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Abstract—Lymphedema, a chronic disease caused by failure
in the lymphatic system, affects nearly 500,000 people in the
U.S., and over 2.4 million breast cancer survivors are at-risk
for developing this disease at some point in their life. Early
detection and management can significantly reduce the potential
for symptoms and complications; however, many patients fail to
seek medical assistance at the first sign of the disease. In this
paper, we present a method for measuring limb volume and
for detecting early swelling associated with lymphedema. The
system relies on IR imaging sensors, such as in the Microsoft
Kinect. This technique will allow for the future development of
tools for self-management and specialist monitoring, and when
compared to other commercially available devices, our system is
less expensive, equally or more reliable/accurate, and much more
user friendly.

I. INTRODUCTION

Secondary lymphedema (LE) results from the disruption or
obstruction of lymphatic pathways, which in the U.S. occurs
most commonly as a result of cancer treatment, particularly
in patients who require surgical removal of (or radiation
to) lymph nodes. The result is reduced lymphatic flow with
increased pressure in remaining lymphatic channels and ac-
cumulation of protein-rich fluid in the tissues. This process
then initiates an inflammatory reaction leading to fibrosis,
impaired immune responses, and fatty degeneration of connec-
tive tissue [1]. The underlying physiological, biological, and
molecular mechanisms are not fully understood at this time.
Lymphedema is often classified by stage, based on severity of
the condition. The range of conditions may be latent (i.e. no
swelling is present despite impaired lymph transport) to accu-
mulation of fluid resulting in severe limb swelling (i.e. increase
in limb volume of 40% or greater) [2]. Lymphedema may be
debilitating and distressing even in early stages [3]. Physical
impairments associated with LE include difficulty sleeping,
carrying objects, exercising, and finding well-fitting clothing
[4]. Additionally, LE patients report having lowered quality
of life and a negative body image perception [5]. Due to the
lack of a “gold standard” for LE diagnosis and measurement
imprecision, the true occurrence of LE is unknown. Based on
conservative figures of LE incidence [6], it is estimated that
nearly 500,000 breast cancer survivors currently suffer from

LE and it is projected that 2.4 million are at lifetime LE risk
in the U.S. alone.

While LE is not a curable condition, it can be managed most
successfully with early detection and initiation of appropriate
therapy [7]. Despite the importance of early intervention, many
patients and health care providers are unaware of the early
signs and symptoms associated with LE. Increasing the fre-
quency of visits to a specialist would increase the potential for
detecting LE in its early stages, however, with the abundance
of Internet technologies, mobile devices, and the potential
to collect and share data on a large scale, it is likely that
patients and therapists can more effectively monitor risks and
symptoms without the need for more frequent appointments.

Currently, when a patient visits their specialist, volume
measurements are performed through the water displacement,
circumference, impedance, perometry, or the DEXA scan
methods (summarized in Table I), which have been extensively
compared in the literature [8], [9]. Water displacement is
the ‘gold standard’ measure of volume where the amount
of displaced water represents the volume of the submerged
limb [10]. However, the patient must remain still, the vertical
orientation of the limb makes this method difficult to replicate
with other methods, and the cleanup and disinfecting process is
burdensome. Circumference measures can be taken with a tape
at specific points along the limb and the total volume can be
estimated by assuming cylindrical or conic volumes between
the points. However, this method requires careful identification
of consistent anatomical regions for reliability across measures
[11]. Impedance involves attaching electrodes at points along
the limb and measuring the electrical signals [12]. This method
has a high lifetime operational cost due to disposable electrode
attachments. On the other hand, the perometry uses infrared
to scan along the limb and assess circumferences at 0.5cm
intervals [13]. This method has become popular, but is cost-
prohibitive for many settings. Finally, there is the DEXA Scan,
or Dual Energy X-ray Absorptiometry, which was typically
used to measure bone density and has been successfully
employed for soft tissue. Its high-end, 6-figure cost makes
it definitely not appropriate for self monitoring.



Table I
EVALUATION MATRIX OF EXISTING METHODS AND THE THE PROPOSED METHOD FOR VOLUME MEASUREMENT

Displacement Circumference Impedance Perometry DEXA
Scan

Proposed
Method

Cost Low Low High High High Low

Time to
Operate Low High Low Low Low Low

Inter-Rater
Disparity Low High Low Low Low Low

Pre and Post
Maintenance High Low High High High Low

Local
Measures No Yes No Yes Yes Yes

Self-
monitoring

Home/Travel
No Yes No1 No No Yes

1 Impedimed is exploring market for home use of their device

Technologies for 3D reconstruction for human bodies and
other objects have been around for many years [14], [15],
[16], [17], [18], [19], [20], [21]. They provide very accurate
and reliable models, which can be used for measuring limb
volumes with equal or better accuracy than the methods used
today. Besides, they can be much more user-friendly and allow
for self-monitoring.

