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Abstract: Our previous studies demonstrated that it is possible to perform the classification of both
simulated pressed and actual vocally fatigued voice productions versus vocally healthy productions
through the pattern recognition of sEMG signals obtained from subjects’ anterior neck. In these
studies, the commonly accepted Vocal Fatigue Index factor 1 (VFI-1) was used for the ground-truth
labeling of normal versus vocally fatigued voice productions. Through recent experiments, other
factors with potential effects on classification were also studied, such as sEMG signal normalization,
and data imbalance—i.e., the large difference between the number of vocally healthy subjects and of
those with vocal fatigue. Therefore, in this paper, we present a much improved classification method
derived from an extensive study of the effects of such extrinsic factors on the classification of vocal
fatigue. The study was performed on a large number of sEMG signals from 88 vocally healthy and
fatigued subjects including student teachers and teachers and it led to important conclusions on how
to optimize a machine learning approach for the early detection of vocal fatigue.

Keywords: surface electromyography; pattern recognition; biomedical monitoring; support vector
machine; vocal fatigue; voice disorders

1. Introduction

Vocal fatigue is a leading vocal symptom among teachers that, if evolving into a
chronic voice disorder, can threaten a teacher’s career [1]. Teachers with a history of voice
problems as student teachers and early career teachers are at the highest risk of developing
a voice disorder [2,3]. However, the detection of vocal fatigue is not straightforward as
there are no agreed upon markers of vocal fatigue during laryngeal endoscopic exams [4].
Moreover, if there were any, they may be elusive outside the teaching context that represents
the vocal demand scenario. To fill a gap in the assessment of vocal fatigue, the Vocal Fatigue
Index (VFI) [5] has been developed to determine self-reported levels of vocal fatigue in three
factors related to tiredness of voice and the avoidance of voice use, physical discomfort
with voice use, and the improvement of symptoms with rest. Vocal fatigue is related to
perceived vocal effort and possible laryngeal muscular and/or tissue fatigue [5].

Surface electromyography (sEMG) is a noninvasive method to measure muscle ac-
tivity in extralaryngeal muscles. It has been applied to various muscle groups for fatigue
detection [6] such as trunk muscles [7], wrist muscles [8] and thigh muscles [9]. In addition,
it can also be used to better understand muscle tension dysphonia—a voice disorder related
to excessive or dysregulated laryngeal muscular function [10]. Studying extralaryngeal
muscular activity in conjunction with VFI scores, specifically comparing repeated voice
productions of those who score low or high on the VFI factor 1 (VFI-1), is a step toward
quantifying vocal fatigue (decline in the function that influences task performance [11]) for
the purpose of early detection.
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Our first study on voice analysis using sEMG [12] employed a newly developed
hierarchical approach based on the Guided Under-Determined Source Signal Separation
(GUSSS) ratios [13] to classify what was referred to as vocal gestures. The study used four
sEMG channels to collect signals from the anterior neck, but it was performed on a single
test subject. As a result, the system achieved 85% accuracy in classifying six voice gestures.
In our following study [14], the same classification system was applied to a larger set of
voice gestures including simulated pressed vowel productions and normal productions
(/a/, /u/, and /i/). The approach was tested on ten vocally healthy subjects and achieved
an overall accuracy of 85% for classifying ten distinct gestures and 95% for detecting normal
and simulated pressed vowel productions. More recently, in [15], we continued this line of
research and collected data on 37 test subjects divided into two groups labeled: vocally
healthy and vocally fatigued, according to self-reported VFI-1 scores—VFI-1 is the first
factor of the Vocal Fatigue Index: tiredness of voice and avoidance of voice use [5]. Our
initial approach using GUSSS was improved by using five additional sEMG features. The
results in the classification of healthy and fatigued voice productions reached 96% accuracy
under intra-subject testing conditions. For the same classification, but under inter-subject
conditions, the overall accuracy was 94%. Despite the good results in accuracy, this latest
study pointed to potential concerns regarding data imbalance, as indicated by the low
sensitivity achieved of 0.58.

