 2) adding new groups of different
gestures with both similar and distinct patterns representing nor-
mal and simulated dysfunctional conditions; 3) testing a larger
number (ten) of vocal gestures; and 4) creating different test
scenarios involving intra and intersubject cases. The results pre-
sented at the end of this paper show that despite the complexity
of the muscle groups on the neck, meaningful detection of vo-
cal dysfunctions through the recognition of sEMG signals is
possible, at high levels of accuracy.

II. BACKGROUND AND RELATED WORK

A. Voice Disorders

As mentioned earlier, classic symptoms of behavioral voice
disorders are related to vocal hyperfunction. In some individ-
uals, vocal hyperfunction leads to phonotrauma, such as vocal
nodules, while in others it leads to primary MTD [2], [17].
Excessive or disorganized extralaryngeal muscle activity and a
chronic high laryngeal position during speech production are
characteristic of MTD [2], [18]. Also, sEMG is a noninvasive
tool that has been used in voice research. However, past re-
search using sEMG to study hyperfunctional voice disorders was
methodologically difficult to compare because of differences in
inclusion criteria, sensor locations, experimental paradigms, and
analysis methods [6], [19], [44]. As a result, a continued lack
of systematic studies on extralaryngeal muscle activity in voice
disorder (i.e., MTD) is still noted ([2], [19]) also because in-
vestigations using sEMG to study vocal hyperfunction either:
1) used clinical groups that mixed patients with and without
vocal fold lesions, for example, to study relationships with neck
tension palpation ratings [5], or 2) focused on patients with
vocal nodules exclusively, finding that intermuscular beta co-
herence may be a promising indicator of vocal hyperfunction
[20]. In other words, we need studies on sEMG activity that
focus on understanding the excessive or disorganized extrala-
ryngeal activity leading to symptoms of vocal effort and strain in
individuals with primary MTD separately from individuals with
secondary MTD—i.e., with vocal nodules, and for which MTD
is a compensatory response to phonotrauma. Information on this
differentiation is necessary at this stage of inquiry because dif-
ferent intra and extralaryngeal mechanisms were proposed for
patients with primary MTD as opposed to vocal nodules (intrala-
ryngeal, hypoadducted hyperfunction versus hyperadducted hy-
perfunction) [2], [17]. Also, regarding extralaryngeal activity,
individuals scoring higher on introversion showed greater in-
frahyoid activity than submental activity during baseline speech
and stressful public speaking as well as greater perceived vo-
cal effort compared with peers with extroversion, which is in
agreement with the trait theory of voice disorder’s prediction
that individuals with introversion may be more prone to pri-
mary MTD than vocal nodules [19], [21], [22]. The new frontier
will be to test analysis methods for the data stream from ex-
tralaryngeal muscle activity to learn about normal and altered
patterns during voice and nonspeech laryngeal behaviors that
are linked with risk for voice disorders. Exploiting methods for
ambulatory monitoring of vocal function using sEMG has great
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potential to help with the early detection of problems that can
be elusive at early stages among professional voice users—e.g.,
student teachers.

As pointed out earlier, sEMG of the anterior neck is well
suited to capture general information on the muscular activ-
ity of the larynx, which can be recognized as signal patterns.
Presumably, excessive muscle activity or lack of variability in
laryngeal movements may be related to symptoms of vocal effort
and vocal fatigue, which again particularly plagues occupational
voice users such as teachers [1].

In this context, measures of phonatory aerodynamic function
such as air flow (L/s) and subglottal pressure (cm H2O) during
voicing give a reliable account of laryngeal valving activity dur-
ing voice production [23]–[25]. A derivative measure, laryngeal
airway resistance (subglottic air pressure in cm H2O divided
by air flow in L/s) is clinically relevant and used to discriminate
normal and pathologic vocal function, to assess severity, and to
aid management planning [25], [26]. The implications of ele-
vated laryngeal airway resistance (e.g., decreased air flow and/or
increased air pressure) would be an increased risk for vocal ef-
fort and fatigue: the most frequent vocal symptoms reported by
teachers [1], [27]. Perceptually, a strained or pressed voice qual-
ity is often observed in MTD [2]. A pressed voice, characterized
by a decrease in air flow, can be simulated effectively [24], and
thus, can serve as an initial model for differentiating extrala-
ryngeal sEMG patterns associated with normal versus pressed
voice productions.

These studies support the pursuit of our research questions,
which are again whether sEMG devices can reliably: 1) as-
sociate patterns of extralaryngeal muscle activity with voice
tasks underlying speech and nonspeech behaviors (e.g., voiced
sounds, throat clear); and 2) differentiate between vowel sounds
produced in a normal manner compared with a pressed (low air
flow) manner for intra and intersubject testing.

