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Abstract—Seed-coat wrinkling in soybean is often observed
when seeds are produced in adverse environmental conditions
and it has been associated with low germinability. Manually rat-
ing seeds is time consuming, error prone and fatiguing – leading
to even more errors. In this paper, an automated approach for the
rating of seed-coat wrinkling using computer vision and machine
learning algorithms is presented. The proposed system provides
a GUI for ground truth annotation and a pipeline consisting
of seed segmentation, feature extraction and classification using
multi-class Relevance Vector Machines (mRVM). This research
also proposes a reliable new feature for seed-coat rating based
on texture. An additional contribution of this paper is a database
of annotated seed images, which is being made available to
researchers in the field. The results showed an accuracy in
wrinkling rating of 86% for matches within ±1 scores from the
ground truth.

I. INTRODUCTION

Characterization of soybean [Glycine max (L.) Merr.] seed
coat can provide information about seed quality [1, 2]. For
example, lignin content, hilum, strophiole, and the overall
structure of the seed coat given by porosity, color, etc have
been associated with a seed’s susceptibility to mechanical
damage, longevity, tolerance to field weathering, performance,
permeability, resistance to shrinking and fungal infection,
and so on [3–6]. In that sense, seed-coat wrinkling can
provide relevant information regarding seed quality, including
germinability and usability [7–9]. While seed-coat wrinkling
is under genetic control, environmental conditions such as
alternating periods of wet and dry conditions and exposure
of seeds to high temperatures during seed development and
maturity are recognized as major reasons for seed shriveling
and coat wrinkling [5, 10, 11]. Therefore, understanding the
association between seed-coat wrinkling and seed performance
will be useful for the development of genotypes with improved
seed quality.

Today, experts visually rate seed-coat wrinkling using an
index that ranges from zero (no visible wrinkles) to nine
(highly wrinkled) [1, 8, 12–14]. This approach is time con-
suming, subjective, and heavily dependent on an individual’s
experience and focus. Therefore, a reliable, consistent and
automated approach that eliminates the subjectivity of a visual
rating system would be of great benefit.

Technology is playing an increasing role in today’s agri-
culture [15], and state-of-the-art machine learning and image
processing techniques have great potential for further applica-
tions in agriculture, including for the assessment of seed-coat
characteristics. In fact, machine vision, robotic platforms, and
environmental sensors are examples of engineering methods
with applications in agriculture [16]. Machine vision tech-
nology for instance brings non-destructive, high-throughput
and accurate solutions to many problems including seed as-
sessment [17, 18]. In that respect, Shahin and Symons [19]
introduced an image-based approach to measure seed size,
reducing the time for seed sizing by a factor of 20. Automation
of seed vigor assessment has been proposed by Sako et al.
[20], by using an inverted flatbed scanner to capture digital
images of germinating seedlings, and quantitatively evaluating
the quality of the seed lot through image analysis.

Machine learning algorithms are widely used to assess
plant and seed characteristics. Yao et al. [21] applied Support
Vector Machines (SVM) to rice diseases detection. They used
shape and texture features to accurately classify three different
rice diseases: rice bacterial leaf blight, rice sheath blight and
rice blast. Finally, combining machine learning and image
processing is the certain solution for achieving even higher
and more precise automation in seed assessment [22–25]. In
that sense, extracting features from different color spaces like
RGB, HSV, and Lab often gives a good class separability
for the classifiers, and combining color and texture is also
widely used for classification and seed assessment. However,
classification results can be affected by uncertainty in light
conditions such as reflection and shadowing. Therefore, an
image capturing device was designed in [26] to control light
conditions. In that case, it was proposed a color/texture-based
classifier to detect ten categories of defects in corn seeds.
The system employed color histograms in RGB and HSV,
Gray level co-occurrence matrices (GLCM), and Local Binary
Patterns (LBP) as features for classification. However, since
the visible spectrum is not always informative, Wang et al.
took a step further by using Near-Infrared (NIR) spectrometry
and Neural Networks (NN) to classify healthy and fungal-
damaged soybean seeds [27, 28].

In this paper, we present an automatic rating system
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Fig. 1. Seed coat wrinkling rating pipeline

for seed-coat wrinkling. The proposed system uses image
processing and machine learning techniques for classifying
both individual seeds and the sets of seeds. The proposed
pipeline consists of: a GUI for ground truth annotation; a
seed segmentation algorithm; feature extraction; and finally
classification using multi-class Relevance Vector Machines
(mRVM). The segmentation algorithm uses K-Means on the
Lab-color space, while morphological operation is applied to
improve the foreground masks. This paper also proposes a
new metric based on a texture feature to characterize seed-
coat wrinkling. Also, while a proposed second metric based
on a shape feature did not prove as helpful, our experiments
indicated that further investigation on that feature could help
classifying different genotypes of soybean. In the following
sections, first, an overview of the challenges in seed-coat-
wrinkling rating is provided. Next, we introduce the automatic
pipeline for rating seed-coat wrinkling. Then, results for the
proposed system are presented and discussed.

