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Abstract—Histograms are commonly used to characterize and
analyze the region of interest within an image. Weighting the
contributions of the pixels to the histogram is a key feature
to handle noise and occlusion and increase object localization
accuracy of many histogram-based search problems including
object detection, tracking and recognition. The integral his-
togram method provides an optimum and complete solution
to compute the plain histogram of any rectangular region in
constant time. However, the matter of how accurately extract
the weighted histogram of any arbitrary region within an image
using integral histogram has not been addressed. This paper
presents a novel fast algorithm to evaluate spatially weighted
local histograms at different scale accurately and in constant
time using an extension of integral histogram. Utilizing the
integral histogram makes it to be fast, multi-scale and flexible to
different weighting functions. The pixel-level weighting problem
is addressed by decomposing the Manhattan spatial filter and
fragmenting the region of interest, subsequently. We evaluated
and compared the computational complexity and accuracy of
our proposed approach with brute-force implementation and
approximation scheme. The proposed method can be integrated
into any detection and tracking framework to provide an efficient
exhaustive search, improve target localization accuracy and meet
the demand of real-time processing.

I. INTRODUCTION

In many image processing and pattern recognition appli-
cations, sliding window histogram matching is commonly
used to detect and localize the target object. Histogram-based
features are space efficient, simple to compute, robust to trans-
lation and particularly invariant to orientation for color-based
features. However, when computing a plain histogram, spatial
information are missed which makes it sensitive to noise
and occlusion. Several techniques are proposed to preserve
spatial information including color Correlograms [1], Spa-
tiogram [2], Multiresolution histogram [3], locality sensitive
histogram [4] and fragment-based approaches that exploit the
spatial relationships between patches [5]. Spatially weighted
histograms boost the performance of many image processing
tasks including detection, tracking and recognition at the
expense of speed. In [6], Porikli generalized the concept
of integral image and presented computationally very fast
method to extract the plain histogram of any arbitrary region
in constant time. Integral histogram provides an optimum and
complete solution for the histogram-based search problem [7],
[8], [9], [10], [11]. Since then many novel approaches have

(a) Manhattan

L

L L

L

H

H
H
H

SE SW

NWNE

(b) 4-Directional In-
dependant Weights

Fig. 1. Illustration of decomposing Manhattan spatial filter into four inde-
pendent weighting functions. As it is shown in (b), weights linearly increase
from one corner to its diagonally opposite corner in each of the quadrants
covering four directions : {SE, SW, NE, NW}.

been presented based on integral histogram to accelerate
the performance of image processing tasks and incorporate
the spatial information including filtering [12], [13], [14],
[15], classification and recognition [3], [16], [17], detection
and tracking [18], [19], [20].

Despite all different techniques that have been proposed
to adaptively weight the contribution of pixels to local his-
tograms, the problem of how accurately extract the spatially
weighted histogram of any arbitrary region within an image in
constant time using integral histogram is still unsolved. Frag-
track [5] proposes a discrete approximation scheme instead
of the continuous kernel weighting approach to give higher
weights to the contribution of inner rectangles compare to
region margins to meet the demand of real-time processing
at the expense of losing accuracy. In this paper, we present
a novel fast algorithm to efficiently and accurately evaluate
Spatially Weighted Local Histograms (SWLHs) in O(1) time
complexity at multiple scales using an extension of the integral
histogram method. The main idea is to

1) Decompose the spatial filter into independent weights
wis (Figure 1(b)),

2) For all wis compute weighted integral histograms of
image IHwis

(second row of Figure 6),
3) Fragment the arbitrary region of interest into multiple

quadrants qis (following weighting function decomposi-
tion fashion, Figure 5),

4) For every quadrant qi, compute its weighted local his-
togram using the corresponding IHwi and considering
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Fig. 2. Performance evaluation of intensity feature likelihood maps using sliding window (b) plain versus (c) spatially weighted histogram distance matching.

its translation from center pixel,
5) Normalize the local histograms patches,
6) Combine local histograms patches to build the full

region of interest weighted local histogram (3rd row of
Figure 6)

In the following sections, first we describe the brute-force
approach and the approximation scheme [5] to compute the
spatially weighted local histograms and then discuss our
proposed accurate and fast algorithm (SWLHs). Section 3
evaluates and compares the computational complexity and
accuracy performance of SWLHs with the brute-force imple-
mentation and approximation scheme. Section four presents
the application of SWLHs in context of video object tracking
framework.