B. Pattern Recognition of sEMG Signals

The work in [28] introduced the idea of Guided Under-
determined Source Signal Separation (GUSSS) and the GUSSS
ratio. In [28], the focus was on discriminating different muscle
unit activation potential trains, or MUAPT patterns, that emerge
when different gestures are performed. As many systems do, it
was assumed that an sEMG sensor captures a combination of
statistically independent MUAPTs due to crosstalk [29], [30].
Unlike most methods in the literature, the system in [28] relied
on a single sensor. This was possible because the main charac-
teristic of the GUSSS ratio is its ability to indicate the presence
or absence of a particular signature or MUAPT pattern within
a sensed sEMG signal. The term “Guided” in GUSSS refers to
the fact that the sought-out signature—i.e., a previously learned
signal—is “injected” into the observed signal in order to obtain
a corresponding ratio. A low ratio indicates that the signature
is most likely present within the sensed signal. A high ratio, on
the other hand, indicates that the signature is not being detected
in the signal.

Later, a framework for controlling a power wheelchair us-
ing the GUSSS method was developed and tested in [31]. The
framework proposed a control system based on the recognition

Fig. 1. ECHO device depicted from two top angles: a) with and b) without
the case cover.

of hand gestures. The use of hand gestures was simply to il-
lustrate the fact that any muscle activation pattern or signature
derived from natural and repetitive muscle movements can be
employed by the system. In the case of a person with severe
impairment, any other muscle movement could be used instead
(e.g., eyebrow movement). Compared to other systems found in
the literature, which use multiple sEMG sources for classifica-
tion, the method in [31] compared quite reasonably, reaching up
to 92% accuracy for three gestures.

More recently in [32], a hierarchical system based on the
GUSSS (HiGUSSS) was developed to achieve higher classifi-
cation accuracy for a greater number of gestures. The HiGUSSS
framework repeats the GUSSS process in parallel for tuples of
prelearned signatures (e.g., doubles, triples, etc.). The reason
for the use of tuples is twofold: search for multiple signatures
in parallel, hence faster; and to separate similar signatures in
order to avoid confusion between similar gestures, and hence,
increase the success of classification even as the number of
gestures increases—up to 86% accuracy for nine gestures.

As mentioned earlier, in the study presented in [16], an im-
proved version of the HiGUSSS algorithm was applied to the
detection of vocal gestures using four channels of sEMG signals
collected at the anterior neck of a single subject. Six gestures
(/u/, /i/, /t/, /s/, cough,andthroat clear) were tested and the sys-
tem achieved a classification accuracy of 85%. A small proto-
type device for real-time monitoring and collection of signals
was also introduced. Here, we explain the design of that device
and its potential application to the detection and diagnosis of
voice dysfunctions.

C. Device Description

The proposed ECHO in [16] is an Otolaryngology REcord-
ing, Analysis, and Diagnostic device (OREAD) to log sEMG
data from multiple differential sEMG sensor channels. One key
feature of the ECHO-OREAD device is that it maintains a small
form factor (8.5 cm × 6 cm × 4.5 cm ) in order to be portable
so that it can be used in a variety of applications. The device
is connected to a rechargeable lithium-ion battery to maintain
portability. Fig. 1 shows two pictures of the ECHO-OREAD
device sitting on top of the rechargeable battery and Fig. 2
shows two sets of signals from all four channels captured with
ECHO-OREAD for the Cough and /t/ gestures, with electrode
placement as described in Section IV-A1. Next, we provide more
details on the design of the ECHO-OREAD device.
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Fig. 2. Four channels of sEMG signals for gestures Cough and /t/ collected by the ECHO-OREAD.

Fig. 3. Basic diagram of the custom PCB for the ECHO-OREAD device.

1) Hardware: The hardware of the device consists of a
Raspberry Pi board with a custom-built PCB docked on top.
The custom-built PCB contains circuitry for analog to digital
conversion and four channels of sEMG inputs. The circuit pro-
vides amplification and individual, manual control of the gains
for each channel. The channels are also filtered in order to re-
ject undesirable frequencies. Once the signals are amplified and
filtered, they are digitized and transferred to the Raspberry Pi
through its GPIO connector. Additional buttons on the top of
the device can be used to control the behavior of the boards,
such as resetting the acquisition and reinitializing the boards.
Fig. 3 shows a basic diagram of the custom PCB built for the
ECHO-OREAD device.

III. PROPOSED METHOD

This research expands on the classification approach pre-
sented in [16] to further demonstrate the validity of performing
sEMG classification based on extralaryngeal muscle activity
in the anterior neck, which underlies voice production for
speech and nonspeech behaviors (voiced and unvoiced sounds,
throat clear, swallowing, etc.). A major difference between this
approach and the one in [32] is that four sEMG channels were
used instead of just one. The proposed framework is illustrated
in Fig. 4 and it consists of a two-level hierarchical classifier. At
the first level, there is a set of original GUSSS-based classifiers;

Fig. 4. Framework for the HiGUSSS Classifier used.

and in the final level of the hierarchy a multiclass support vector
machine (MC-SVM) performs the classification based on the
outputs from the GUSSS classifiers. Basically, the GUSSS
classifiers function as confidence generators, inputting feature
vectors extracted from the raw sEMG signal and outputting
N confidence vectors

−→
λ , where the elements of the vector

indicate the confidence that a crosstalk sEMG signal contains
one of the sought-out signatures in the tuple—a tuple is a group
with an arbitrary number of signatures: e.g., doubles, triples,
etc. All of the obtained confidence vectors are concatenated
into a second feature vector, which is then input to the SVM
classifier at the second level of the hierarchy. The output of the
second level classifier is the final class assigned to the observed
sEMG signal. The following sections describe in further
detail the classifiers at each level, as well as their training
process.