II. SEED COAT WRINKLING RATING OVERVIEW

Figure 1 shows the proposed pipeline to grade seeds based
on the level of seed coat wrinkling. A software for ground truth
annotation was also developed and utilized by three experts,
providing information on the seed characteristics that was
used in the proposed pipeline. The pipeline starts with seed
segmentation and the extraction of individual seeds, which are
followed by feature extraction. The mRVM is then trained
using these automatically extracted features and the annotated
labels, and the system is tested using different testing datasets.

A. Dataset

The dataset1 used in this paper consisted of 150 images
of seeds with different levels of seed coat wrinkling. Seeds
depicted in the various images below were collected from
greenhouse and field experiments conducted in 2014 and 2015.
Soybean genotypes included plant introductions – Maturity

1The dataset is available for downloanding at http://vigir.missouri.edu/
Research/seed dataset

(a) (b)
Fig. 2. Sample image from dataset (a) original RGB image, (b) segmented
binary image

GT_4_2147_F.txt

(a) (b)
Fig. 3. GT-SeedExtractor GUI for seed annotation and labeling. (a) annotation
of source image, (b) ground truth information exported by GUI

Group III (MG III), and some parental lines of the Soybean
Nested Association Mapping (NAM) populations. Figure 2(a)
is a sample image of such seeds, in this case with the lowest
seed coat wrinkling rating in the dataset. All images were
taken with an Epson Perfection 1200U scanner in an image
capturing station system that controlled light conditions at the
same level across all images. The entire dataset consists of
3415 individual seeds, which were rated (annotated) by three
experts.

B. Annotation and Labeling

A Graphical User Interface (GUI) was designed for rating
of seed-coat wrinkling by plant biologists. The GUI provides
an interactive environment for users to select each seed from
the image, rate them based on their level of wrinkling, and
export the both individual and group information. Examples
of an annotated image (a) and information exported by the
GUI (b) are shown in Figure 3.

In this research, seeds in the images were labeled by three
independent plant biologists to minimize the rating bias associ-
ated with an individual. Table I illustrates images of individual
seeds segmented and then cropped from the original image.
The same table also shows the numbers of seeds rated by
each expert per seed-coat wrinkling score. Those scores range
from zero (no visible wrinkles) to nine (highly wrinkled).
Typical sample images per score (or rate) are provided for
reference. (Table I). As it can be observed from Table I, the
dataset contains in general fewer seeds with mid-range (3-6)
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Fig. 4. Uncertainty of seed coat wrinkling rating by experts. Each line-color
represents percentage of seeds rated differently comparing to the picked level.

and upper-range (7-9) wrinkling rates than low-range rates (1-
2).

Figure 4 shows the uncertainty in the rating of seed-
coat wrinkling by experts. Each colored line represents the
percentage of seeds rated differently compared to the selected
rate. For instance, for all seeds selected as rate 1 by one of
the experts, 20% of the experts rated those seeds as level two
and 40% as level zero (dotted green line). Based on the same
Figure, we inferred from this uncertainty among experts that
a range of ±1 should be considered when referring to the
ground truth. This inference seems reasonable for all rates
even though the uncertainty towards the mid-range levels has
an even greater range, and this fact would affect negatively
the performance of our classification.

C. Seed Segmentation and Feature Extraction

As implied earlier, segmentation is widely used for plant
characterization and seed assessment [17, 19–21, 23, 29]. Al-
most all segmentation algorithms are based on prior knowledge
of the images under consideration [30–33]. Some times, this
knowledge is in the form of the general shape of the object,
properties of the background, lighting conditions, etc. In this
paper, individual seeds were automatically segmented from the
original images using simply color information.

Figure 5 shows the segmentation pipeline used in this paper.
This segmentation process starts with finding the region of
interest (ROI) surrounding the seeds. Next, the original RGB
images are converted into the L*a*b color space [34]. The a
and b channels – representing the red/green and yellow/blue
aggregated colors respectively – are more distinctive color
quantifier than simple RGB as they can more consistently
segment foreground and background colors that are perceived
under different illumination conditions. Therefore, as shown
in Figure 5, the a and b channels were selected as features for
a K-Means clustering algorithm for partitioning the image into
background and foreground. After the clustering, morpholog-
ical operations were applied to the resulting binarized image
to obtain more homogeneous segments. Figure 2(b) illustrates
in more detail one sample of such segmented images.