Therefore, in this paper, we performed an extensive investigation of the challenges,
as well as improvements in our approach to the classification of vocal fatigue using a
substantially larger dataset, expanding the data set in [15] from 37 to 88. The overarching
aim was to establish a reference dataset of extralaryngeal activity to determine the validity
and reliability of pattern recognition of sEMG signals for detecting vocal fatigue. In that
sense, we first explored the benefits of sEMG signal normalization by utilizing skinfold
thickness and maximum voluntary contraction (MVC) trials. We then addressed the
problem of data imbalance to improve the classification of vocal fatigue. Finally, we
examined our classification experiments with an increased total sample size to address
how to achieve better generalization in order to be clinically adoptable.

2. Experiment Setup

This section describes the subject characteristics, data collection protocol, and system
setup used in this study, as illustrated in Figure 1. The equipment was installed in a
soundproof booth (IAC Acoustics, North Aurora, IL, USA) and included: (1) a base station
and four wireless TrignoTM mini sEMG sensors with a bandwidth of 20 Hz to 450 Hz
(Delsys, Natick, MA, USA); (2) a head-worn microphone (AKG, Model C520, Vienna,
Austria); (3) an audio interface (Scarlett 2i2, Focusrite, High Wycombe, UK); and (4) a
data acquisition device (PowerLab 16/35, ADInstruments, Dunedin, New Zealand), which
performed the synchronized sampling of audio and sEMG signals using LabChart v. 8.1.10
for MS Windows. The sampling rate was set to 4 kHz for the sEMG signals and 20 kHz for
audio, both with 16-bit quantization. In addition, audio signals were collected using the
software Audacity(R)© v. 2.1.1 for recording and editing, at a sampling rate of 44.1 kHz
and 16-bit quantization. In this study, we focused on classification using only the sEMG
data for vowel productions, but the audio signals were important to determine the sEMG
ROI’s, as explained subsequently.

2.1. Subject Characteristics

The study was conducted on 92 female subjects, one of which was withdrawn because
of cold symptoms and three had to be excluded due to technical problems and/or difficulty
with the sensor placement/adherence during data collection. Only female subjects between
the ages of 21 and 39 years were included who were native speakers of English. The
average age (standard deviation) for the 88 subjects was 24.7 (4.5) years. Subjects had to be
in good general health with no acute or chronic upper respiratory infection or pulmonary
disease (including allergies, laryngopharyngeal reflux disease, or asthma that affected voice
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at time of participation). They were excluded if they smoked within the past five years
or failed a hearing screening in one or both ears at 1 kHz, 2 kHz, and 4 kHz at 20 db HL.
Subjects did not report a current or past voice disorder nor therapy, no laryngeal trauma or
surgery, and had normal mid-membranous vocal fold closure during comfortable pitch and
loudness based on laryngeal videostroboscopy performed by a certified speech–language
pathologist (M.D.). With regard to the wireless sensors, subjects could not be allergic to
silver or have any metal devices of any kind implanted in their body.

Figure 1. System setup for data collection showing the flow of signals through the equipment.

To be eligible for the study, controls had to score ≤ 10 on the VFI-1 [5]) while early
career teachers (within their first 10 years of teaching experience) had to score > 10 on
the VFI-1 during the pre-screening. For study 2 (subjects 62–92), student teachers without
vocal fatigue were recruited as well and were tested twice throughout the course of the
semester. Two-time testing during study 2 also applied to any teachers with vocal fatigue.
The VFI-1 scores from the day of the experiment were used as the reference for assigning
vocally healthy and vocally fatigued labels.

2.2. Data Collection Protocol

During the experiments, subjects filled out voice and personality questionnaires and
completed standard clinical acoustic and aerodynamic vocal function testing. Then, during
study 1, the subjects received training by a certified speech–language pathologist to produce
vowels with a pressed voice, as described in detail in [14]. In essence, the subjects were
instructed to produce vowels while restricting airflow almost as if pushing out the sound.
Performance was validated with airflow feedback using the Phonatory Aerodynamic
System (Model 6600, KayPENTAX, Lincoln Park, NJ, USA). Then, a caliper (Lange Skinfold
Caliper, Beta Technology, Cambridge, MD, USA) was used to measure subjects’ skin-fold
thickness overlying the submental and infrahyoid muscle groups where electrodes were
placed: three recordings per site were averaged. Figure 2 shows the electrode placement
and the corresponding muscle groups.

