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Abstract—Recently, there has been increasing interest in
applying spatio-temporal registration for phenotyping of both
individual and groups of plants in large agricultural fields.
However, 3D non-rigid methods for registration are still a
research topic and present numerous particular challenges in
plant phenotyping due to: overlaps and self-occlusions in dense
phyllotaxies; deformations caused by plant growth over time;
changes in outdoor environmental settings, etc. In this paper, we
address the problem of registering spatio-temporal 3D models
of plants by proposing a bundle registration approach that can
handle transformations with up to three additional Degrees of
Freedom (DoF) to capture the growth of the plant. Besides, we
offer to the research community a new multi-view stereo dataset
consisting of 2D images and 3D point clouds of an African
violet plant observed over a period of ten days. We evaluate
the proposed algorithm on the new African violet dataset using
the usual 6 DoF (three rotations and three translations) and
compared it with 7 DoF (three rotations, three translations, and
one scale) and 9 (three rotations, three translations, and three
scales). We also performed the comparison between the proposed
approach and two other registration approaches: pairwise and
incremental. We show that the proposed algorithm achieves an
average registration error of less than 2 mm on the African violet
dataset. Also, we used VisND, an N-dimensional spatio-temporal
visualization tool, to perform a visual assessment of the aligned
time-varying 3D models of the plants.

Index Terms—3D and 4D point clouds, plant phenotyping,
spatio-temporal registration, 3D reconstruction, N-dimensional
visualization

I. INTRODUCTION

In order to understand plant development, plant scientists
and breeders must be able to evaluate changes in anatomical,
physiological, and biochemical properties over time [1], [2].
Plant phenotyping usually involves the continuous measure-
ment, tracking, and monitoring of various plant traits, such
as: leaf area, leaf leaf size, leaf color, stem length, plant
architecture, canopy height, etc. However, these phenotypical
properties are often obtained through manual, laborious, costly,
and time-consuming methods. So, over the years, robotics and
computer vision techniques have been employed in plant phe-
notyping to automate the process of measuring and evaluating
multiple plant characteristics [3]–[5]. Most of these systems
acquire 2D and 3D data from the scenes at different viewing
angles [6]–[8], and while the data may be acquired using a
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Fig. 1: (Left) Schematic representation of the 4D Scanner equipped
with a (stereo-rig camera), a (turn table), two (raspberry pi) , and a
(LED lamp). It can collect temporal 360o view of the object. (Right)
A sample stereo images: top, and bottom images captured by the 4D
Scanner.

variety of sensors – from simple RGB to time-of-flight (ToF),
or even multi-spectrum cameras – all methods still require the
registration of 3D models over space and time. Registering
3D models of an object consists of finding the transformation
between corresponding 3D points in the source and target
models in order to align their corresponding parts [9]–[11].
If the point clouds are such that Euclidean distances between
every pair of points are preserved both in the source and
target point clouds, a fixed and linear (i.e. rigid) transformation
is sufficient to produce the registration of source and target
models. On the other hand, if the relationships between pairs
of points are not preserved, often multiple and/or non-linear
transformations (i.e. non-rigid) are needed to register the two
point clouds. In that sense, non-rigid 3D registration should be
a fundamental component in the pipeline of any 3D computer
vision techniques for plant phenotyping.

As we mentioned before, recent works [12]–[15] have
already shown the need for temporal registration and visu-
alization of multiple scans of 3D plants taken at different
times to monitor the development of plants. These time-series
based methods often need to acquire previously generated
3D point clouds of growing plants at different days, retrieve
3D information (keypoints, descriptors, skeleton, etc.), and
perform optimization by iteratively aligning those point clouds
to capture and monitor the deformations of different parts of
the plants. The registration of 3D time-series point clouds
of plants appears to be a challenging problem due to the
anisotropic growth and overlapping of different parts of the
plants [12]. Besides, the deformations that some parts of the
plant undergo account for non-rigid registration, which is also
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Fig. 2: The pipeline for the proposed method of spatio-temporal registration. The source and target point clouds are respectively differentiated
in violet and green colors.

known to be a challenging problem in the computer vision
community [9].

