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Abstract. Anomaly detection, which aims to discover anomalous events,
defined as having a low likelihood of occurrence, from surveillance videos,
has attracted increasing interest and is still a challenge in computer vi-
sion community. In this paper, we propose an efficient anomaly detection
approach which can perform both real-time and multi-scale detection.
Our approach can handle the change of background. Specifically, Local
Coordinate Factorization is utilized to tell whether a spatio-temporal
video volume (STV) belongs to an anomaly, which can effectively detect
spatial, temporal and spatio-temporal anomalies. And we employ Spatio-
temporal Pyramid (STP) to capture the spatial and temporal continuity
of an anomalous event, enabling our approach to handle multi-scale and
complicated events. We also propose an online method to update the lo-
cal coordinates, which makes our approach self-adaptive to background
change which typically occurs in real-world setting. We conduct extensive
experiments on several publicly available datasets for anomaly detection,
and the results show that our approach can outperform state-of-the-art
approaches, which verifies the effectiveness of our approach.

1 Introduction

Recent years, surveillance system has been applied to almost everywhere in a
city. However, current systems require human operators to watch a large number
of screens[1] showing the content captured by differen cameras. One of the main
tasks of human operators is to detect or discover suspicious and unusual individ-
uals or events[2], or anomalies. However, with more cameras in city, more human
efforts are required, and it’s becoming more difficult for human operators and
their performance may degrades significantly [3]. To address this problem, auto-
matic anomaly detection approaches attract increasing interests in recent years.
These techniques can automatically analyze video streams to warn, possibly in
real-time, the human operators that an anomalous event is taking place.

In computer vision community, anomaly detection is defined as discover-
ing events with low likelihood of occurrence. Recent works can be summarized
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into three categories based on how they construct their models: supervised [4–
8], semi-supervised [9, 10] and unsupervised [11–17]. Actually, considering that
anomalies are always rare and they can be quite different from each other with
unpredictable variations, recent works [16, 17] concentrate more on unsupervised
scenarios. Furthermore, since it’s almost impossible to define all the anomalous
events in advance, unsupervised approaches are more practical.

Several unsupervised approaches have been proposed. Trajectories based ap-
proaches [18–21] aim to track motions of objects and persons by their spatial
location. But these methods only consider spatial deviations, thus abnormal ap-
pearance or motion of a target following a ”normal” track is not detected. And
they are difficult to cope with crowd scenes where precise segmentation of a
target is nearly impossible. Optical flow has also been used to model typical mo-
tion patterns [11, 13, 12]. However, these methods perform unreliably in crowded
scenes, as mentioned in [18]. Furthermore, two kinds of approaches above mainly
focus on the motion of objects, i.e., they only considers anomalous motion while
ignoring anomalous appearance. Instead, [16] and [17] propose to use densely
sampled local spatio-temporal descriptor which represents both motion and ap-
pearance and possesses some degree of robustness to unimportant variations in
data. A non-parametric statistic model is utilized in [16] to measure the degree of
anomaly. And [17] proposes to organize spatio-temporal video volumes into large
contextual graphs and decompose spatio-temporal contextual information into
unique spatial and temporal contexts. Both methods achieve promising results
for real-time anomaly detection on several publicly available datasets.

An effective real-time anomaly detection approach should have the following
properties. 1) It should be unsupervised because it’s almost impossible to define
all anomalous events in advance and it’s burdensome for human operators to
do so. 2) It can detect both spatial and temporal anomalies. 3) It can detect
multi-scale events. Actually, it’s also hard to know in advance the range of an
anomaly, e.g. how large the abnormal object is, how fast the abnormal object
moves, or how long the abnormal event lasts. 4) It should be self-adaptive to
scene change, both in appearance and motion, which has also emphasized in [16]
and [17]. In fact, the appearance background is always changing in surveillance
videos because of the lighting condition, weather, etc. 5) Of course, it should be
able to effectively and efficiently detect the anomalies from surveillance videos.