A. Class Signatures

Let us assume that there is a labeled training set with C × T
signals—i.e., T signals from each of the C possible classes
(muscle patterns or gestures). First, a signature for each class
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Fig. 5. Typical sEMG signal segmented into three parts. The ZCs are indicated
in the top figure. The rectified signal and the MAVs of the segments are shown
in the bottom figure.

is obtained. The current approach is to do an averaging of the
T training signals grouped per class. That is, for each class c, a
single signature: sc = 1

T (
∑

xl in class cxl) is created, where xl is
the lth training signal of class c.

B. Optimal Choice of Tuples

Each GUSSS-based classifier is associated to a tuple of
classes, where the sizes and members can be chosen arbitrarily
depending on the gestures, user, muscle activity patterns, etc.
The rationale behind the tuples is the following: when a large
number of C classes are considered at the same time, there might
be much confusion between some of the classes. However, it is
possible to find subsets of classes for which the confusion be-
tween such classes is minimized. So, the goal of the tuples is
to allow similar classes to be separated. In a real-time system,
it is desirable to group as many classes as possible per tuple in
order to reduce the complexity of the algorithm, however, for
this paper, pairs were chosen for the tuple numbers in order to
achieve the highest accuracy possible.

The optimal pairings of gestures were automatically selected
by iterating through all possible combinations and performing
a modified version of a within class and between class analysis
[33]—in the Euclidean space instead of the covariance space.
The underlying equations and further details of this analysis can
be found in [34].

C. sEMG Segmentation and Level 1 Feature Vectors

As mentioned before, the input to each of the GUSSS-based
classifiers is a feature vector extracted from the incoming sEMG
signal. The features used and the way to obtain the feature
vector for a particular tuple, denoted τi , is described next. A
same procedure applies to all N tuples being considered. Fig. 5
depicts a typical sEMG signal and the features considered.

1) GUSSS Ratio: As explained in Section II, the main idea
of the GUSSS method is to identify particular signatures within
a measured sEMG signal. For any given sEMG signal x, the
GUSSS method seeks to identify the presence or not of each
possible signatures. This is done by iteratively injecting signa-
tures and obtaining ratios for each one of them. For all ni = |τi |
classes in tuple τi , the algorithm obtains the ratios r1 , . . . , rni

.
If signal x contains a pattern in class c, ratio rc is expected to
be smaller than all other ratios rj , for j �= c.

2) Segmentation of the sEMG Signals: Typically, the sEMG
signals for the gestures considered here last from around 250
to 500 ms. To capture the structural information of the sEMG
signals, we divide them into D segments of equal length. The
features described next are calculated for each segment of any
given signal.

3) Mean Absolute Value (MAV): One feature commonly
used for sEMG signals is the MAV. The MAV of a signal x(t)
is obtained by calculating the average of the absolute values of
x at all instants t. For a discrete signal:

MAV =
1
K

K∑

k=1

|x (k)| (1)

where K is the number of samples in a segment of x.
4) Zero Crossing (ZC): Another feature extracted from the

sEMG signals is the number of ZC, which represents how many
transitions from positive to negative (or vice-versa) there are in
a segment of the signal.

5) Complete Feature Vector Level 1: After all of the features
described above have been extracted, signal x is represented by
the following feature vector:

�vi = [r1 , . . . , rni
, m1 , . . . , mD , z1 , . . . , zD ] (2)

where r1 , . . . , rni
are the GUSSS ratios for each class in tuple

τi . The MAVs and ZCs for each segment of the signal are mk

and zk , respectively, for k = 1, . . . , D.
6) Statistics in Each Tuple of Gestures: As it will be shown

shortly, the system uses the mean vector and covariance matrix
of each class within the tuples. So, the above feature vectors
are extracted for all T training signals in each class and used to
form ℵ(�μi

j ,
∑i

j ), representing the distribution of class j in the
tuple τi , where j = 1, . . . , ni , and i = 1, . . . , N .

D. Distances and Confidence Values

As it was mentioned before, the output of the first level in the
hierarchy is a set of confidences that are concatenated to form
a second feature vector for the next level. These confidences,
which are based on Mahalanobis distances, are obtained by each
one of the GUSSS-based classifiers.

First, an input signal y is fed into each one of the tuples
described above. Then, for each tuple τi , a feature vector �vi

(2) is calculated. Finally, the GUSSS-based classifiers calculate
Mahalanobis distances to the mean vectors �μi

j of the classes in
tuple τi , that is:

di
j =

√
(
�vi − �μi

j

) (∑i
j

)−1 (
�vi − �μi

j

)T
, j = 1, . . . , ni . (3)
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If, for example, distance di
j is small (close to zero), the confi-

dence that signal y belongs to class j would be high.
To obtain the actual confidence values, the complementary

error function is used:

λ(di
j ) = erfc

(
di

j√
2

)

(4)

where erfc(x) = 1 − erf(x).
For the GUSSS-based classifier corresponding to tuple τi ,

the confidence that signal y belongs to class j is given by λi
j =

λ(di
j ). In the end, the classifier produces ni confidence levels:

�λi = (λi
1 , . . . , λ

i
ni

).
Level 2 Feature Vector After confidence values are obtained

for all N tuples, the second feature vector is created as follows:

�u =
[
�λ1 , �λ2 , . . . , �λN

]
. (5)

E. Multichannel HiGUSSS

For the enhanced version of the HiGUSSS with multiple chan-
nels used in this research, the steps detailed above are replicated
for each channel, leading to a set of vectors −→u . These channel
vectors are then averaged in order to form a single confidence
feature vector to serve as the input to the MC-SVM.