Once seeds are segmented, individual seeds can be automat-
ically extracted and labeled for future correspondence with the

Finding ROI Converting to Lab
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Fig. 5. Seed segmentation pipeline

annotations provided by the experts. Also, from the individual
cropped images of the seeds, features were extracted and
used for training of the multi-class Relevance Vector Machine
(mRVM). Four features were studied here: Integrative Co-
occurrence Matrices; Local Binary Patterns (LBP); Maximized
SD; and Shape. While the first two features were previously
introduced in [35] and have shown advantage over other com-
monly used features such as Gabor filter, Complex Wavelet
Transform and Chromatic features, here we propose two new
features as defined next.

Maximized SD (MaxSD): This newly proposed feature was
extracted from the gray scale cropped images of individual
seeds. It is defined as the maximum of the L2-norm of the
standard deviation on the pixel values over a varying window
size divided by the number of pixels in the window. That is,
MaxSD = max

i,j∈W

{
‖σ(i,j,sz)‖

N

}
where σ(i, j, sz) is the standard deviation for a window W

with size N = sz x sz and centered at pixel coordinates (i, j)
. It is important to mention that the size of the window is a
function of its center (i, j) to avoid the effect of background
pixels in σ(i, j, sz). Figure 6 shows examples of MaxSD for
different window sizes. As the Figure indicates, MaxSD cap-
tures the texture of the foreground (seed coat) by determining
the point at which σ and N lead to a smooth image of the
seed.

Empirical analysis of our experiments found that features
that represent the structure of the texture ranter than the
intensity of that texture did not work as reliably as the
proposed maxSD. That is, our experiments showed that seeds
with the same wrinkling rates may present different texture
structure, but the same intensity of texturing, at the same
time that seeds with different wrinkling rates may present the
same texture structure, but different intensities of texturing. In
that sense, maxSD proved to be a better feature than other
features in the literature. That is not to say that maxSD is a
perfect feature, reason for which we also used other features
in our experiments. In fact, while analyzing Figure 7), one will
notice that even though the average values of maxSD for each
wrinkling rate are monotonically increasing with those same
rates, their distribution are largely overlapped. This overlap is
due to all variations in annotation (uncertainly among experts),
to lighting conditions, perceived seed color by the sensors,



TABLE I
STATISTICS ON INDIVIDUAL SEEDS RATED BY THREE EXPERTS

Rates 0 1 2 3 4 5 6 7 8 9

Sample cropped
Image

# of seeds rated by
expert 1 766 1162 348 156 96 92 137 188 303 167

# of seeds rated by
expert 2 759 973 510 362 229 217 143 77 86 59

# of seeds rated by
expert 3 1153 964 360 236 153 112 106 129 89 113
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Fig. 6. L2-norm of local standard deviation for different window sizes
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Fig. 7. Uncertainty of maxSD feature descriptor for different seed coat
wrinkling levels

etc. However, in most cases, the feature was able to correctly
capture the level of seed coat wrinkling. Later, we will show
that together with other features, maxSD provided a very
good separability for the classifier.

Seed Shape: When we started this experiment, it was
assumed that the shape of the seed could be another factor
in determining the level of seed-coat wrinkling. That is, it
was expected that seeds with smaller wrinkling scores would
have more circular shapes than those with higher scores – as
observed in the top row of Table I. Therefore, we investigated
the use of eccentricity of an ellipse as a feature for detecting
the correlation between seed shape and seed-coat wrinkling,
that is:.
Eccentricity = e1

e2
where e1 is the distance between the foci of the ellipse and

e2 is its major axis length (Figure 8).

𝑒"
𝑒#𝑒#

𝑒"~0

Fig. 8. Eccentricity of seed masks defined as the ratio of the distance between
the foci and major axis length

The performance of this shape feature in characterizing
seed-coat wrinkling was evaluated and the results are shown
in Figure 9. As the Figure indicates, there was a very large
overlap between the shape distributions for any two wrinkling
levels. This fact rendered this feature quite uninformative, at
least when applied to the entire dataset. So, we decided to
further exam the dataset and inspect whether the shape was
a function of its genotype. Figure 10 presents the variation
of the average eccentricity per genotype and wrinkling score.
As it can be observed, some genotypes – e.g. LD 015907
and PI 574486 – seem to present a higher correlation between
their eccentricity and their wrinkling scores than the others.
However, for the other four, the shape seems unaffected by
the wrinkling scores. This observation leads to the question
whether the shape feature could be used in a two-layer
hierarchical classifier where the shape is used to identify the
genotype before the actual wrinkling score is provided by the
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second layer of the classifier. This would allow the components
of the second layer of the classifier to be trained as experts in
each specific genotype, leading to a better overall performance
of the wrinkling classification. In our future work, we will
explore this possibility.