This paper’s main contribution is three-fold: (1) a publicly
available multi-view stereo dataset for temporal registration.
The dataset is made of raw images collected over ten days and
processed 3D point clouds of an African violet plant. (2) an
algorithm for bundle registration that takes into account scale
information to align the temporal 3D point clouds. (3) the
incorporation of this algorithm into a previously developed,
open-source N-dimensional visualization tool (VisND) [15].
The algorithm optimizes the registration of two point clouds
based on non-isometric non-rigid transformations with rota-
tion, translation, and scale parameters. Furthermore, the perfor-
mance of the proposed algorithm is discussed and evaluated for
6 DOF (three rotation and three translation parameters), 7 DOF
(three rotation, three translation, and one scale parameters),
and 9 DOF (three rotation, three translation, and three scale
parameters) transformations.

The rest of the paper is organized as follows: section II
provides a literature review of rigid and non-rigid registra-
tion methods, 3D computer vision, and temporal registration
techniques applied to plant phenotyping. Section III presents
the African violet dataset that was used in this paper and
made publicly available for researchers. Section IV provides an
overview of the proposed registration algorithm for 3D time-
series point clouds of plants. Section V reports the experimen-
tal results obtained using the proposed registration approach.
Finally, section VI concludes this paper with insights about
future work.

II. RELATED WORKS

Over the past two decades, many computer vision tech-
niques have addressed the problems related to the registration
of three-dimensional clouds of points [9], [16]–[19]. This
process aligns two point clouds taken at different time in-
stances. Registration algorithms come handy in estimating
the transformation that maps two point clouds and are often
classified into rigid and non-rigid registrations. On the one
hand, rigid registration assumes a rigid setting where point
clouds are related by a rigid 6 DoF transformation that can
be expressed only using rotation and translation parameters.

Some of the widely used rigid registration algorithms are
based on Singular Value Decomposition (SVD) [20], Principal
Component Analysis (PCA) [21], Iterative Closest Point (ICP)
[22]. The latter have been explored in variant forms for surface
registration with non-linear ICP [23] and generalized ICP [24].
On the other hand, non-rigid registration allows more DoF to
capture the deformations — non-linear or partial stretching,
shrinking, change of shape, etc. — of the point clouds over
time. In this group, variant forms of the ICP algorithm were
extended to 3D registration tasks: non-rigid ICP [25]–[28].
Overall, the great progress in rigid surface registration and
the development of a variety of sensors have encouraged the
community to bring non-rigid registration problems in com-
puter vision, computer graphics, robotics, medical imaging,
and reverse engineering into focus [9], [16], [29].

Despite significant successes in the fields mentioned above,
time-lapsed non-rigid registration methods applied to plant
phenotyping are still in their infancy and present numerous
challenges (overlap, self-occlusion, deformations, environmen-
tal settings, phyllotaxy, etc.) related to the development process
of a variety of plants. Recently, foundations have been laid
down for spatio-temporal non-rigid registration of 3D point
clouds of plants to capture changes in structure and track
various phenotypic traits over time [12], [14], [15], [30]–[32].

At the agriculture field level, Dong et al. [14] addressed the
problem of time-lapse dynamic scenes to model, track, and
monitor the continuous growth of plants in a peanut field. The
resulting 4D — 3D reconstruction associated with additional
temporal information — spatio-temporal model consisted of
time-series 3D point clouds registered with respect to a single
global coordinate frame. While having an additional time
dimension provides a richer representation of the field, it can
be overwhelming for human to analyze and take advantage
of the extra available information — growth rate, changing
patterns, leaf color transition, etc. In that regard, Shafiekhani
et al. [15] proposed an N-dimensional visualization tool named
VisND for high-dimensional modeling and visualization of
canopy for plant phenotyping. They created 5D models —
3D reconstruction, temperature, and time — of an agriculture
field to study the behavior of plants in response to different
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Fig. 3: A time-series of 3D point clouds of the same African violet plant captured during the blooming of its flowers processed using
COLMAP [33], [34]. The proposed registration algorithm is able to capture its anisotropic growth, development and deformations over a
10-days period of time. For the different days, the presented clouds are obtained from raw 2D stereo images taken exactly at the same time
01:00 AM.

environmental conditions and stresses. Through its Graphical
User Interface (GUI), VisND was then used to easily extract
and analyze models registered over time.