In this paper, we propose a novel approach for anomaly detection in surveil-
lance videos. Densely sampled spatio-temporal video volumes (STVs) with pixel-
by-pixel analysis is utilized as the foundation of our approach. Specifically, each
STV is represented by a local spatio-temporal descriptor which can capture both
motion and appearance characteristic of STV. Motivated by the extensive study
in employing STVs in the context of bag-of-video-words (BoVW), we propose
to use Local Coordinate Factorization [22] to tell whether a STV belongs to an
anomalous event. The local coordinates are updated continuously with coming
surveillance videos, thus it requires no offline or supervised pre-training. This un-
supervised method enables our approach to detect anomaly which hasn’t been
observed before. Furthermore, the updating procedure also ensures that our ap-
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Fig. 1. Overview of our approach. This is an example of two-level spatio-temporal
pyramid. The input is a video stream. Then a 3-D volume around a pixel is constructed
represented by the outer red cube. Then it’s segmented into 8 (2×2×2) smaller cubes
denoted by different numbers in this figure. The smaller cubes form the lower but finer
level of the pyramid. HOG features are extracted for each smaller cube. And the HOG
features of upper level cube can be constructed efficiently from lower level cubes. Next,
we apply Local Coordinate Factorization to each cube (both lower and upper level)
to generate their local coordinate representation v. Finally, the anomaly judgement is
given based on the combination of local coordinate representation of different levels.

proach can cope with the scene change both in appearance and motion. To detect
multi-scale and complicated anomalies, we propose a Spatio-temporal Pyramid
(STP), which is the temporal extension of spatial pyramid [23]. STP can describe
videos by STV of different scales to detect multi-scale events. We also observe
that an event is always associated with several STVs which are different in lo-
cation or time or both. STP can be used to discover the relationship of different
STVs associated to one event, which enables our approach to detect complicated
events. Furthermore, upper level representation of STP can be easily constructed
from lower level representation, which guarantees the efficiency.

The overview of our approach is summarized in Fig. 1. Given a video stream,
initially it’s densely sampled, i.e., sampled pixel by pixel, and a 3-D volume
is constructed around a pixel. Then this volume is segmented without overlap
into 8 smaller STVs. The large STV forms the upper and coarser level of STP,
which can capture the overall information of an event. And the small STVs
form the lower and finer level of STP, which can describe an event in detail.
We can also segment any small STV into another smaller 8 STVs . But we
find that a two-level STP is enough for anomaly detection. Then HOG features
which can represent both motion and appearance are extracted for each STV.
Interestingly, we find that the HOG of upper level STV can be easily constructed
from lower level STVs, implying that the pyramid doesn’t require too much
extra computation. So it can be quite efficient which is essential for real-time
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detection. Local Coordinate Factorization is then applied to the HOG features
to obtain the local coordinate representation v for each STV. Furthermore, the
local coordinates are updated automatically to adapt adapting themselves to
scene changes. Finally, the anomaly judgement is given based on results of both
levels.

The main contributions of this paper can be summarized as follows. 1) We
propose a novel anomaly detection approach based on densely sampled STVs.
Local Coordinate Factorization is applied to HOG features of STV to effectively
judge whether this STV belongs to an anomalous event. 2) We propose to use
Spatio-temporal Pyramid (STP) to capture the spatial and temporal continuity
of an anomalous event. STP can also enable our approach to handle multi-scale
and complicated events. 3) We propose an online method to continuously update
the local coordinates so our method can adaptively learns the event patterns in
the scene and thus can cope with scene changes. 4) We conduct extensive experi-
ments on several public datasets to evaluate our approach for anomaly detection.
The results show that our approach can significantly outperform several state-
of-the-art approaches, which verifies the effectiveness of our approach.

2 Related Work

As mentioned above, trajectory analysis of objects are widely utilized in previous
works. However, they require precise tracking methods [24, 25]. Unfortunately,
tracking objects is time-consuming, especially in crowded scene where a lot of
objects (or persons) are moving so that precise segmentation of targets which
is the foundation of tracking is nearly impossible. Optical flow is also used in
several works [11, 13, 12] but they also perform unreliably in crowded scenes [16].

Recent years, approaches not requiring object detection or tracking, focusing
on local spatio-temporal features are proposed and have received increasing at-
tention [26, 27]. These approaches describe the local characteristic at each pixel
by low-level visual features such as color, texture and motion. Then a pixel-level
background model and behavior template can be constructed [28–31]. Moreover,
spatio-temporal video volumes in the context of bag-of-video-words are becoming
popular [16, 12, 32, 33]. By ignoring the order of local features, probabilistic topic
models like LDA [34] can be directly applied to analysis videos [35, 36]. But these
methods often ignore the spatio-temporal relationship between STVs which is
essential for scene understanding and event detection [37, 38]. Some works have
made efforts to incorporate either spatial or temporal compositions of STVs into
the probabilistic topic model. But they are highly time-consuming and compu-
tationally expensive, thus they can’t be applied to online and real-time tasks
[39]. Furthermore, some approaches [26, 29, 40, 41] propose to construct spatio-
temporal behavior model and low-level local anomalous events can be detected
by analyzing the spatio-temporal pattern of each pixel as a function of time.
However, such as in [40], they independently process each pixel but ignore the
relationships between pixel in space and time, thus leading to too local detection.
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In [16], Bertini et al. propose a multi-scale and non-parametric approach to
perform real-time anomaly detection and localization. To capture both appear-
ance and motion of objects in the scene, dense local spatio-temporal features
are extracted at each pixel. And they propose to use ”overlapping” features to
consider the relationship between pixels. Though they achieve promising results,
their approach also face challenge of efficiency to achieve accurate multi-scale
detection. In fact, our Spatio-temporal Pyramid is partially motivated by their
”overlapping” features. But our STP can be constructed more efficiently and can
achieve much better performance. And our STP can naturally cope with multi-
scale detection while their approach actually treat different scales independently.