Figure 2. Electrode placement used in this research: top pair of electrodes targeted the suprahyoid
muscle group, and the bottom pair, the infrahyoid muscle group.
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Each subject produced three sets of syllables (uniform utterances); a series of nor-
mal and simulated pressed voice gestures (vowels); two sentences (for future relative
fundamental frequency analysis similar to syllables, [16]); and two types of non-speech
gestures (throat clear and cough). Finally, each subject was asked to press their chin on a
dynamometer (Chatillon, Model LG-050 with curved compression fixture SPK-FMG-142,
Ametek, Largo, FL, USA) to collect maximum voluntary contraction (100% MVC) and
submaximal voluntary contraction data (50% MVC) with 1 min rest intervals between
three trials per MVC condition. The tasks performed, which were ordered from least to
most fatiguing, are detailed in Table 1. Subjects in study 2 did not complete the simulated
pressed phonations and non-speech gestures. Each subject took approximately 1.5–2 h to
complete the entire experiment, with the voice and speech production portions taking the
longest (approximately 30–45 min) due to 55 repetitions.

Table 1. The complete sequence of utterances, their repetitions and durations for sEMG and acoustic
data collection. Subjects in study 2 did not complete their simulated pressed phonations and non-
speech gestures.

Task Description Reps Time a

baseline Neutral with no movements for collecting
pure noise 1 2 s

syllable1 “afa afa afa ifi ifi ifi ufu ufu ufu” [16] 1 6 s
/a/ normal /a/ as in honest 55 2 s
/u/ normal /u/ as in you 55 2 s
/i/ normal /i/ as in feel 55 2 s

sentence1 “The dew shimmered over my shiny blue
shell again” [16] 55 4 s

sentence2 “Only we feel you do fail in new fallen dew”
[16] 55 4 s

syllable2 “afa afa afa ifi ifi ifi ufu ufu ufu” [16] 1 6 s
/a/ pressed /a/ simulated pressed 55 2 s
throat clear Single throat clear 55 1.5 s
/u/ pressed /u/ simulated pressed 55 2 s

cough Single cough 55 1.5 s
/i/ pressed /i/ simulated pressed 55 2 s

syllable3 “afa afa afa ifi ifi ifi ufu ufu ufu” [16] 1 6 s
100% MVC Maximum voluntary contraction 3 8 s
50% MVC Submaximal voluntary contraction 3 15 s

a Collection time for syllables was 15 s for study 2.

3. Classification Method

The steps taken by the classification system used in this study are summarized in
Figure 3. The ROIs for the sEMG signals were determined using a window detection
algorithm applied to the audio signals (top portion of Figure 3). Then, the system extracted
seven different time-domain features from the observed sEMG ROIs, in addition to the
GUSSS ratios [13], which measure the degree of presence of previously learned sEMG
patterns within the observed sEMG signal. Then, a support vector machine (SVM) was
employed for classification due to its elevated performance in non-linearly separable 2-class
problems. The remaining steps of the system, such as signal normalization and imbalanced
data training, are also represented in Figure 3 and will be further discussed in Section 4.
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Figure 3. The pipeline for the classification experiments.

3.1. Signal Window Detection

The algorithm for sEMG ROI detection—depicted in the top portion of Figure 3—
consisted of computing statistics on audio signal amplitudes over 75 ms moving windows.
Then, the amplitude mean (m) and standard deviation (std) were used to define a threshold
for voice (and hence sEMG) activity given by: mean + δ × std, where δ was a sensitivity
adjustment for the detection among different subjects. The actual starting and ending points
of the ROI were automatically shifted forward and backward, respectively, by 100 ms in
order to eliminate muscle pre-activation and post-relaxation due to jaw movements.

3.2. Feature Set

The list of time-domain features used in this study and their definitions were already
explained in detail in our previous work [15] and will be only briefly explained below.
However, it is important to stress here that those features led to a 48-dimension vector
to represent each sampled voice production, for a total of 14,153 vectors. The subsets of
sample vectors used for training, validating and testing as well as the results obtained by
the SVM classifier will be presented in Section 4. Finally, each sample vector consisted of
the following features.