In this paper, we proposed a method that can be utilized at
home or clinic, and it can be easily operated by profession-
als and non-professionals without any special training. Our
method only requires an IR sensor, such as the Microsoft
Kinect, which is used to capture multiple views of the hu-
man arm. The method relies on the Iterative Closest Points
(ICP) algorithm [16] to compute the registration between two
adjacent views.

The proposed volume-measurement method takes just a
couple of minutes to acquire the images. It has low cost,
high accuracy and low cleanup. It is also capable of capturing
local swelling sites (an indicative symptom of the early stages
of lymphedema). Further, because patients can perform the
measurements at home, those measurements can be taken at
much more frequent intervals. Figure 1 depicts the typical
setup for the perometry scan and the proposed method, which
will be later compared in this paper.

The paper is organized as follows: first, a background on
sensor calibration is provided in section II. Next, the proposed
method is explained in section III. Then, the experimental
results are provided in section IV. Finally, the conclusions
and future work are stated in section V.

Figure 1. Setup for limb-volume measurement using the Perometry scanner
(left) and the proposed IR scanner (right).

II. BACKGROUND

A. Background of Human Body 3D modeling

Technologies for 3D reconstruction of human bodies have
been around for many years. In fashion and gaming industry,
for example, human body modeling can be a very lucrative
tool. More recently, 3D modeling of the human body has been
suggested for many applications in medicine and health care,
such as for dermatology [18], rehabilitation [22], [23], assisted
living [24], etc..

Despite being a topic currently in high demand, 3D model-
ing of the human body poses a great challenge, especially
in health care, due to the human body being a non-rigid
object and the human skin having few features that can be
used by registration algorithms. In that sense, while earlier
approaches employing multi-view stereopsis [17], [18], [19],
[20] could build 3D models from simple 2D images, they
were also not as reliable as newer methods based on new
IR sensing technologies. Besides, they required well calibrated
cameras [17], [18] and some times, a setup of multiple cameras
[19], [20]. In the work presented in [15], human bodies were
modeled using laser scanners. The method allowed for the
modeling of a large number of human bodies (250) and
it provided very accurate models, but it also required an
expensive device for range imaging (over US$20,000) and it
was quite difficult to be handled by non-professionals.

On the other hand, new technologies relying on IR imaging
are becoming more pervasive in health care and rehabilitation,
mainly because they do not force the human subject to be still
throughout the image acquisition process. A recent method
presented in [14], also relying on inexpensive IR sensors,
produced models with less than 6cm of error, in less than
4 seconds. However, templates of the human body needed
to be created before any modeling could be done. In that
system, building even a rough template of the human body
can represent a complicated and tedious task. Besides, a
setup with multiple IR sensors had to be created around the
human subject, which makes the process inadequate for self-
monitoring applications.

In another recent paper, the SCAPE (Shape Completion and



Animation of PEople) approach was proposed [25]. The paper
introduces a new and effective approach using silhouettes and
depth data from one single IR sensor. However, the main
disadvantage of the system is that a detailed shape can take
65 minutes to be optimized.

In this paper, we propose a method that can be operated
by professionals as well as non-professionals in the comfort
of their clinics or homes. Our method requires only one IR
sensor. The sensor is used to capture different views of the
human subject while its moved around that subject. The views
are combined by the ICP algorithm [16], which processes the
images and computes their registrations. Finally, a Poisson
surface reconstruction method ([26]) is applied to generate the
final 3D model.

III. PROPOSED SYSTEM

Our method consists of five major steps. The framework is
shown in Figure 2 and the steps are: 1) Raw Image Capture; 2)
Coarse Registration; 3) Fine Registration; 4) Common Refer-
ence Registration; and 5) Filtering and Surface Reconstruction.

In the next subsections we will detail each of those steps.

Figure 2. Block diagram with the steps of our framework

A. Image Capture

Our system employs a commercially available and quite
inexpensive IR sensor: the Microsoft Kinect. Despite the
relative low resolution offered by this device, 640x480, it
allows us to collect images very quickly, at 30fps. So, we
opted for acquiring a large number of low-resolution images
and increase the accuracy of the final model by the registration
of multiple, redundant images.

The only constraint imposed by this step is for the user
to hold the device at a distance of approximately 80cm to
the target limb. At that distance, the device provides the most
accurate depth detection. The user can then freely move the
device around the subject while keeping the same approximate
distance of 80cm to the subject. The output of the device
is a raw depth image, which is calibrated into actual world
coordinates using the algorithm in [27]. The result is illustrated
in Figure 3.