II. SPATIALLY WEIGHTED LOCAL HISTOGRAMS

In many object detection and tracking frameworks, sliding
window histogram distance matching is commonly used to
detect and localize the target object. Figure 2 shows the
accuracy of intensity feature likelihood maps based on sliding
window histogram matching when using plain local histograms
versus spatially weighted local histograms. As it shown in
Figure 2(b), weighting pixel contributions is a key feature to
increase the accuracy of detection results. The common tech-
nique to adaptively weight the contributions of pixels to the
histogram is to define a weighting function w(x, y) that assigns
weights to pixels with respect to their distance from target

(a) Manhattan (b) Euclidean (c) Gaussian

Fig. 3. Illustration of linear and non-linear distance kernels.

center (since undesirable pixels are usually considered around
the region contours) including Manhattan, Euclidean, Gaussian
or exponential weighting distance functions (Figure 3). Having
such kernels enables us to adaptively weight the contributions
of pixels and diminish the presence of background information
when computing weighted local histograms.

Then the spatially weighted histogram of region T is
computed as:

H(T, bi) =

w×h∑
x,y∈T

δ(Q(f(x, y))− bi)× w(x, y) (1)

where T is the region of interest of size w × h, bi is the
histogram bin index, δ is the pulse function and Q is the
quantization function for image feature values f .

A. Brute-force Approach

The computational complexity of the straightforward
convolution-based approach to compute the adaptively
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Fig. 4. (a) Wedding-Cake Approach: the discrete approximation scheme to
compute the spatially weighted local histogram of the candidate region con-
sidering inner-nested windows and using integral histogram (wi < wi−1 <
... < wi−k). (b) Wedding-cake slice approximation. (c) Computational time
complexity and accuracy of this method increase by increasing the number
of layers.

weighted local histograms at each candidate pixel location
is linear to the kernel size and the number of candidate
pixels. Assuming a search window of size w × h and a
neighborhood of size k × k and b-dimensional histogram, the
computational complexity of finding the best matched pixel
location is O(b × k2 × w × h), which makes the system far
away from real-time performance particularly when it comes
to large scale high resolution image analysis.

B. Wedding-Cake Approach

One solution to meet the demands of real-time implementa-
tion is to extract local histograms in constant time using inte-
gral histogram. However, as of our knowledge, there is no so-
lution to accurately and efficiently compute spatially weighted
local histograms in O(1) using integral histogram. Frag-
track [5] proposed a discrete scheme to approximate the kernel
function with different weights instead of pixel-level continu-
ous weighting. Assuming that we want to calculate a spatially
weighted local histogram in the rectangular region R centered
at point P using integral histogram. Such counting can be
approximated by considering several inner-nested windows
Ri at multiple scales around P (Figure 4(a)). The goal is to
compute the counts of the rings between two adjacent windows
Ri and Ri−1 by subtracting their local histograms that are
obtained in constant time using integral histogram. Then, rings
histograms will be weighted appropriately with respect to
their distance from P and combined to approximate spatially
weighted local histogram on R as:

SWLHapproximate(R) = wi × (H(Ri)−H(Ri−1))+

...+ wi−k ×H(Ri−k) (2)

Although the weighted local histogram computations are in-
variant to kernel size, but the accuracy of this approximation
relies on the number of considered inner-nested windows. The
computational complexity and accuracy increase by increasing
the number of layers.

We present a new algorithm called SWLHs to efficiently
and accurately compute spatially weighted local histograms in
constant time using an extension of integral histograms (Fig-
ure 6).
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Fig. 5. Decompose the spatial filter into four independent weighting functions
wis , covering four directions: {SE, SW, NE, NW} and subsequently fragment
region of interest into multiple quadrants: TopLeft(TL), TopRight(TR), Bot-
tomLeft(BL) and BottomRight(BR).

