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Abstract—In this work, a new element of our research for
autonomous plant phenotyping is presented: a simulated en-
vironment for development and testing. As explained in our
previous work, our architecture consists of two robotic plat-
forms: an autonomous ground vehicle (Vinobot) and a mobile
observation tower (Vinoculer). The ground vehicle collects data
from individual plants, while the observation tower oversees an
entire field, identifying specific plants for further inspection by
the ground vehicle. Indeed, while real robotic platforms for
field phenotyping can only be deployed during the planting
season, simulated platforms can help us to improve the various
algorithms throughout the year. In order to do that, the simu-
lation must be designed to mimic not only the robots, but also
the field with all its uncertainties, noises and other unexpected
circumstances that could lead to errors in those same algorithms
under real conditions. This paper details the current state in the
implementation of such simulation. It describes how the target
navigation algorithms are being tested and it provides the first
insights on the functionality of the simulation and its usefulness
for testing those same robotic platforms.

I. INTRODUCTION

Population increases, climate change, degradation and loss
of arable land, and the appearance of new pests and diseases
threaten the world’s food supply [1]. Understanding how plants
respond to environmental and genetic perturbations can have
an enormous social impact, as it is essential to accelerate
crop improvement and agricultural management practices [2].
Crop improvement requires the identification and measurement
of agronomically important phenotypes. To unravel molecular
mechanisms, track genes through genetic crosses, and deter-
mine which interactions between the genotypes and their envi-
ronments produce the desired phenotypes, geneticists and plant
breeders must be able to reproducibly identify phenotypes
that are likely to confer agricultural, environmental, and/or
nutritional benefits. Truly high-throughput phenotyping will
provide an unprecedented opportunity to study the physiolog-
ical, developmental, and molecular mechanisms that govern
the dynamic behavior of plants [3].

Until recently, the characterization of plant phenotypes has
been a task for human eyes, legs, and brains. Conveyor
belts, installed in greenhouses to transport potted plants to a
phenotyping station equipped with cameras, represent the next
state of the art in scoring phenotypes by algorithmic analysis of
images. These algorithms relied (rely) on relatively uncluttered
images: well-separated, young plants that easily can be rotated

to help resolve lighting and occluding features [4]. But there
are two fundamental flaws with guiding crop improvement
only with greenhouse observations. First, phenotypes of crops
grown in a greenhouse are often very different from those
grown in the field. Phenotypes, such as disease resistance and
robustness to environmental stresses, must confer their benefits
under the conditions that occur in farmers’ fields across the
continent and around the world, not just in controlled condi-
tions. Second, the number of plants that must be phenotyped is
often in the tens or hundreds of thousands, both when uncov-
ering the fundamental mechanisms of agronomically desirable
phenotypes and when evaluating new varieties for release to
farmers. Of course, greenhouse studies are and will remain
important in plant sciences. Nonetheless, the vast majority of
agricultural production is outside, in varying soil and changing
climatic conditions, and under diverse management practices.
Thus, researchers move their attention to phenotyping large
numbers of plants in the field. Therefore, as part of this
research, we built robotic platforms that can collect multi-
modal, multi-character data in real time in the field [5]. The
two robotic platforms developed for field phenotyping proved
to be accurate, reliable, and highly correlated to manually
extracted phenotypes, while also providing richer information
– e.g. 4D models (3D+temperature) of the plants with a
virtually unlimited number of traits that can now be extracted
and correlated to plant responses. The large amount of data
already collected will now help us to link plant genotypes as
well as the molecular and eco-physiological responses with the
expression of specific phenotypes in response to the growing
conditions [6–8].

In this paper, we present a simulated environment for
robotic phenotyping in the field. While real robotic platforms
can operate and collect data under unforeseen situations, a
simulation environment opens the door to further development
of robotics and computer vision algorithms without some of
the constraints of a real deployment. In that sense, the main
advantages of a simulated environment are:

1) extended control over environmental and field conditions
while easily creating various scenarios for testing the
robotic platforms;

2) freeing the developers from limitations such as seasonal
and weather conditions, type of crops, etc;



(a) Vinobot (b) Vinoculer

Figure 1: The developed platforms for high-throughput phe-
notyping in the field deployed at the Bradford Research Fa-
cility: (a) ground vehicle, Vinobot; and (b) observation tower,
Vinoculer shown at the height of 15ft

3) explore potential improvements in the current system
architecture and design of the robots, by being able to
add new elements without financial constraints;

4) availability of ground truth;

The remaining of the paper is organized as follows: in section
II, an introduction to our real robotic platforms with a brief
description of their different elements is presented. Section III
focuses on the simulated environment and the challenges in
mimicking real world scenarios, including the actual robotic
platforms and the specifics of a corn field. In Section IV, we
discuss the results obtained from running publicly available
robotic and computer vision algorithms on the the proposed
simulator and comparing the results of the same algorithms
in the real world. Finally, in section V, the conclusions and
future work are presented.