F. Level 2 Classifier: MC-SVM

The final classification method consists of an MC-SVM. To
train the MC-SVM, the−→u vectors are computed for all train-
ing signals, for all classes. When it comes to classification, an
incoming signal −→y is fed through level 1 in the hierarchy to
obtain the confidences and to create the −→uy feature vector. The
latter is fed into the MC-SVM in order to generate the final class
assignment.

IV. EXPERIMENTS

In this section, we address the research questions posed in
Section I. That is, first to verify whether sEMG devices can reli-
ably associate a larger number of sEMG patterns to speech and
nonspeech behaviors; and second whether they can differentiate
between multiple vowel sounds produced in a normal compared
to a pressed manner. Also, with respect to normal and pressed
vocal gestures, intra and intersubject testing was performed.

Expanding on the six gestures collected in [16] for a single
subject, for the experiments reported here, a total of ten vocal
gestures and one resting condition were collected for ten sub-
jects. The full set of gestures collected for each subject includes:
/a/, /a/ pressed, /u/, /u/ pressed, /i/, /i/ pressed, /t/, /s/, cough,
and throat clear. A pressed gesture indicates a simulated vocal
dysfunction by using a pressed voice for the corresponding ges-
ture as described in Section II. Vocally healthy subjects were
trained on how to simulate these dysfunctional gestures by us-
ing a pressed voice, or restricting their air flow during a vocal
gesture. This training is described in Section IV-A2.

These ten gestures were then grouped into the following four
different test sets. The first test set includes the six original
vocal gestures /u/, /i/, /t/, /s/, cough, and throat clear also found
in [16], but this time for ten subjects instead of one. The results

Fig. 6. Muscle groups on the human neck: diagram, actual view of electrode
placement, and actual view with bandage applied.

for this test set will be discussed in Section V-A. The second test
set consists of all ten gestures /a/, /a/ pressed, /u/, /u/ pressed,
/i/, /i/ pressed, /t/, /s/, cough, and throat clear. This set was used
to test the ability of the hierarchical approach to classify a large
gesture set with high accuracy and the results can be found in
Section V-B. The next set was formed by the gestures /a/, /a/
pressed, /u/, /u/ pressed, /i/, and /i/ pressed, and it was used
to test the ability of the system to classify unique normal and
simulated dysfunctional gestures. In other words, to identify a
vocal gesture with or without simulated dysfunction, as well as
to classify the occurrence of specific vocal gestures. The results
for this test can be found in Section V-C. Finally, the gestures
/a/, /u/, and /i/ were grouped together into a Normal class, while
/a/ pressed, /u/ pressed, and /i/ pressed into a Pressed class. The
results for this test can be seen in Section V-D. In order to further
validate the proposed hierarchical approach, a comparison found
in Section V-E was performed between the proposed method, a
distance classifier, and a single-layer MC-SVM classifier.

A. Data Collection

The main goal of all experiments was to validate the claim that
meaningful classification can be achieved from extralarygneal
sEMG signals of the anterior neck—not only for normal voice
production, but also simulated disordered voice production.
Therefore, sEMG signals were collected under well-controlled
laboratory conditions. The subjects were six males and four
females in good health who denied the presence of any voice
disorder. Four pairs of sEMG electrodes and a ground electrode
were placed as explained in Section IV-A1 and seen in Fig. 6.
Data were collected in an IAC Acoustics audiology booth (New
York, New York) in the Department of Communication Science
and Disorders, University of Missouri.

For the sEMG data collection, the test subjects were asked to
perform 55 repetitions of each of the ten selected gestures in the
following order: /a/, /a/ pressed, /u/, /u/ pressed, /i/, /i/ pressed,
/t/, /s/, cough, and throat clear. Each subject performed all of the
gestures of a given type within a 2 s interval per each repetition
of a gesture and with a 1 s break between repetitions. After the
data for a single gesture were collected, the subject rested for
several seconds and drank water as needed before completing
the data collection for the next gesture.