At the individual plant level, Li et al. [31] proposed a 4D
– 3D reconstruction and time — spatio-temporal framework
based on a forward-backward analysis for growth event de-
tection to address the challenge of accurately locating decay,
budding and bifurcation of plants over time. Paproki et al.
[32] introduced a mesh-based methodology to process mesh
features, perform mesh morphological segmentation, tracking,
and monitoring of individual plants over time. However,
these works emphasized on obtaining the phenotypic traits
of specific plant parts without the consideration of scale
information when registering the time-lapse 3D point clouds.
More recently, Chebrolu et al. [12] proposed a skeleton-based
approach to track as well as register temporally separated 3D
point clouds of individual plants. Their registration approach
starts with the extraction of the skeletal structure of the point
clouds, as described in [35]. This structure is then combined
with a Hidden Markov Model (HMM) formulation to establish
the correspondences between point clouds’ pairs. However,
their proposed registration algorithm was applied to a tomato
plant for which skeletal information can easily be extracted,
and did not take into account the scale deformations of the
plants. Also, while building their dataset of the tomato plant,
the authors minimized self-occlusion of the plant whenever
possible and removed the noise points in a pre-processing step.
Both steps allowed the algorithm to more reliably extract plant
skeletons. In this paper, we focus on the time-lapse registration
of 3D point clouds of a more challenging plant. We consider
a growing African violet plant for which the blooming of its
flowers was tracked over time.

III. MULTI-VIEW STEREO DATASET

We provide a real-world dataset of a growing African violet
plant captured with a 4D scanner that we developed. As
depicted in Figure 1, the 4D scanner is equipped with a
stereo-rig camera (top and bottom cameras), a turntable, two
Raspberry Pi, and an LED lamp to help the growth of the plant.
The plant is placed on a turntable that rotates at specific time
to allow the 4D scanner to capture stereo images over 360o

view of the plant. This data collection process was completely
automated throughout the collection period. In fact, over a
period of ten days, 194 sets of stereo images showing the
blooming of the plant flowers were recorded and used to create
dense 3D point clouds. A sample of stereo images (top and
bottom images) is shown in Figure 1. The dataset, including
both raw 2D images and processed 3D point clouds, is made
publicly available for researchers in the field on this website1.

IV. METHODOLOGY

In this section, an overview of the proposed method is
described. Figure 2 shows the pipeline for spatio-temporal
reconstruction using the dataset described in Section III. The
pipeline starts with 3D reconstruction of images captured over
10 days. This step produces dense 3D point clouds of the
plant at different timestamps (total 194 models). Next, a pre-
processing stage is considered to reduce the size of the models
and extract 3D keypoints representing important regions of
the model. These 3D keypoints are then used to extract 3D
feature descriptors. Using the extracted feature descriptors,
correspondences between temporal models are found. We then
use a bundle registration algorithm to register temporal models
with respect to a global coordinate frame.
• 3D reconstruction: We use COLMAP [33], [34] to pro-

cess all the stereo images’ sets and create 3D dense point

1http://vigir.missouri.edu/∼dembysj/publications/SSCI2021/index.html
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http://vigir.missouri.edu/~dembysj/publications/SSCI2021/index.html


(a) PFH (b) FPFH (c) PFHRGB

Fig. 4: An example of the 3D registration of the same 2 consecutive point clouds from the violet dataset using (a) PFH, (b) FPFH and
(c) PFHRGB taken from the same angle view while using the 7 DoF transformation. The source and target point clouds are respectively
differentiated in violet and green colors.