C. Multi-scale Spatially Weighted Local Histograms in O(1)
(SWLHs)

In our algorithm, we propose to address the expensive
continuous pixel-level weighted local histogram computations
using an extension of integral histogram method and Man-
hattan distance function. SWLHs weights the contribution
of each pixel Pi = (xi, yi)- within region R centered at
Pc = (xc, yc), Figure 5(b) - to the histogram of region R
using its Manhattan distance from Pc. Manhattan or city-block
weighting function measures the sum of the absolute distance
between two points along each axis. In our case, Manhattan
distance of any arbitrary point Pi = (xi, yi) within region R
is

DistManhattan(Pi, Pc) =| xi − xc | + | yi − yc | (3)

Since the filter is rectilinear and symmetric, we pro-
pose to decompose it into four independent weighting
functions wis , covering four directions: {SE, SW, NE,
NW} (Fig. 5(c)). These weights are extended to compute
four differently weighted integral histogram of the search win-
dow (Fig. 6). For each direction, we consider two correlated
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Fig. 6. Compute four weighted integral histogram of search window using
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images f and wdir to compute the weighted integral histogram
up to point (x, y):

IHwdir (x, y, bi) =
∑

i≤x,j≤y

δ(Q(f(i, j))− bi)× wdir(i, j) (4)

f contains image feature values, Q is the quantization function
that determines which bin to increase, δ is the impulse function
and wdir is the pixel-wise weighing function that determines
the value to increase at that bin.

Now to compute spatially weighted local histogram
of any arbitrary region at constant time, first the in-
terested region R is fragmented into four quadrant qis :
TopLeft(TL), TopRight(TR), BottomLeft(BL) and Bottom-
Right(BR) (Fig. 5(b)). Then the local weighted histogram of
each of the quadrants will be computed independently using
its corresponding weighted integral histogram and considering
its translation from center pixel. Finally, the local histogram of
patches are normalized and combined to build the full region
spatially weighted histogram (Fig. 6).

It is noteworthy to mention that due to weights rectilinear
changes, their values are independent of the pixel location in
the region of interests. This characteristic enables us to appro-
priately normalize the computed weighted local histogram and
match it with the target spatially weighted histogram regardless
of its location. This new method provides multi-scale accurate
spatially weighted local histogram in constant time and can
be utilized for other spatial weighting functions. It also can be
easily adapted to any fast computations of integral histogram
on GPUs to accelerate the computations of four weighted
integral histogram [8].

III. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this section, we evaluate the performance of our approach
and compare it with brute-force implementation and approx-
imation scheme with respect to computational complexity
and accuracy. Figure 7 illustrates the performance of the
estimated intensity likelihood maps for a sample image from
the VOT2016 data set [21] using sliding-window histogram
matching. We compared the intensity likelihood map com-
puted by the brute-force implementation with the matching
results of the plain histogram, approximation scheme and our
proposed algorithm SWLHs. Background clutter is one of the
main challenges in object detection using matching. Therefore
we selected an image that contains background clutter to
make the matching process very challenging. We calculated
the Mean-Squared Error (MSE) between the brute-force re-
sult which is our reference model and the two other tech-
niques. The MSE between brute-force and our results (SWLHs)
is 0 as we expected and 0.12% using the approximation
scheme with 3 layers respectively. It is proved that our
proposed method not only provides exact results as the brute-
force approach but is much faster and invariant to of sliding
window size changes. In this experiment, for the image of size
345× 460 and sliding window of size 61× 91 (Figure 7(a)),
SWLHs is 4.5 times faster than brute-force implementation.