II. THE REAL-WORLD PLATFORMS

As introduced in [5], our system architecture consists of
two robots: a mobile observation tower, Vinoculer, for canopy
characterization and general inspection of the crop; and a
ground vehicle, Vinobot, for individual and detailed plant
phenotyping.

Figures 1a and 1b show the Vinobot and Vinoculer in a field
at the University of Missouri Bradford Research Center near
Columbia, Missouri, USA.

The ground vehicle, or Vinobot for ViGIR-Lab (Vision-
Guided and Intelligent Robotics Lab) Phenotyping Robot,
is responsible for phenotyping plants individually. In other
words, the Vinobot moves within the field and collects data
from individual plants, either on a regular schedule or by
demand. The Vinobot consists of multiple sensors, such as for
3D imaging, temperature, humidity, light intensity (PAR), etc..
In the Vinobot, it is also included a differential GPS, a robotic
arm, a LIDAR, and other support equipment for autonomous
navigation and operation of the phenotyping sensors.

The second platform, Vinoculer, for ViGIR-Lab
Phenotyping Trinocular Observer, is a portable and telescopic
tower equipped with a 360-degree vision system that can
observe a large area of the field using two (stereo) RGB
cameras and one IR (thermal) camera. The main purpose of
the Vinoculer is to detect regions of the crop under stress,
and deploy the ground vehicle for further investigation of
those regions.

III. VISUALIZATION AND SIMULATION

The Gazebo software was used to simulate the robotic
platforms as well as the corn field. Gazebo is an open source
3D simulator built on top of the Open-source Dynamics
Engine (ODE) and the Open-source 3D Graphical Rendering
Engine (OGRE) [9]. The software is fully integrated into the
Robot Operating System (ROS) [10], which was also used in
the real robots to perform navigation and data collection tasks.
Our goal was to provide the same environment for both real
and simulated robots, sensors, and actuators.

Similarly, a software named Rviz was employed for 3D
visualization of not just the simulated robots (i.e their position,
trajectory, etc), but also the data being provided to these robots.
Like Gazebo, Rviz is integrated into ROS, but its main purpose
is to visualize data collected by simulated and real robots. By
doing so, the results from real and simulated robots can be
correlated, making easy to debug the systems.

A. Simulated World

The first required element for the proposed system is the
simulated world: in this case, a crop field. This simulated
world consisted mostly of the plants and the ground soil –
currently planar, but in the future, ground irregularities will
be added. After that, the robotic platforms were added to the
simulated world (field) so that navigation and data collection
tasks could be performed. This simulation included the physics
of the world, such as gravity, static and dynamic interaction
between objects, friction, etc, as well as shadows and other
illumination artifacts created by the sky, clouds and sun light.

Crop/Plants: In this paper, corn plants were considered as
the specimen under study, however any other type of plant can
be modeled and included in the simulation. The 3D models
of corn plants were included as static rigid objects and the
more typical non-rigid movement of plants was left for future
work. As shown in figure 2, these 3D models were created
with stalks, leaves, tassels, and ears. The field was randomly
populated with corn at 10”±1” gaps, and placed along parallel
rows, 30” apart. All parts of the plants were textured using real
image templates.

Ground Soil: The ground was also modeled from textured
templates of real soil with a Coulomb friction coefficient
of µc = 50 and second direction friction coefficient of
µ2 = 25 (i.e. perpendicular to the first friction direction).
These coefficients can be obtained empirically to match real-
world conditions. The texture used for the entire ground plane
was obtained from an image of an equal-size real field. Finally,
the fact that the ground was made flat in this simulation



Figure 2: Simulated Field of Corn

does not compromise the results given that Vinobot is equally
stable in the real field, which is a fairly flat terrain. However,
simulation of a more rugged terrain was left for future work.