During the rest period between repetitions of a gesture, the
subject was asked to be as relaxed as possible, and try to mini-
mize any motion in the throat or mouth area. The sEMG signals
of interest, i.e., the ones to be associated with each gesture, are
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TABLE I
MEASUREMENTS FOR EACH OF THE PARTICIPANTS’ AIR FLOWS IN L/S FOR THE

SET OF SIX NORMAL AND SIMULATED PRESSED VOICE GESTURES

/a/ /u/ /i/

Air Flow (L/s) Normal Pressed Normal Pressed Normal Pressed

Subject 1 (male, 40–59) 0.13 0.02 0.07 0.01 0.07 0.01
Subject 2 (female, 18–39) 0.14 0.02 0.15 0.04 0.17 0.04
Subject 3 (male, 18–39) 0.21 0.08 0.21 0.11 0.17 0.11
Subject 4 (male, 40–59) 0.17 0.07 0.26 0.10 0.18 0.08
Subject 5 (male, 18–39) 0.10 0.05 0.08 0.05 0.09 0.07
Subject 6 (female, 18–39) 0.11 0.07 0.11 0.06 0.10 0.06
Subject 7 (male, 18–39) 0.23 0.14 0.27 0.11 0.19 0.12
Subject 8 (male, 18–39) 0.16 0.13 0.20 0.18 0.19 0.15
Subject 9 (female, 18–39) 0.18 0.08 0.20 0.10 0.14 0.09
Subject 10 (female, 18–39) 0.12 0.03 0.15 0.05 0.12 0.06

those generated during the transition from the resting condition
to the actual vocal gesture and back to resting.

For the experiments presented here, data were collected using
a Tektronix MSO 4054 digital oscilloscope with a sample rate
of 5 KHz. The signals were treated by both digital and analog
bandpass filters at 30 Hz and 1 KHz and were divided into three
segments (i.e., D = 3), as described in Section III-C2.

1) Electrode Placement: As seen in Fig. 6, surface elec-
trodes were placed according to established guidelines for
sEMG recordings [35] with special consideration of recommen-
dations proposed for voice, speech, and swallowing research [6].
Disposable 10 mm Ag/AgCl surface electrodes (Bio-Medical
Instruments, Warren, MI) were placed in bipolar configurations
for single differential recordings from the anterior neck mus-
culature. Two identical electrode pairs were placed on the left
and right side of the neck to capture suprahyoid (submental)
and infrahyoid muscular activity corresponding to elevations
and depressions of the larynx during voice for speech, respec-
tively [36]. The first electrode for the submental muscle site was
placed approximately 1 cm from midline in the submandibular
area superior to the hyoid bone [19], [37]–[39]. The second elec-
trode of the submental pair was placed in line with the fibers of
the muscle and with an interelectrode distance of approximately
1.5 cm [5], [6], [35], [40]. The submental location captures mus-
cle activity from the anterior belly of the digastric, mylohyoid,
and geniohyoid muscles.

For the infrahyoid muscle site, the first electrode was cen-
tered over the thyroid cartilage just below the thyroid notch and
approximately 1 cm off midline [5], [6], [19], [37], [41]. The in-
frahyoid location captures muscle activity from the sternohyoid
and omohyoid muscles with additional activity captured from
the thin muscle sheath called platysma overlying most of the
neck [6], [38]. Due to the small sizes of the individual muscles
making up the submental and infrahyoid musculature as well
as the multilayered structure of the muscles, sEMG can only
capture muscle group activity and not activity from individ-
ual muscles. Moreover, it is not realistic to record activity from
deeper muscles such as the thyrohyoid and cricothyroid [6]. The
ground electrode was placed on the superior bony prominence
of the shoulder (acromion). For voice and speech sEMG record-
ings, a placement of the ground electrode close to the electrodes

Fig. 7. Means and standard deviations of the classification accuracies per
gesture, over all ten subjects. Six gestures considered: /u/, /i/, /t/, /s/, cough, and
throat clear.

Fig. 8. Means and standard deviations of the classification accuracies per
subject, over six gestures. Six gestures considered: /u/, /i/, /t/, /s/, cough, and
throat clear.

is preferred [6]. A net bandage was placed over the electrodes in
order to help keep the cables from moving around during data
collection as seen in Fig. 6.

The quality of electrode placement was confirmed with tasks
that produce target activations such as a swallow (submental
and infrahyoid activity) and production of a front vowel (/i/,
submental) and back vowel (/u/, infrahyoid).

2) Pressed Vocal Gesture Training: Since the participants
were all vocally healthy, prior to data collection, a training
program was implemented by a certified speech-language
pathologist with experience in voice disorders to simulate
“pressed” voice productions to be completed by each subject.
The training consisted of verbal description and demonstrations
of pressed voice based on the protocol by [24]: i.e., “an ex-
tremely high-effort phonation mode, with the perception of an
almost completely closed airway, as if pushing”. Next, subjects
listened to selected audio samples of sustained /a/ productions
by males and females with severe vocal hyperfunction chosen
from the KayPentax Disordered Voice Database (Model 4337,
Lincoln Park, NJ). Finally, the participants practiced normal
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TABLE II
CONFUSION MATRIX FOR SIX GESTURES AVERAGED OVER ALL TEN SUBJECTS AND PRESENTED IN NUMERICAL AND GRAPHICAL FORMS

Fig. 9. Means and standard deviations of the classification accuracies per
gesture, over all ten subjects. Ten gestures considered: /a/, /a/ pressed, /u/, /u/
pressed, /i/, /i/ pressed, /t/, /s/, cough, and throat clear.