3.2.1. GUSSS Ratio

In our previous work [13,14], we developed an effective and robust feature, named the
GUSSS ratio, for recognizing sEMG patterns, which was then employed to detect simulated
vocal dysfunction. The basic idea in GUSSS (Guided Under-Determined Source Signal
Separation) is to identify a previously learned signature representing an entire class of
patterns as it may be embedded in an observed sEMG source signal. In fact, the GUSSS
method can measure the degree of presence of each signature in the observed source signal
by successively injecting the signatures into the same source signal and computing a set of
ratios. The ratios are a measurement of the statistical independence between the sought
signature and the source signal. For example, if the classification problem involves c classes,
the algorithm obtains an equal number of ratios r1, ..., rc, each corresponding to the degree
of independence of signature si, representing class i, of the source signal. Indeed, if the
source signal contains the signature for class i, the ratio ri is expected to be the smallest one
among all other ratios, indicating the statistical dependency of the source signal and the
class i.

As already mentioned, the GUSSS ratio has been a robust and accurate feature in all
of our previous work, and it was once again employed in this study.

3.2.2. Other Features

In addition to the GUSSS ratio (GR, with one ratio per class), seven other features
were used in this study. These features are explained in greater detail in [15], but also in



Appl. Sci. 2021, 11, 4335 6 of 13

other papers in the literature [17–22]. These features were: (1) mean absolute value (MAV,
one dimension); (2) zero crossings (ZC, one dimension); (3) slope sign changes (SSC, one
dimension); (4) waveform length (WL, one dimension); (5) Willison amplitude (WA, one
dimension); (6) root mean square (RMS, one dimension); and finally (7) the coefficients of a
fourth-order auto regressive model (AR, four dimensions) were used for robustness with
respect to electrode placement [22]. This set of 12 features was extracted from all four
sEMG channels (Figure 2) for a total of 48 dimensions in the feature vector.

4. Experiments

The first two experiments performed expanded on the tests done in [12,14], this time
using a dataset with 57 (study 1, expanding the dataset in [15]) subjects who performed
the complete sequence of the data collection protocol. The goal here was to confirm
our previous findings using a larger dataset. Both experiments consisted of classifying
distinct groups of voice gestures as normal or simulated pressed productions, under the
intra-subject constraint.

For the first experiment, we used all vowels as individual gestures: i.e., /a/, /u/, and
/i/; each produced under normal or simulated pressed conditions. Thus, a total of six
classes were created, each with 50–55 valid samples due to a few occasional misarticulations
or misses. The classification results are shown in the confusion matrix in Figure 4. The
confusion matrix was arranged so that the normal and corresponding simulated pressed
gestures are next to each other— i.e., the indices (row and column) of the matrix correspond
to: (1) /a/ normal; (2) /a/ pressed; (3) /u/ normal; (4) /u/ pressed; (5) /i/ normal; and
(6) /i/ pressed. Hence, the reader should notice that error in the amount of about 5% of
the cases relates to the confusion between the normal and their corresponding simulated
pressed vowels—i.e., six of the second-diagonal elements with indices of (1,2) or (2,1); (3,4)
or (4,3); and (5,6) or (6,5). The remaining approximate 10% of the error is spread through
the remaining elements on each side (upper and lower halves) of the confusion matrix.

Figure 4. Confusion matrix for all six vowel gestures (three normal and three simulated pressed)
computed over all test subjects and under the intra-subject constraint. The entries in the table contain
the percentages (top) and the actual number of samples detected (bottom). The numbers on the axes
correspond to: (1) /a/ normal; (2) /a/ pressed; (3) /u/ normal; (4) /u/ pressed; (5) /i/ normal; and
(6) /i/ pressed.

For the second test, the entire set of normal vowel productions or simulated pressed
vowel productions were assigned to one of two classes: Negative and Positive, respectively.
Each subject provided a total number of samples that varied between 108 and 165 for
the Positive class, and between 55 and 165 for the Negative class. The test subjects were
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tested separately (i.e., intra-subject condition); their combined classification outcomes were
averaged; and the results were shown in Table 2.