B. Coarse and Fine Registrations

The next two steps of the proposed framework is the
Coarse and Fine Registrations. The goal of both of these

Figure 3. Sample depth-image of an arm obtained by our method.

steps is to register pairs of consecutive depth images into
the same 3D coordinate frame, and iteratively to register all
pairs into a single 3D reference coordinate frame [21]. The
process starts with a graphical user interface that allows for
an easy initialization of the registration process – i.e. the
coarse registration. A snapshot of the GUI is presented in
Figure 4. The GUI allows the user to click on a set of
four corresponding points on two consecutive images. These
points are then used by the coarse registration, and the result
of the coarse registration is automatically fed into the fine
registration, leading to a complete set of points with respect
to the same reference frame.

(a) (b) (c)
Figure 4. Graphical User Interface used for registration: (a) current depth
image; (b) previous depth image; (c) registered images.

In the future, we will replace the coarse registration process
by an automated method involving gyroscopes and accelerom-
eters attached to the IR device. These motion sensors will
provide all the information necessary to initiate the fine
registration process and eliminate any human interaction from
the loop.

The fine registration is accomplished by the ICP algorithm
[16]. As we mentioned earlier, the fast frame rate obtained
by the use of the IR device guarantees that two consecutive
views always present overlapping regions. This fact allows
the ICP algorithm to provide a very robust registration of the
two clouds of points. The output of the ICP algorithm is a
homogeneous transformation matrix containing the rotational
and translational components relating a pair of consecutive



views. Our framework then iteratively transforms all the pairs
of views to the same reference frame. That is, as the framework
process the pair i and i − 1, it calculates the homogeneous
matrix:

iHr= iHi−1* i−1Hr

where i represents the index of the current view, i−1 is the
previous view, iHi−1 is the homogeneous matrix computed by
ICP algorithm, and i−1Hr is the transformation – with respect
to the reference frame r – of all views up to that point in the
iteration of the framework.

C. Common Frame Integration

As we mentioned above, our approach to achieve high-
density models was through the use of multiple and redundant
depth images. This process leads to a set of depth images with
great overlaps between them. This property is at the same
time desirable and a burden to the system: while it provides
a dense and accurate model of the arm, it also leads to large
datasets. In this step of the framework, we must eliminate
any redundancy in the dataset. Currently, this is achieved by a
simple elimination of redundant depth images from the dataset.
An integration algorithm discussed in [21] will replace this
step in the future.

D. Filtering and Surface Reconstruction

The last step in the framework consists of filtering and
surface reconstruction. In order to achieve a smooth surface
reconstruction our framework performs several substeps. First,
in order to reduce the computation complexity, the point clouds
are sub-sampled. Next, Poisson-disk sampling is processed on
the point clouds. For this application involving the human
arm, we noticed that a total of 10000 points is enough for
good reconstruction. Since the computation of the normals on
the surface of the object is required for the final substep, our
framework estimates the normals using 10 neighboring points.
Finally, the Poisson algorithm [26] for surface reconstruction
is employed using an octree depth of 12, a solver divide of
8, a number of samples per node equal to 3 and a surface
offsetting of 1.

The final result of this surface reconstruction and all the
previous steps is presented in the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the accuracy and usefulness of our
method for the target application of limb-volume measure-
ment, we performed two different experiments. In the first
experiment, we compared our method against the perometry
method. In the second experiment, we focused on the the
accuracy and ability of the proposed method to detect localized
swells.

It is important to mention here that the perometry method
cannot be considered as ground truth, since its application
in lymphedema is predicated upon its ability to provide
repeatability, but not necessarily accuracy in the readings. Our
goal in comparing with the perometry method was simply to
use it as a basis for the comparison of this same repeatability.

A. First Experiment

For this experiment, we collected data for a total of twelve
arms, from six different human subjects. Also, five of those
individuals were healthy people, while the last one was from
a person with lymphedema. Here, we present the volume for
the three most typical cases and for the case of lymphedema.

Both the perometer and our method require the user to
manually select the region to be measured – i.e. the length
of the arm for which the volume must be calculated. Since
this is part of the protocol employed by clinicians, in both
cases we manually removed the image of the hand and the
upper parts of the arm. The calculated volumes obtained by
the two devices are listed at the end of this section, in Table
II.

For a qualitative analysis of the results obtained by our
method, we present the result of all four experiments reported
here in the next four figures.

In Figure 5, we present the first of these experiments. This
model was constructed using 20 views. It may be difficult
for the reader to see without zooming into the figure, but
the number on the right side of the arm is the length of that
arm – in this case, 474mm. That same length reported by the
perometer was 470mm.