clouds of the African violet plant. COLMAP is a general-
purpose Structure-from-Motion (SfM) and Multi-View
Stereo (MVS) pipeline with a graphical user interface that
offers a wide range of features for 3D reconstruction tasks
from multiple image sets. The top and bottom images
were separated as they had different intrinsic parameters.
Although camera calibration of the dataset is available,
in this research we let COLMAP estimate intrinsic and
extrinsic camera parameters. This is mainly to show
effectiveness of the proposed algorithm for registration of
models with different scales. We used default parameters
of COLMAP with OpenCV camera model. In Figure 3,
four typical reconstructed point clouds for days 1, 4, 7,
and 10 captured at 1:00 AM are shown. In total, 194 point
clouds of the plant over 10 days were reconstructed and
provided with the publicly available dataset. The provided
temporal models are all registered with respect to the
same coordinate frame using the proposed registration
method described next.

• Preprocessing: In this step, we downsampled the original
3D point clouds to speed up the computation. We empir-
ically chose a leaf size of 0.01 for the results reported
in this paper. We also extracted 3D keypoints to further
speed-up the feature extraction and matching step. We
used a 3D Harris operator [36] to detect keypoints on all
the downsampled point clouds.

• Feature extraction and Matching: Looking at the lit-
erature, different 3D descriptors are introduced for dif-
ferent computer vision problems e.g. registration, seen
recognition, object detection, etc [37]–[39]. Among these
3D feature descriptors, Point Feature Histogram (PFH)
[40], Fast Point Feature Histogram (FPFH) [41] and Color
Point Feature Histogram (PFHRGB) that was developed
by the PCL community [42] are suited for 3D registration
of point clouds. In that regard, a comprehensive review
of 3D point cloud descriptors [38] showed that PFHRGB
outperforms other descriptors for our registration task.
In addition, we empirically evaluated these feature de-
scriptors on the entire African violet dataset by varying
the matching threshold, and PFHRGB which provided

the best overall alignment results was retained in our
methodology. Figure 4 shows a 3D registration example
when trying to align the point clouds using the 3D feature
descriptors mentioned above.

• Normalization: As mentioned before, to show effective-
ness of the proposed registration algorithm, uncalibrated
images are used in COLMAP during the 3D reconstruc-
tion step. As a result, COLMAP produced point clouds
in different scales. As a preprocessing step, we apply a
normalization step to help the registration discussed next.
Equation 4 shows how the point clouds are normalized.
Given an input point cloud P of size 3 × N where
the 3 dimensions represent (X,Y, Z) 3D coordinates of
the vertices, we normalized each of the point clouds by
applying the following equations:

µi =

∑N
j=1 Pi(:, j)

N
(1)

P0i = Pi − µi (2)
s = ‖P0i‖ (3)

Pni =
Pi − µi

s
(4)

where N is the number of vertices, µi is the center of the
point cloud i and s is the scale. P and Pn are respectively
the unnormalized and normalized 3D point clouds.
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Gap = 2 

Fig. 5: Representation of bundles with sliding window and gap. At
each bundle optimization, all models within the bundle are aligned
with respect to the first model. Sliding this bundle optimization by a
gap step smaller than window size ensures overlaps.

• Bundle Registration: We adopted a bundle registration
approach to align all the temporal point clouds. At each



(a) Day 1 - 1/7am (b) Day 1 - 1/9am (c) Day 1 - 1am/1pm

(d) Day 1 - 1/7am (e) Day 1 - 1/9am (f) Day 1 - 1am/1pm

(g) Day 1 - 1/7am (h) Day 1 - 1/9am (i) Day 1 - 1am/1pm

Fig. 6: An example of the spatio-temporal registration of the point
clouds from the violet dataset using the pairwise registration. Top
row: (a), (b) and (c) show the results for three example pairs under the
6 DoF transformation. Middle row: (d), (e) and (f) show the results for
three example pairs under the 7 DoF transformation. Bottom row: (g),
(h) and (i) show the results for three example pairs under the 9 DoF
transformation. The source and target point clouds are respectively
differentiated in violet and green color.