and pressed productions of /a/, /u/, and /i/ before proceeding
to vowel productions with concurrent air-flow feedback using
the KayPentax Phonatory Aerodynamic System. Target levels
for air flow were primarily based on normative data for the
PAS “Comfortable Sustained Phonation Protocol” (sustained
/a/) and consisted of a mean of 0.13 L/s (SD = 0.08) (for both
male and female, ages 18–39 years) and a mean of 0.11 L/s
(SD = 0.05) (for males, 40–59 years) for normal /a/ production
[42]. Reported normative data for average air-flow rates for the
vowel /i/ are 0.14 L/s for males and 0.18 L/s for females [43].
Normative data for /u/ are not readily available, but they are
expected to fall within a similar range. Each subject was able
to produce normal and pressed vowel productions inside and
outside the norm range, respectively, during training, and con-

Fig. 10. Means and standard deviations of the classification accuracies per
subject, over all ten gestures. Ten gestures considered: /a/, /a/ pressed, /u/, /u/
pressed, /i/, /i/ pressed, /t/, /s/, cough, and throat clear.

trasts were perceptually distinct. Five repetitions of each vowel
gesture were recorded with concurrent air-flow visual feedback
data prior to full sEMG data collection. Full sEMG data
were collected without concurrent air-flow feedback to avoid
additional muscular neck activity from holding the PAS face
mask against the face. During data collection, all participants
were perceptually monitored for contrasts between normal
and pressed productions. Participants were encouraged and
received feedback to maintain pressed phonations as necessary.
The average air flows over each gesture are presented in Table I.

V. RESULTS

For all of the results presented here, a ten-fold cross validation
was performed. Each time 90% of the signals from all collected
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TABLE III
CONFUSION MATRIX FOR TEN GESTURES AVERAGED OVER ALL TEN SUBJECTS AND PRESENTED IN NUMERICAL AND GRAPHICAL FORMS

Fig. 11. Means and standard deviations of the classification accuracies per
gesture, over all subjects. Six gestures considered: /a/, /a/ pressed, /u/, /u/
pressed, /i/,and /i/ pressed.

gestures were used for training and the remaining 10% were
used for classification.

A. Distinct Gestures

In the first test, a set of six distinct gestures containing speech
and nonspeech behaviors (e.g., vowel, consonant, and throat
sounds) was used. These are the same gestures used in our pre-
vious work [16], that is, /u/, /i/, /t/, /s/, cough, throat clear.
However, the results here expand upon those tests by using data
from ten subjects—four female and six males—as opposed to a
single subject. Classification was completed using the improved

Fig. 12. Means and standard deviations of the classification accuracies per
subject, over six gestures. Six gestures considered: /a/, /a/ pressed, /u/, /u/
pressed, /i/,and /i/ pressed.

HiGUSSS algorithm described in Section III. The overall aver-
age in classification accuracy—i.e., over all gestures and over all
subjects—was approximately 85%. Fig. 7 shows the classifica-
tion accuracies per gesture, averaged over all ten subjects, while
Fig. 8 shows the classification accuracies per subject, averaged
over all six gestures. Both the means and the corresponding
standard deviations are depicted in these same figures. Finally,
Table II presents the average confusion matrix computed over
all ten subjects. A color plot of the same Table II is provided
next to its numerical form for better visualization of the results.

The high accuracy achieved in this test should positively ad-
dress part of our first research question: whether sEMG devices
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TABLE IV
CONFUSION MATRIX FOR THE SECOND SET OF SIX GESTURES AVERAGED OVER ALL TEN SUBJECTS AND PRESENTED IN NUMERICAL AND GRAPHICAL FORMS

Fig. 13. Means and standard deviations of the classification accuracies over
all subjects using normal versus pressed gestures—i.e., simulated dysfunction.

Fig. 14. Means and standard deviations of the classification accuracies per
subject using normal versus pressed gestures—i.e., simulated dysfunction.

TABLE V
CONFUSION MATRIX FOR INTRASUBJECT ACCURACY IN DETECTION OF

SIMULATED DYSFUNCTION AVERAGED OVER ALL TEN SUBJECTS AND

PRESENTED IN NUMERICAL AND GRAPHICAL FORMS

can reliably associate a larger number of patterns of extrala-
ryngeal muscle activity with voice tasks underlying speech and
nonspeech behaviors.

B. Large Gesture Set

In order to further address our first research question, we
selected a large number of gestures (ten). The selected ges-
tures were, /a/, /a/ pressed, /u/, /u/ pressed, /i/, /i/ pressed,
/t/, /s/, cough, throat clear. As earlier, classification was com-
pleted using the improved HiGUSSS algorithm described in
Section III. An overall average classification accuracy of 74%
was achieved—i.e., averaged over all gestures and over all sub-
jects. As it can be observed in the next figures, it is important
to notice that one of the subjects (#6) presented a much lower
average, bringing down the overall average to 74%. In spite of
that, these results still shows that the system is robust to large
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Fig. 15. Means and standard deviations of the classification accuracies per
gesture, for normal versus pressed gestures—using the leave-one-out approach
for the HiGUSSS and the SVM Classifier.

Fig. 16. Means and standard deviations of the classification accuracies per
subject, for normal versus pressed gestures—using the leave-one-out approach
for the HiGUSSS and the SVM Classifier.

gesture sets (research question one), but also to sets containing
similar gestures (research question two). Figs. 9 and 10 show,
respectively, the classification accuracies per gesture, over all
ten subjects, and per subject, over all ten gestures. As in the
previous test, Table III shows the average confusion matrix in
both numerical and graphical forms.