Figure 5. 3D model of the first human subject

The second model was built using 25 views. Once again,
the number on the right side of the arm, which can be read
by zooming into the picture, represents its length as reported
by our method and is equal to 481mm. The length of the arm
from the perometry device was 480mm. Figure 6 depicts the
model obtained for this subject.

Figure 6. 3D model of the second human subject

The third test model, presented in Figure 7, was built using
19 views. The length of the arm as reported by our method



was 364mm, and the length reported by the perometer was
376mm. This was the largest discrepancy observed by this
comparison between our method and the perometry and it can
be attributed to the fact that the arm in Figure 7 does not
appear to be completely stretched.

Figure 7. 3D model of the third human subject

Finally, the fourth test model was built using 18 views.
This model was created by imaging the arm of a person with
lymphedema, as it can be observed in Figure 8. The number
on the right side of the arm, which again indicates its length,
is 364mm. The length of the model reported by the perometer
was 372mm.

Figure 8. 3D model of the human subject with lymphedema

Once again, in Table II we compare the volumes obtained
with our method and the perometry device. The percentage
discrepancy in the third column of the table was calculated by
dividing the volume difference between the two measurements
and the volume from our method.

The results obtained by the proposed method have a per-
centage discrepancy of less than 13% with respect to the
perometry. This shows the robustness of our method. Since
the most important property of any method for lymphedema
detection is intra-rater reliability/repeatability – i.e. the ability
of the method to detect change from baseline over time – the
perometry method should be seen as ground truth. In fact, in
perometry it is acceptable a change of no more than ±50ml
in a volume of about 2400ml.

Another important point to be made is regarding the selec-
tion of the extents of the arms used for volume calculation.
Since for both devices this selection was done manually, it
is possible that despite similar lengths were observed, slight
shifted extents of the arms were used. This shift could explain

the difference in volumes also observed in Table II. In the
future a consistent procedure to select the arm extents must
be imposed between both methods.

In order to address the more typical engineering criteria
against ground truth, we performed another experiment using
an object of known volume.

B. Second Experiment

This experiment was conducted with two main objectives:
1) to show that the proposed method is able to detect small
and localized swelling of the arms; and 2) to determine the
resolution of this measurement. For that, we taped a small
pen to the arm of a human subject. Figure 9 shows the 3D
model obtained for this experiment. The shape and volume of
the pen were then estimated from the same 3D model and the
value of 9.2ml was calculated for the volume. This is a great
achievement considering the ability of the proposed system to
detect swellings as small as 0.5% of the volume of the arm.
However, the real volume of the pen was estimated to have
a volume of 11.6ml – i.e. an error of 20% with respect to
the ground truth. Given that the error of the instrument used,
the Kinect, is more than 1cm – i.e. the calibration method
used does not provide accuracy better than 1cm ([27]) – it
is reasonable to expect large percentage errors in such small
volumes.

(a) (b)
Figure 9. Test of the detection of localized swelling.

V. CONCLUSION AND FUTURE WORK

We proposed a new and convenient system to accurately
model the human arm. As the experimental results demon-
strated, our method is robust and it presents the ability to detect
small and localized differences in limb volume. This method
relies on an IR device that is much smaller and inexpensive
than the emerging research and commercial standard: the
perometry. Besides, it can be operated by any person, with no
training and in the convenience of their homes or clinics. Our
method shows a significant advantage over other commercial
devices, including price, ease of use, and maintenance.

In the future, we will improve the coarse registration, by
employing gyroscopes and accelerometers to detect the motion
of the device and to automate the registration process. Also,
a more elaborate integration algorithm will allow us to keep
a larger number of views and at the same time reduce the
size of the data set by eliminating redundant points. Analysis
of the effects of the distance between the device and the arm
on the accuracy of the measurements should also be carried
out. Finally, we intend to compare our method using the same
methodology as the one described in [[8], [9]] as well as using



Table II
VOLUME AND LENGTH COMPASSION

Test Proposed method
(Volume in ml)

Perometry device
(Volume in ml)

Percentage
Discrepancy

Proposed
method

(Length in
mm)

Perometry
device (Length

in mm)

Percentage
Discrepancy

1 1972 1878 4.7 474 470 0.8
2 3581 3122 12.8 481 480 0.2
3 1570 1381 12.0 364 376 3.3
4 3756 3393 9.6 364 372 2.2

the water displacement method. In summary, more quantitative
measurements should provide final evidence of the increased
applicability and reliability of our method over other options,
in especial the water displacement, which is still regarded as
the golden standard in the field.
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