Table 2. Confusion matrix for Positive vs. Negative detection of simulated fatigue (pressed vowels)
among 57 test subjects under the intra-subject constraint.

Actual Positive Actual Negative

Predicted Positive 90.60% 9.80%
Predicted Negative 9.40% 90.20%

Validation Accuracy 90.40%

As Figure 4 and Table 2 indicate, the overall accuracy of 84% for all six classes (first
test) and 90% for two classes (second test) confirm the conclusions in [12,14]. That is,
(1) distinguishable sEMG patterns do emerge from individual voice gestures (vowels)
measured from subjects’ anterior necks; and similarly, (2) distinguishable sEMG patterns
also emerge from simulated pressed voice gestures as a representation of vocal effort or
strain. These conclusions led to the assumption that it could also be possible to distinguish
normal vowel gestures from individuals without self-reported vocal fatigue from “real”
vocally fatigued vowel gestures produced by individuals who actually reported vocal
fatigue. Thus, the following experiments aimed to confirm this assumption.

4.1. Classifying Vowel Productions Based on Self-Reported VFI-1 Scores

As indicated above, the goal of this experiment was to classify sEMG signals during
vowel productions from subjects with self-reported vocal fatigue as a representation of
real-life vocal fatigue. This experiment included a much larger data set of 88 subjects
that included data from study 1 and study 2. Study 2 did not require subjects to simulate
pressed phonation nor produce non-speech gestures. Furthermore, the challenge was to
perform this classification under the inter-subject constraint. That is, for the previous cases,
the tests were performed under the more typical sample-based cross-validation, where
random samples from the entire pool are set apart for testing. Instead, for this experiment,
we used a leave-one-out (LOO) approach, where if N was the number of vocally healthy
subjects and M the number of vocally fatigued subjects, a total of M + N − 1 subjects were
successively selected for training and validation, while the subject left-out was used for
testing. The only question remaining was that of how to separate the two groups of N
vocally healthy and M vocally fatigued subjects.

According to [5], the mean (standard deviation) of VFI-1 score for patients with
dysphonia was 24.47 (9.76) and for vocally healthy individuals, this was 5.16 (4.58). Thus,
one approach would be to derive two boundaries, VFI-1 > 15 (or ≈ 24.47 − 9.76) for vocal
fatigue and VFI-1 6 10 (or ≈ 5.16 + 4.58) for normal voice. However, these two boundaries
would have left subjects with scores between 10 and 15 in a “gray area” of VFI-1 scores
investigated. Moreover, for the early detection of vocal fatigue, it is very important that the
subjects in “gray area” be taken into consideration. Thus, we initially arbitrarily decided to
use a VFI-1 score of 10 as the single threshold separating the two groups of test subjects.
This threshold of 10 resulted in 26 vocally fatigued (23 teachers) and 62 vocally healthy
subjects (14 teachers) in the dataset. In terms of the total number of samples, there were
4174 vowel productions from those with known vocal fatigue (positive samples) and 9979
normal vowel productions (negative samples). The results of the LOO classification are
shown in Table 3.

Table 3 shows the validation results which achieved an accuracy of 93.48%. This high
accuracy in validation indicated that there was a clear distinction between the samples
and the classifier was very successful in discriminating the two classes. However, after
conducting a testing experiment—using the LOO approach—the same accuracy dropped to
58.13%, with most of the error coming from false positives (FPs). This lower-than-expected
accuracy for testing may be related to a difficulty for the classifier to generalize. In that
sense, it is necessary to highlight that our data were not evenly balanced. In fact, there were
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more than twice as many negative than positive samples. Typically, this imbalance causes
a bias in the system towards the negative class, which can be easily observed by a much
lower sensitivity (true positive rate) with respect to specificity (true negative rate). In this
experiment, sensitivity was 0.23 and specificity was 0.73. In essence, while most normal
vowel productions were correctly classified, about one fifth of the vowel productions from
speakers with self-reported vocal fatigue were misclassified.