B. The Robots

The robotic platforms along with all their sensors and
actuators were modeled identically to the real platforms. The
only exception was for the thermal images which were not
simulated in this work. As mentioned earlier, visualization
and simulation of the robots was carried out using Rviz and
Gazebo, respectively. Also, the algorithms for the simulated
Vinobot and Vinoculer are identical to the algorithms used in
the real robots, and they relied on the same ROS interface to
send and receive command, observe sensory information, etc.

Vinobot: Vinobot was implemented around the Husky
A–200 by Clearpath. A linear slide at the front of the robot
guides a robotic arm (JACO2 by Kinova) to improve lateral
reach. The purpose of the robotic arm is to allow for multiple
sensors to be handled. For example, the robot arm can move
the camera – a BumbleBee XB3 by PtGray – in search of
a better vantage point while 3D imaging the plants. Other
sensors including a Differential GPS, an IMU and a LiDAR
were also mounted onto Vinobot for navigation purposes.

In order to mimic real world conditions, appropriate noise
was added to all sensor modules, i.e. the cameras, GPS, IMU,
and LiDAR. A list of the all parameters used in the simulation
are shown in Table I. These parameters were chosen from
technical specifications and/or based on real sensor data. The
reference latitude and longitude were set to the location of the
Bradford Research Center in Columbia, MO, USA.

Figure 3a shows a screenshot of a simulation of Vinobot
performed by Gazebo, while 3b presents a visualization of the
real Vinobot by Rviz.

Vinoculer

Vinoculer is a portable observation tower usually mounted at
the center of the field. It consists of a 360-degree turn table and
it is capable of capturing data from a 30ft-radius surrounding
area. The Vinoculer was equipped with two RGB-spectrum
cameras for stereo vision (Grasshopper3 by PointGray), an
IR camera (Flir A625) and a turntable with an accuracy of

(a) (b)

Figure 3: (a) Simulation of Vinobot in the field using Gazebo,
and (b) Visualization of the real Vinobot and sensor data by
Rviz. The orange points are parts of the plants detected by
the LiDAR. The figure also displays the 3D point could being
created by the stereo camera handled by the robotic arm.

(a) (b)

Figure 4: (a) Simulation of Vinoculer in the field using
Gazebo, and (b) Visualization of the real Vinoculer in the field.
Real RGB and thermal images are shown in detail.

0.1 degree. The cameras are necessary to perform measure-
ments such as volume, leaf area, biomass, height, growth rate
and other canopy characteristics (IR). These equipment were
mounted on a telescopic tower, which can be elevated from 3
m to 10 m high. The base of tower has wheels, which allow
its easy dislocation to any part of the field.

Figure 4a shows a screenshot of the Gazebo simulation of
Vinoculer, while the Rviz visualization of the real Vinoculer is
in Figure 4b. The height of Vinoucler can be set in simulation
to range of 3 to 10 meters. The actual simulation of thermal
camera requires modifications in physics of Gazebo therefore,
here we treat the thermal camera as a gray-scale camera to
detect objects of interest with emission and color property set
to pure red color [255, 0, 0]. All cameras are simulated with
the same resolution and frame rate as the real cameras (RGB:
4240× 2824, 7 FPS – thermal: 640× 480, 50 FPS). The turn
table can be controlled through ROS service in the same way
as the real platform.

IV. RESULTS: FROM REAL TO SIMULATED PLATFORMS

In this section, qualitative results using the real and the sim-
ulated platforms are presented. Two types of tests were carried
out: 1) 3D imaging performed by Vinobot and Vinoculer; and
2) navigation and mapping performed by the Vinobot.



Table I: Parameters considered in simulation of sensors mounted on Vinobot

GPS IMU Camera LiDAR
refLat = 38.8° accGaussN = 0.086(m/s2) stddev = 0.007 gaussN = 0.012(m)

refLong = −92.2° rateGaussN = 0.86(m/s) f = 1035, C = [663, 476]
gaussN = [0.1 0.1 0.1] (m) yawGaussN = 0.09(rad) dist = [−0.35, 0.14, 0, 0, 0]

(a) (b)

Figure 5: Visual comparison between the 3D reconstruction of
a corn plant generated using (a) synthetic (Vinobot collecting
data in Gazebo) and (b) real (Vinobot collecting data in real
world) data.

A. 3D Imaging

An implementation of the algorithm for Structure From Mo-
tion name VisualSFM [11] was used to create the reconstructed
dense models presented here. As mentioned earlier, these
dense models were obtained from both real and simulated
environments.