C. Normal versus Pressed Gestures

In order to show that not only can the system achieve high
accuracy with similar gestures, but it can also distinguish spe-
cific gestures within the normal and pressed classes, tests were
completed using three normal and three pressed gestures. This
partially addresses our second research question or whether the
system can differentiate between multiple vowel sounds pro-
duced in a normal manner compared with a pressed (low air
flow) manner.

The gestures used here were /a/, /a/ pressed, /u/, /u/ pressed,
/i/,and /i/ pressed, and they were collected as described in
Section IV-A2. In this case, an overall average classification

TABLE VI
CONFUSION MATRIX FOR INTERSUBJECT ACCURACY IN DETECTION OF

SIMULATED DYSFUNCTION AVERAGED OVER ALL TEN SUBJECTS AND

PRESENTED IN NUMERICAL AND GRAPHICAL FORMS FOR THE HIGUSSS AND

THE SVM CLASSIFIER

accuracy of 78% was achieved. As before, classification accura-
cies per gesture and per subject are presented before the average
confusion matrix: Figs. 11, 12, and Table IV, respectively.

D. Intra and InterSubject Testing

The remainder of research question two was addressed by
completing intra and intersubject testing. Once again, together
with the previous test, the results of this test can justify our
method as a potential solution to the detection of normal
and maladaptive extralaryngeal patterns associated with voice
problems.

1) Intrasubject: Intrasubject testing was carried out for each
of the ten subjects separately using three normal and three
pressed gestures, that is, /a/, /a/ pressed, /u/, /u/ pressed, /i/, and
/i/ pressed. These gestures were divided into two sub-classes:
the gestures /a/, /u/, and /i/ were treated as the Normal class,
and gestures /a/ pressed, /u/ pressed, and /i/ pressed were treated
as the Pressed class. The classification was then completed as a
two class problem using the method described in Section III. An
overall average in classification accuracy of 95% was achieved.
This clearly support the potential use of an sEMG device for
detecting vocal dysfunctions. Fig. 13 shows the average classi-
fication accuracy over all subjects for each of the two sub-classes
(Normal versus Pressed), and Fig. 14 shows the results per user.
Table V shows the average confusion matrix averaged over all
ten subjects.
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Fig. 17. Comparison between the average classification accuracies per subject,
over six gestures, for each of the three classifier (HiGUSSS, MC-SVM, and
Distance). First set of six gestures considered: /u/, /i/, /t/, /s/, cough, and throat
clear.

Fig. 18. Comparison between the average classification accuracies per subject,
over six gestures, for each of the three classifier (HiGUSSS, MC-SVM, and
Distance). Second set of six gestures considered: /a/, /a/ pressed, /u/, /u/ pressed,
/i/, and /i/ pressed.

2) Intersubject: Intersubject tests were also completed for
all ten subjects combined and using the same three normal and
three pressed gestures. These gestures were once again grouped
into two sub-classes, Normal and Pressed. However, this time,
the test was performed in a leave-one-outfashion. That is, for
each subject, the training was completed using data from all
the other subjects—i.e., all data except for the subject being
tested. Classification was then completed as a two class problem
using the data from that subject and the method described in
Section III.

As before, Figs. 15 and 16, and Table VI show the results
of this test. As the reader will notice, the HiGUSSS performed
very poorly for the intersubject case. So, to further investigate
the reason for such low performance, we run the same test set
using an MC-SVM. The figures and tables above also include
the result for the MC-SVM, which performed even worse than
the HiGUSSS. We attribute this poor performance by both clas-
sifiers to data overfitting: i.e., obviously, both classifiers can

Fig. 19. Comparison between the average classification accuracies per subject,
over all ten gestures, for each of the three classifier (HiGUSSS, MC-SVM, and
Distance). Set of all ten gestures considered: /a/, /a/ pressed, /u/, /u/ pressed, /i/,
/i/ pressed, /t/, /s/, cough, and throat clear.

learn very well each subject’s patterns, but they fail to general-
ize across subjects. This conclusion is supported by the excellent
result in the intrasubject test on one hand, and the poor result
in inter-subject test on the other hand. The actual reason for
this overfitting needs to be further investigated, but adding more
diversity to the data by adding more subjects or more gestures
could alleviate this problem.

E. Classifier Comparison

Finally, a comparison between the HiGUSSS algorithm and
two other classifiers was also completed. The goal was to il-
lustrate the value of the HiGUSSS system as opposed to other
more traditional classifiers. For comparison purposes, tests were
run on all three groups of gestures: i.e., the six distinct gestures
used in Section V-A; the large gesture set used in Section V-B;
and the three pressed and three normal gestures used in Section
V-C. These three groups of gestures were classified using both
a simple distance classifier and a single layer MC-SVM, which
were then compared to the results for the HiGUSSS presented
earlier. Figs. 17, 18, and 19 show the corresponding classifi-
cation results per subject, and overall. Note that the HiGUSSS
classifier outperforms the distance and SVM classifiers in al-
most all the cases, and most notably for the cases with large
number of gestures.