Three potential limitations could explain this lack of generalization: first, as already
mentioned, our data were imbalanced. Second, since some of the features used are
amplitude-dependent, the lack of amplitude normalization in the sEMG signals extracted
from different subjects could exacerbate the error under the inter-subject constraint. Third,
we may still have insufficiently diverse data in order for the classifier to achieve better
generalization (only four subjects scored high in the clinical range of the VFI-1, that is,
>24 [23]). In the next sections, these three potential problems were investigated.

Table 3. Confusion matrix for positive vs. negative detection of vowel productions based on
self-reported VFI-1 scores among 88 test subjects using leave-one-out cross-validation.

Actual Positive Actual Negative

Predicted Positive 93.40% 6.49%
Predicted Negative 6.6% 93.51%

Validation Accuracy 93.48%

4.2. Classification of Matched-Subject Groups

In order to address the first of the potential causes for the low sensitivity, we age-
matched a balanced group of 40 subjects, 20 vocally healthy (non-teachers) and 20 vocally
fatigued (early career teachers), from a total of 88 subjects. Additionally, to address the
second cause—lack of amplitude normalization—the subjects were matched on skinfold
thickness [24]. The descriptive statistics for both groups are shown in Table 4. All vocally
healthy and vocally fatigued subjects had a VFI-1 6 10 and VFI-1 > 15, respectively—
therefore, no subjects were in the gray area of VFI-1 scores. This age- and skinfold-thickness-
based matching allowed us to eliminate all potential issues discussed earlier, since now the
classes were balanced; amplitude normalization was approached via skinfold thickness;
and incorrect labels were alleviated by leaving subjects in the “gray area” out of the
experiment.

Table 4. Descriptive statistics for age, neck skinfold thickness (supra- and infrahyoid), and Vocal
Fatigue Index factor 1 (VFI-1) scores for 40 matched test subjects.

Vocally Fatigued Vocally Healthy

Number of subjects 20 20
Age (21–39 years) 25.6 ± 4.3 25.3 ± 4.7

Suprahyoid (3.2–16.7 mm) 7.0 ± 3.4 5.4 ± 1.3
Infrahyoid (2.7–15.0 mm) 6.4 ± 3.1 5.1 ± 1.3

VFI-1 (0–28) 18.2 ± 5.4 2.1 ± 1.7

We performed the same LOO test as described in Section 4.1. The total numbers
of Positive and Negative samples were 3270 and 3202, respectively, and Table 5 shows
the final classification results. This time, an even higher validation accuracy 97.51% was
obtained—demonstrating that the imbalanced data and normalization indeed played a
role in the classification. Similarly, after performing the LOO test, the overall accuracy of
testing also improved from 58.13% to 62.36%, and the true positive from 22.62% to 71.76%.
Both of these highly promising improvements show that the assumptions on imbalanced
data and lack of normalization were correct. However, these changes had an impact on the
specificity of the classifier, which decreased to 0.53.
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Table 5. Confusion matrix for the positive vs. negative detection of vocal fatigue among 40 subjects
closely matched by age and skinfold thickness, labeled according to the Vocal Fatigue Index factor 1
scores and using leave-one-out cross-validation.

Actual Positive Actual Negative

Predicted Positive 97.52% 2.51%
Predicted Negative 2.48% 97.49%

Validation Accuracy 97.51%

In summary, these results demonstrated that, as long as the data are balanced, normal-
ized and appropriately labeled, the classification of normal and vocally fatigued vowel pro-
ductions as indicated by self-reported vocal fatigue can be achieved, and yet the classifier
can reasonably generalize on a completely new test subject. However, further investigation
into the generalization ability of the classifier is warranted.

4.2.1. Normalization Using 100% MVC

In addition to matching our subjects by age and skinfold thickness, we also investi-
gated the possibility of using MVC as a method for amplitude normalization [24]. In this
case, the approach was to normalize all vowel productions by the subject’s 100% MVC
measurements during data collection. First, a moving window was employed to average
the absolute value of the sEMG signals from each of the four channels during 100% MVC.
Then, the maximum moving-window average from each channel was determined and
used to normalize the sEMG signals collected during voice productions. Table 6 shows
the results after applying the 100% MVC amplitude normalization to the sEMG signals
and then classifying the signals using each feature separately. The goal was to determine
the impact of 100% MVC normalization on each feature, as well as on groups of features:
i.e., amplitude-dependent features, such as MAV, RMS, and WL; frequency-dependent
features, such as ZC, SSC, and WA; and stochastic features, such as AR and GR.