optimization stage, we bundle temporal point clouds of
a sliding window size, fix the coordinate of the first
point cloud, and estimate the transformations that best
register the remaining clouds in the bundle. We then move
to the next optimization bundle by a gap size. Bigger
sliding window and smaller gap size is the optimal choice,
but it comes with computation burdens. We empirically
retained a window size of 10 (models) and a gap of
5 (models) for the results presented in this paper. The
optimization phase uses the point correspondences be-
tween models within the sliding window and minimizes
the following objective function:

J = min
r,t,s

∑
(i,j)∈P

ρ(Pj − wH−1j × wHi × Pi) (5)

where Pi and Pj are the corresponding 3D points in
the source and target point clouds within the bundle.
The indices i, and j belong to all possible pairs P
within the bundle. The parameters of the optimization:
r, t, s, are the rotation, translation, and scale of each
model with respect to a global coordinate frame. At each
optimization phase (Eq. 5) the first model parameters are
excluded from the optimization leaving (SW−1)×DoF
parameters for the optimization. The ρ(.) is a robust
penalty function to reject outliers. The Graduated Non-
Convexity (GNC) approach [43] is used to solve the non-
convex optimization problem.

V. EXPERIMENTAL EVALUATION

The evaluation of non-rigid registration methods is not
straight-forward and visual assessments have been used over
the years [9]. In this paper, the experiments were designed to
qualitatively and quantitatively evaluate the proposed spatio-
temporal registration pipeline on the African violet dataset. For
qualitative evaluation, we conduct a visual assessment of the
registration results and also visualize the time-series models
using VisND [15]. For quantitative evaluation, we used the
registration error between the source Ps and target Pt point
clouds as defined in the following equation:

E =
1

K

K∑
k=1

‖pi1 − p
j
2‖ (6)

where: E is the registration error, K is the number of vertices
in Ps, pj2 is the vertex in Pt that is the closest to the vertex
pi1 in Ps.

In order to show the performance of the proposed approach,
the experiments were based on three approaches: pairwise,
incremental and bundle registrations. For each approach, three
types of transformations were evaluated under 6 (3 translations
and 3 rotations), 7 (3 translations, 3 rotations and 1 scale) and
9 DoF (3 translations, 3 rotations and 3 scales) to appreciate
the effectiveness of the proposed approach in the presence of
scale during the registration of time lapsed 3D point clouds.

A. Pairwise registration

We applied a pairwise registration to align all the temporal
3D models with respect to the first 3D Model generated in day
1 taken as the global coordinate frame. Figure 6 illustrates the
results of the pairwise registration for three example pairs of
point clouds under 6, 7 and 9 DoF transformations.

B. Incremental registration

We applied an incremental registration to the point clouds.
In this approach, consecutive pairs of point clouds were
registered at a time. By incrementally registering the models,
we propagating the transformations from the initial to the final
models. The downside of this method is that the error also
propagated throughout the temporal registration when more
models were added. Figure 7 illustrates the results of the
incremental registration for three example pairs of point clouds
under 6, 7 and 9 DoF transformations.

C. Bundle registration

We applied the bundle registration of the point clouds as
explained in the proposed methodology in section IV. We
empirically retained a window size of 10 and a gap size of 5 for
the results presented here. We show that the bundle registration
is able to handle the presence of noise, outliers and different
level of overlaps in the 3D point clouds. Figure 8 illustrates
the results of the bundle registration for three example pairs
of point clouds under 6, 7 and 9 DoF transformations.