(a) ROI

(b) Brute Force

(c) Plain Histogram

(d) Wedding Cake

(e) SWLHs

Fig. 7. Performance evaluation of intensity likelihood maps estimation using
sliding window histogram matching. Weighting pixel contribution considering
its location results in more accurate and robust target localization as shown
in (b) and (e).
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Fig. 8. Performance evaluation comparison by increasing the local histogram sliding window size. Computational time complexity of integral histogram-based
methods are invariant of kernel size. However, Computational complexity and accuracy of Wedding Cake approach increases by increasing the number of
layers

Figure 8 illustrates the computational complexity perfor-
mance of SWLHs compared to brute-force approach and the
approximation scheme. Figure 8(a) shows the computational
complexity of each of the discussed methods for standard
image 640 × 480 and Fig. 8(b) for large scale image of size
1k× 1k, for different sliding window size from small scale to
very large scale. It can be seen that the local histograms com-
putational time using the brute-force implementation increases
dramatically by enlarging the kernel size but is invariant
of sliding window size for the approximation scheme and
SWLHs. The execution time of the integral histogram based
methods are invariant of sliding window size, however there
is a small drop in execution time when increasing the sliding
window size. The reason is that the number of sliding windows
and consequently the number of computed local histograms is
reducing by increasing the sliding window size. It is shown
that, for a search window of size 640×480 and small kernel of
size 51×51 Figure 8(a), SWLHs is two times faster than the
brute-force approach and 14 times faster for a larger sliding
window of size 301× 301. SWLHs is 185 times faster for a
large scale image of size 1k×1k and kernel of size 351×501.

IV. SPATIALLY WEIGHTED INTEGRAL HISTOGRAM FOR
FAST TRACKING (SWIFT)

Many of the discriminative region-based tracking algorithms
rely on histograms for a fast and memory efficient appearance
modeling of target object as well as candidate regions in-
cluding Mean-Shift [22] and kernel-based [23], [24] methods.
However, since many of these trackers discard the spatial
information when computing the conventional histogram, they
rapidly lose the accuracy and converge to false targets. There-
fore, many techniques have been presented to incorporate
spatial information and enhance the tracker robustness which
are either more computationally intensive and far away from
real-time performance or a combination of different techniques
to compensate the lack of spatial information [2], [25], [4],
[18], [26]. Our proposed approach that incorporates spatial
information to the histogram of color, shape or texture features
presents a novel solution based on an extension of integral

histogram to efficiently compute histogram-based matching for
visual detection, tracking and recognition.

We integrated SWLHs into our tracking system named
LoFT [27], [9] to evaluate the performance of intensity his-
togram matching when using plain histogram versus spatially
weighted histogram. LoFT is an appearance-based Likelihood
of Features Tracking (LoFT) system, specialized for low
resolution targets with large displacements caused by low
frame rate sampling in Wide Area Motion Imagery(WAMI).
Matching likelihood maps for individual features are computed
using sliding window histogram similarity operators. The
integral histogram method is used to accelerate computation
of the sliding window histograms for a posteriori likelihood
estimation [8]. Figure 9(a) describes the flow of the likelihood
map computation using plain intensity histogram of target
object and candidate regions. Similar to the results obtained for
the synthetic image shown in Figure 2, using plain histograms
results in less accurate localization of object. We applied
our accurate spatially weighted integral histogram to estimate
features likelihood maps instead of regular integral histogram
to perform fast exhaustive search. Figure 9(b) illustrates the
computational flow compared to plain histogram and presents
the more accurate target localization results when using spa-
tially weighted histograms.

V. CONCLUSION

This paper presents our novel fast algorithm to accu-
rately evaluate spatially weighted local histograms in con-
stant time using an extension of the integral histogram
method (SWLHs). We have shown that SWLHs computes
accurately spatially weighted local histograms compared to
brute-force approach and meets the demands of real-time
processing. Utilizing the integral histogram makes it to be
fast, multi-scale and flexible to different weighting func-
tions. This technique can be applied to fragment-based ap-
proaches to adaptively weight object patches considering their
location. SWLHs can be integrated into any detection and
tracking framework to provide an efficient exhaustive search
and achieve more robust and accurate target localization.
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weighted histogram matching approach to perform presistant tracking of moving vehicles in large scale aerial imagery.
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