D. Multi-Class Relevance Vector Machine (mRVM)

Recently, various machine learning algorithms have been
introduced and applied to seed assessment [21, 22, 26]. In
this paper, we adopted multi-class Relevance Vector Machine
(mRVM) [36] for seed coat wrinkling rating due to its ability
to classify multiple classes (wrinkling scores ranging from 0 to
9) and to find good solution in the case of sparse representation
of the data [37]. In order to train the mRVM, 60 percent
(2049 individual seeds) of the seeds comprising the entire
dataset were randomly set aside for training and the remaining
samples (1366 individual seeds) were used for evaluation
and testing. In order to compensate for bias in ground truth,
the mRVM was trained using the median value of the rates
provided by three experts. Also, a 5-fold cross validation on
the training dataset employed. The best results were achieved
by selecting Gaussian kernel with bandwidth of 0.1, and “top-
down” approach – starting with the entire training data and
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TABLE II
A CONFUSION MATRIX FOR THE TESTING DATASET WITH 1366

INDIVIDUAL SEEDS

Class 0 1 2 3 4 5 6 7 8 9
0 189 158 3 0 1 0 0 0 0 0
1 121 284 26 2 2 0 2 0 0 0
2 17 36 79 3 3 0 0 0 0 0
3 9 25 14 41 6 6 0 0 0 0
4 4 11 18 11 26 10 6 0 0 0
5 0 0 9 8 13 17 14 6 2 0
6 2 3 6 0 4 10 12 4 2 0
7 0 0 3 0 1 7 12 21 10 2
8 1 2 3 0 0 3 5 15 20 2
9 0 4 0 1 0 2 1 4 9 13

Total accuracy within a tolerance of ±1: 86.1%

progressively removing unnecessary samples – while keeping
the total number of 35 vectors as the most relevant.

III. RESULTS

After training, the classifier was tested using the hitherto
unseen dataset (i.e. the remaining 40 percent of all rated
seeds). However, in order to accommodate for the uncertainty
in the ground truth provided by the experts (Figure 4), the
system was tested for its ability to rate the seed-coat wrinkling
within a tolerance of ±1 of that rate. Figure 11 shows the
performance of the classification on the testing dataset for each
score given by the experts. It is important to notice that almost
all seeds with zero wrinkling were actually rated as either zero
or one – i.e. an almost perfect two-class classifier for stressed
and not-stressed seeds.

The confusion matrix associated with the results above is
represented in Table II. From this Table, we notice that the
mRVM is able to classify 51.39% of the seeds exactly – i.e.
zero tolerance – and 86.1% of the seeds within a tolerance of
±1, which again corresponds to the uncertainty of the ground
truth provided by the experts.



TABLE III
PERFORMANCE EVALUATION OF MRVM ON TESTING DATASET

Rates 0 1 2 3 4 5 6 7 8 9

Precision 0.55 0.54 0.49 0.62 0.46 0.31 0.23 0.42 0.47 0.76

Recall 0.54 0.65 0.57 0.41 0.30 0.25 0.28 0.38 0.39 0.38

Specificity 0.81 0.63 0.93 0.98 0.98 0.97 0.97 0.98 0.98 1

The Precision, Recall, and Specificity for the different
classes (i.e. each of the seed-coat-wrinkling scores) are also
shown in Table III. This table indicates that the mRVM
achieved 0.76 and 0.55 precision for, respectively, the most (9)
and the least (0) wrinkled seeds, while it classified the middle
range much more poorly (an average 0.38 for rates 4 and 5). As
already pointed out with respect to Figure 4, different experts
mostly disagreed in their labels for the mid-range wrinkling
rates. As such, the existence of greater uncertainty among
experts should explain the decreased performance of our
system, specially for mid-range rates. Moreover, the number
of data points available for mid-range scores was relatively
smaller than for the other classes – further explaining the
decrease in performance.

IV. CONCLUSION

The proposed system for rating seed-coat wrinkling resulted
in the development of a GUI for ground truth annotation, and a
pipeline for seed segmentation, feature extraction, and classi-
fication using multi-class relevance vector machines (mRVM).
Results for classification illustrated the ability of the mRVM
to rate seeds within a range of ±1 from the ground truth
with an accuracy of 86.1% and an almost perfect accuracy for
classifying stress vs. non-stress seeds. Uncertainty in ground
truth data, in particular for the mid-range seed coat wrinkling
scores, influenced the performance of the classification. Two
new feature descriptors were introduced and evaluated for seed
assessment. These feature were obtained using texture and
shape levels in gray scale images. In the future, shape features
will be used in a two-layer hierarchical classifier to improve
overall performance of the wrinkling classification.
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