In Table I, we report the average registration errors for
all three approaches based on the different transformations
over the entire African violet dataset.We obtained an average



(a) Day 1 - 1/7am (b) Day 1 - 7/9am (c) Day 1 - 1am/1pm

(d) Day 1 - 1/7am (e) Day 1 - 7/9am (f) Day 1 - 1am/1pm

(g) Day 1 - 1/7am (h) Day 1 - 7/9am (i) Day 1 - 1am/1pm

Fig. 7: An example of the spatio-temporal registration of the point
clouds from the violet dataset using the incremental registration. Top
row: (a), (b) and (c) show the results three example pairs under the 6
DoF transformation. Middle row: (d), (e) and (f) show the results for
three example pairs under the 7 DoF transformation. Bottom row: (g),
(h) and (i) show the results for three example pairs under the 9 DoF
transformation. The source and target point clouds are respectively
differentiated in violet and green color.

error of less than 2mm with all the transformations using
the proposed bundle registration approach, which indicates
the effectiveness of the method. Although, the registration
errors for the pairwise and bundle approaches are close for
the proposed dataset, the pairwise approach will fail if the
amount of change is high between frames (e.g. for growth
plants observed during longer period of time). In Figure 9,
we compare the average daily registration errors over ten days
under 6, 7 and 9DoF transformations.

D. VisND

We used VisND [15], a multidimensional visualization tool
for plant phenotyping, to visualize the aligned spatio-temporal
3D models. The tool allowed us to effectively visualize the
temporal changes occurring during the plant development over
time by playing sequences of aligned time-series point clouds
as a video. Figure 10 presents four VisND snapshots of the
visualization of spatio-temporal 3D models of the African
violet plant. In addition, with VisND, the point cloud can be
manipulated to inspect and get additional information about
the plant at each specific time frame. It is a tool that can be
used to visualize, extract, analyze, monitor and track over time
multidimensional datasets in various fields.

VI. CONCLUSION

This paper introduced a new multi-view stereo dataset made
of temporal stereo raw images and processed spatio-temporal
3D models of an African violet. The plant was observed over
ten days of the blooming of its flowers. Furthermore, we

(a) Day 1 - 1/7am (b) Day 1 - 1/9am (c) Day 1 - 1am/1pm

(d) Day 1 - 1/7am (e) Day 1 - 1/9am (f) Day 1 - 1am/1pm

(g) Day 1 - 1/7am (h) Day 1 - 1/9am (i) Day 1 - 1am/1pm

Fig. 8: An example of the spatio-temporal registration of the point
clouds from the violet dataset using the bundle registration. Top row:
(a), (b) and (c) show the results for three example pairs under the 6
DoF transformation. Middle row: (d), (e) and (f) show the results for
three example pairs under the 7 DoF transformation. Bottom row: (g),
(h) and (i) show the results for three example pairs under the 9 DoF
transformation. The source and target point clouds are respectively
differentiated in violet and green color.

TABLE I: Average errors for each time-series registration approach
with the African violet dataset under 6, 7 and 9 DoF transformations.
The values in the table are expressed in millimeter (mm).

Approach 6DoF 7DoF 9DoF

Pairwise 10.7459 1.5951 1.5878
Incremental 36.7156 3.7012 3.7856
Bundle 1.7364 1.5778 1.5862

presented a bundle registration algorithm for spatio-temporal
3D point clouds. For the experimental evaluations, we applied
three different spatio-temporal registration approaches on the
proposed dataset: pairwise, incremental and bundle registra-
tions under 6 (3 rotations and 3 translations), 7 (3 rotations, 3
translations and 1 scale) and 9 (3 rotations, 3 translations and
3 scales) DoF transformations. We showed that the proposed
bundle registration algorithm performs better than the pairwise
and incremental approaches, and can handle the changes in
rotation, translation and scale due to the anisotropic growth of
the plant. The registered spatio-temporal 3D point clouds were
evaluated quantitatively by computing the registration error,
and qualitatively using VisND, which is an N-dimensional
open-source visualization tool for temporal datasets. Future
directions for this paper include addressing the drawbacks of
the SOTA descriptors investigated in the 3D registration step
(e.g., PFH, FPFH, and PFHRGB). In particular, we believe that
including Local-to-Global Signature (LGS) [44] 3D descriptor
in the current pipeline, could provide even lower registration
errors.
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Fig. 9: A comparison of average daily registration errors between all
the registration methods over 10 days for (a) 6, (b) 7 and (c) 9DoF
transformations.
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