Vinobot: In this section, stereo images were used to create
3D models of individual plants. Figure 5 provides a visual
comparison between the 3D models generated using synthetic
and real data. By adjusting the noise added to the simulated
cameras, we were able to reproduce the same “gaps” present
in the 3D model from real plants. This is illustrated by Figures
5a and 5b.

Vinoculer: Even though Vinoculer cannot provide infor-
mation at the same level of detailed and accuracy as from
Vinobot, canopy traits like height, volume and Leaf Area Index
(LAI) can still be extracted from the 3D images generated by
Vinoculer.

As before, Figure 6 illustrates the results for the 3D re-
construction of the field using simulated and real data. In the
simulation experiment (Figure 6a), the height of Vinoculer was
set to its minimum, i.e. 3 meters, and the plants were modeled
as in their early stage of growth (maximum height of 0.5m).
This was done to match the same conditions observed in one
of the sets of the real data. The center of the 3D images in
Figures 6a and 6b appear empty due to bottom of the camera
viewing angle being aligned with the vertical, and hence the
platform and its immediate surroundings cannot be seen by
the cameras.

B. Navigation

Autonomous navigation refers to the ability of a robot to
move within its habitat without human intervention. In order

(a) (b)

Figure 6: Results for the 3D reconstruction of the entire field
by Vinoculer using (a) simulated and (b) real data

to achieve that, localization, mapping, obstacle avoidance and
motion control algorithms are required to accurately control
the robot’s position in the environment (field) and to compute
the path through obstacles (plants). Field navigation is a quite
difficult type of navigation referred to as outdoor navigation in
unstructured environment [12]. Illumination, non-rigid objects,
dynamic scenes, and sensor noises are some of the challenges
when dealing with outdoor navigation of robots. Besides, the
requirement to localize the robot within one centimeter with
respect to the plants adds another level to the complexity of
these challenges.

Autonomous navigation using Global Navigation Satellite
Systems (GNSS), e.g. differential GPS, is frequently used
to mitigate some of these challenges. However, vision-based
guidance is getting more attention as it can potentially reduce
costs, handle dynamic situations and simplify installation,
while it can achieve precision comparable or even better than
from GNSS. In that sense, new algorithms for either 2D or
3D dynamic navigation relying on sensors such as LiDAR
and RGB cameras can indeed provide increased flexibility in
such a unpredictable environment [13–15].

In this paper, we propose the use of GPS, IMU, and LiDAR
data to simultaneously localize the robot and map the envi-
ronment (field). These sensory informations were fused using
extended Kalman Filter (EKF) and the GMapping approach
[16, 17]. The EKF component of our method relied on a
publicly available implementation [18] where wheel odometry,
IMU, and GPS data were fused to generate an estimate pose
of the robot. This estimate is refined by another publicly
available algorithm on OpenSLAM. The latter is an improved
implementation of the Rao-Blackwellized particle filter for
simultaneous localization and mapping. Here, LiDAR data
along with the EKF estimate are used to refine the pose of
robot while a map of the environment is created.

A manual navigation was employed with the goal of keeping
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Figure 7: Visualization of Vinobot in Rviz while localizing
itself and mapping the environments in (a, b) Gazebo sim-
ulation, and (c, d) real world using LiDAR, IMU, and GPS
sensors.

track of the pose of Vinobot and to simultaneously map the
rows of plants. Figures 7a to 7d compare the results of this
experiment under simulated and real conditions. In the future,
the obtained occupancy map will be used to autonomously
navigate Vinobot through the rows while avoiding obstacles
(plants).

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simulation of previously developed architec-
ture for plant phenotyping has been presented. The architecture
consists of two robotic platforms: an autonomous ground
vehicle (Vinobot) and a mobile observation tower (Vinoculer).
While real robotic platforms can operate and collect data
throughout the growing season, the simulation environment
opens the door for further development of robotics and com-
puter vision algorithms throughout the year. Another advan-
tage of proposed simulation is to develop new ideas without
confining to physical limitations like having multiple robots.
The phenotyping platforms as well as the corn field were
simulated almost identical to the real world conditions with
uncertainties and noises. Results showed similar qualitative
figures between the simulated and real platforms where same
computer vision and robotics algorithms applied. We left some
improvements including non-rigid simulation of plants, and
simulation of non-plane terrain ground as future work.
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