Table 6. Comparison of classification results (accuracy, sensitivity, specificity) before/after 100%
MVC normalization among 40 subjects, matched by age and neck skinfold thickness. Each row corre-
sponds to an individual feature; features are grouped by type; and the average by type is presented
at the end of each group. Moreover, the last row shows the overall performance across features.

Before MVC Normalization After MVC Normalization

Valid Acc Sens Spec Valid Acc Sens Spec

Frequency-dependent features a

ZC 83.07% 70.52% 0.74 0.67 83.09% 70.65% 0.74 0.67
SSC 84.01% 69.49% 0.76 0.63 84.00% 69.47% 0.76 0.63
WA 85.19% 73.62% 0.77 0.70 85.17% 73.55% 0.77 0.70
Avg 96.74% 63.78% 0.62 0.65 96.74% 63.78% 0.62 0.65

Amplitude-dependent features a

MAV 71.05% 38.00% 0.34 0.42 76.90% 46.13% 0.43 0.49
RMS 70.47% 39.09% 0.35 0.43 76.77% 43.90% 0.40 0.47
WL 70.66% 41.60% 0.37 0.46 73.76% 35.86% 0.35 0.37
Avg 84.79% 38.05% 0.31 0.45 90.73% 46.28% 0.46 0.47

Stochastic features a

AR 86.69% 54.11% 0.50 0.58 86.63% 54.03% 0.50 0.58
GR 51.69% 29.23% 0.36 0.22 51.97% 32.01% 0.42 0.22
Avg 79.50% 53.09% 0.49 0.57 78.75% 54.46% 0.50 0.59

All 97.51% 62.36% 0.72 0.53 98.93% 61.80% 0.69 0.55
a ZC—zero crossings; SSC—slope sign changes; WA—Willison amplitude; MAV—mean absolute value; RMS—
root mean square; WL—waveform length; AR—auto regression; GR—GUSSS ratio.
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As expected, the results indicated that 100% MVC normalization improved classi-
fication when using amplitude-dependent features, but it did not affect the frequency-
dependent or the stochastic features. However, this test also revealed that: (1) frequency-
dependent features were in general much better at detecting fatigued samples demon-
strated by their testing accuracy and sensitivity; (2) the more features being added to the
classifier, the lesser its ability to generalize to the testing samples. This could be potentially
caused by the fact that the more features were being incorporated, the more information
was correlated to the particular subject rather than indicating either healthy and fatigued
classes. A possible solution is to increase the total sample size being used for training that
would ideally cover all possible subjects to improve the generalization of the classifier.

4.3. Generalization vs. Total Sample Size

As mentioned in Section 4.1, the trained classifier did not satisfactorily generalize
with respect to the left-out subjects—having an almost perfect validation accuracy while
yielding a lower testing accuracy. As pointed out, one potential reason could be the lack
of diversity on training data to provide a big enough learning space for vocal fatigue.
The results from Section 4.2.1 also indicated that although more features could lead to
better validation accuracy, it aggravated the issue with the generalization. So, in order
to investigate the influences of sample sizes we repeated the experiment in Section 4.2,
but this time varies the amount of used subject pairs in each experiment from 20 to 40.
The classification results were plotted in terms of their testing accuracy in Figure 5. These
results demonstrated a clear linear relationship between the total amount of training data
being used (as adding the subject pair) and the resulting accuracy. Evidently, if more than
40 pairs were available, the results would further improve.
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Figure 5. Progression of the proposed protocol for the sEMG classification of vocal fatigue as the
total number of matched subjects increases.