VI. DISCUSSION AND CONCLUSION

The results presented in Section V-A for the distinct gestures
further reinforce conclusions drawn from previous study [16],
and address our first research question: that meaningful classifi-
cation can be drawn from sEMG signals collected at the anterior
neck. In [16], data were collected and tested for only a single
subject, while in this study data were collected and tested for ten
subjects (four females and six males). As seen in Section V-A,
average classification accuracy for ten subjects performing six
gestures (/u/, /i/, /t/, /s/, cough, throat clear) was 85%, which is
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consistent with the 90% classification accuracy achieved in [16]
for one single subject.

The tests in Section V-B combined the gestures from Sections
V-A and V-C in order to partially address both our first and sec-
ond research questions. This gesture set allowed for the testing
of the system for a larger number of gestures. The HiGUSSS
system achieved an average classification accuracy of 74% for
this combined set of ten gestures. This demonstrates the merits
of the HiGUSSS system when it comes to larger gesture sets. As
expected, the more distinguishable gestures from Section V-A
(/t/, /s/, cough, throat clear) achieved a higher average classi-
fication accuracy than the set of gestures in Section V-C (/a/,
/a/ pressed, /u/, /u/ pressed, /i/, /i/ pressed). This can be seen in
the nondiagonal entries of Table III, which contains the average
confusion matrix for the classification of the ten gestures.

Further addressing research question two, we strove to ex-
plore whether or not this system could classify, with high accu-
racy, unique normal gestures, and unique pressed gestures. This
inspired the tests done in Section V-C where ten subjects per-
formed both normal and simulated dysfunctional gestures. The
HiGUSSS system achieved an average classification accuracy
of 78%, over all ten subjects. Although six gestures were tested
as in Section V-A, the drop in accuracy from 85% to 78% comes
from the fact that the gestures tested in Section V-C were more
similar to each other than the gestures tested in Section V-A. The
gestures in Section V-A included vowel sounds, throat sounds,
and consonants while the gestures in Section V-C included only
vowel sounds as well as the repetition of same gesture performed
in both a normal and pressed voice. Confusion occurred both
between the corresponding normal and pressed gestures as well
as within the set of pressed gestures and within the set of normal
gestures.

After verifying that the system could detect unique normal
and pressed vocal gestures in Section V-C, we concluded re-
search question two in Section V-D where we tested the ability
of the system to detect the presence of simulated dysfunctions
for both inter and intrasubject conditions. As can be seen in
Section V-D1, accuracy for detection of intrasubject simulated
vocal dysfunction was 95%. This demonstrates the potential
of applying a system like this to the early detection of vocal
disorders through the detection of changing and/or emerging
intrasubject patterns of sEMG signals.

Also, in order to further explore the potential of the proposed
application of sEMG in detection of voice dysfunctions, inter-
subject recognition of simulated vocal dysfunction was tested.
As expected, the average classification accuracy seen in Sec-
tion V-D2 was lower than the accuracy achieved for intrasubject
testing. This could be the result of the more unique character
of vocal gestures for each subject. It is also possible that the
training data were not diverse enough to allow the HiGUSSS
to generalize the learned patterns, leading the classifier to over-
fit the data for each individual. In that case, by increasing the
training set of vocal gestures with more test subjects could sig-
nificantly improve the classification results. It is also important
to note that the system could still be used with intersubject
data in a fashion similar to many voice recognition systems that
improve over time by continuously learning patterns from the
current user.

Finally, the classification accuracy achieved using the Hi-
GUSSS system was compared with the classification accuracies
from a single-layer MC-SVM and a simple distance classifier
in Section V-E. Two meaningful trends were discovered during
these tests. First, it can be noticed that as the number of ges-
tures increased, the advantage of the HiGUSSS method over the
other two classifiers became clearer. Second, as the gestures in
the set became more similar, once again the HiGUSSS system
outperformed the other two methods. This shows the validity of
the HiGUSSS system and the stronger case for its application
in the detection of vocal dysfunctions for similar gestures and
large vocal gesture sets.

Future work will focus on expanding the subject pool in order
to collect more normative data and to test the system with data
of patients with clinical vocal dysfunction as identified by vocal
effort and vocal fatigue. Voice disorders occur on a continuum
and it will be critical to correlate auditory-perceptual ratings of
a pressed (strained) voice quality and altered phonatory aero-
dynamic function (air flow, air pressure, and laryngeal airway
resistance) with sEMG data. Such data are routinely collected in
clinical voice protocols based on vowel or consonant-vowel pro-
ductions. This would allow for further exploration of the intra
and intersubject testing presented here and refine the system’s
sensitivity and specificity to differentiate normal from dysfunc-
tional voice productions. Next, the feasibility of using the Hi-
GUSSS recognition system during ambulatory monitoring must
be tested with occupational voice users, as for example, stu-
dent teachers. In addition, expanding the gesture set will allow
for a more accurate simulation of the usage case of this device.
During normal speech countless vocal and nonvocal gestures oc-
cur (swallowing, coughing, consonants, vowels, etc.) with and
without dysfunctions, so that the system must be able to classify
very large gesture sets with high accuracy. Gestures may also
include short target phrases that could be easily implemented
during ambulatory monitoring as reference points. Overall, the
HiGUSSS recognition system shows great promise in helping to
better understand changes in vocal function that may be linked
to voice disorders.
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