Finally, as a last investigation on the generalization capability of the classifier, we
performed a 90% left-out experiment on the 40 age- and skinfold-matched subjects. In this
case, we randomly selected 10% of the samples (i.e., between 10 and 15 samples) from the
testing subject ’left-out’ to be included in training and validation. The results are reported
in Table 7. As the table shows, by adding only 10–15 additional training samples (w.r.t.
the total size of 6472 samples), the classification performance in testing was significantly
improved from 62.36% to 83.93% in accuracy. Similarly, the sensitivity went up from 0.72
to 0.85, and the specificity from 0.53 to 0.83.
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Table 7. Confusion matrix for positive vs. negative detection of vocal fatigue among 40 subjects
closely matched on age and skinfold thickness, labeled according to the Vocal Fatigue Index factor 1
scores and using 90% left-out cross-validation.

Actual Positive Actual Negative

Predicted Positive 85.32% 17.45%
Predicted Negative 14.68% 82.55%

Validation Accuracy 83.93%

5. Discussion

Inter-subject classification using either sEMG signals or by comparison acoustic sig-
nals/acceleration signals still are a significant challenge in voice research. For example,
in [25] the authors performed leave-one-subject-out cross validation for classifying mood
in individuals with bipolar disorder. The accuracy they achieved was between 67%–77%
based on acoustic signals. Similarly, in a study on acoustic markers of affect [26], leave-
one-speaker-out classification was also employed, and the results achieved ranged from
38.8% to 97.8%. More recently, Ref. [27] used neck-surface acceleration to classify vocal
hyperfunction, which yielded an accuracy of 83% based on L1 logistic regression. However,
when models were evaluated only by cross-validation (some test subjects’ samples could
be included in training data), they tend to obtain higher accuracies. Ref. [28] proposed and
evaluated two different models. The first was a long-short-term-memory (LSTM)-based
emotion detector using speech signals that achieved 88% accuracy with five-fold cross-
validation. The second model was for mood disorder detection using leave-one-group-out
cross validation. The best performance of the model was 73.33%. To the best of our knowl-
edge, there was no comprehensive study conducted by other parties on using neck sEMG
to classify vocal fatigue that we could compare our results with.

However, outside the scope of classification and machine learning, several other studies
demonstrated that frequency-based sEMG features could be strong indicators of muscle
fatigue. In a review conducted by [29], it was mentioned that the median frequency was
superior to amplitude-based measures in detecting muscle fatigue [29]. Another study [30]
also suggested a list of sEMG features including ZC, SSC and WA as fatigue indices. These find-
ings are consistent with what we previously demonstrated in Section 4.2.1 and
Table 6, which showed that frequency-based features showed superior accuracy performance
compared with the rest of sEMG features we selected.

6. Conclusions

In this paper, we addressed some of the most critical challenges for adopting machine
learning to detect vocal fatigue. We established that there were distinguishable patterns
between healthy and fatigued samples by demonstrating a validation accuracy as high as 97%.
We also discovered that frequency-based sEMG features were more accurate and reliable in
detecting vocal fatigue. This finding provides a window into the clinical relevance of sEMG
data classification with regard to the early detection of vocal fatigue. Moreover, we addressed
the shortcomings of using a classification approach, which might have led to lower than
expected generalization, while we also offered solutions to minimize this problem: (1) by
focusing on balanced, normalized data; and (2) by demonstrating a clear improvement when
increasing the overall sample size. The impact of this study ranges from suggestions on the
best protocol for data acquisition and signal conditioning for classification of vocal fatigue
using machine learning to providing recommendations on adopting the approach in a clinical
setting with potential methods to achieve better performance.

Future work will involve the assignment of labels on a per-sample basis—as indi-
viduals with vocal fatigue, especially those with low vocal fatigue, may still produce
’healthy-like’ samples, an issue that was also pointed out for classifying vocal hyperfunc-
tion using neck surface acceleration [27]. A limitation of the current dataset is that the
majority of cases with elevated VFI-1 scores used in this experiment would be considered
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low vocal fatigue, whereas only four teachers had scores greater than 24, representing
clinically high vocal fatigue [23]. We will also further investigate the differences in vali-
dation and testing performances, as well as new features and techniques that can yield a
better generalization and a deeper understanding of vocal fatigue clinically such as spectral
analyses [29] and the analysis of sentence-level data.
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