In addition, our Local Coordinate Factorization is similar to the Sparse Re-
construction method proposed in [15]. However, their reconstruction problem
is formulated as an L1-norm regularized least squares problem which can’t be
solved quite efficiently, thus their method can’t be applied to real-time detec-
tion. But Local Coordinate Factorization can be solved by just few simple linear
matrix operations which can be highly efficient for real-time detection.

3 Local Coordinate Factorization

3.1 Spatio-temporal features

Firstly, we need to describe a two-level STV (we can use any-level STV, but we
find two level is enough) centered at pixel (x, y, t) by meaningful spatio-temporal
features. Given a STV v ∈ R

nx×ny×nt with the size nx×ny×nt, where nx×ny is
the size of spatial window and nt is the depth of STV in time. In this paper, we
find 10×10×10 is a good choice. Then we calculate the histogram of the spatio-
temporal gradient of the video in polar coordinates to describe the STV [16,
42, 17]. Denote the spatial gradients as Gx(x, y, t), Gy(x, y, t), and the temporal
gradient as Gt(x, y, t) respectively at pixel (x, y, t). To eliminate the effect of
local texture and contrast, the spatial gradient is normalized as:

Gs(x, y, t) =

√

G2
x(x, y, t) +G2

y(x, y, t)

∑

x′,y′,t′∈v

√

G2
x(x

′, y′, t′) +G2
y(x

′, y′, t′) + ǫ
(1)

where Gs(x, y, t) is the normalized spatial gradient and ǫ is a constant to avoid
numeric instabilities. In this paper, we set ǫ = 0.01. Then we can construct 3D
normalized gradient represented in polar coordinates as below,

M3D(x, y, t) =
√

G2
s(x, y, t) +G2

t (x, y, t) (2)

θ(x, y, t) = tan−1(
Gy(x, y, t)

Gx(x, y, t)
) (3)

φ(x, y, t) = tan−1(
Gt(x, y, t)

Gs(x, y, t)
) (4)
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where M3D(x, y, t) is the magnitude of 3D normalized gradient, and φ(x, y, t) ∈
[−π

2 ,
π
2 ] and θ(x, y, t) ∈ [−π, π] are the orientations of the gradient respective-

ly. Now for a given STV v, we can construct a histogram of oriented gradients
(HOG) by quantizing each pixel in v into nφ + nθ bins by their 3D normalized
gradient. In this paper, we set nφ = 8 and nθ = 16. So the HOG features for STV
v, denoted as h, has 24 dimension in this paper. From the feature extraction pro-
cedure, we can see that this HOG feature can capture the characteristics of both
motion and appearance in the video so that we can detect both anomalous ac-
tions and objects. Furthermore, it’s also robust to unimportant variations in the
data such as texture and contrast. Though it’s quite simple, it shows promis-
ing performance. Moreover, we need to mention that, as a histogram feature,
each element in h is non-negative. This is an essential property for the Local
Coordinate Factorization, which requires non-negative input.

We can also notice that it can be efficient to calculate this HOG feature. In
fact, the gradient and 3D normalized gradient for all pixels can be computed
in advance. And the histogram of pixel (x, y, t), denoted as h(x, y, t) can also
be precomputed by quantization. Then the histogram of a STV v around pixel
(x, y, t) can be computed by simply sum up all the histogram in this STV as

hv(x, y, t) =
∑

(x′,y′,t′)∈v

h(x′, y′, t′) (5)

And computing the HOG of a STV can use its neighbor’s HOG which has
been computed to save more computations. Denote the STV around (x, y, t)
and (x + 1, y, t) as v1 and v2 respectively. Then we have,

hv2 = hv1 −
∑

(x′,y′,t′)∈v1\v2

h(x′, y′, t′) +
∑

(x′,y′,t′)∈v2\v1

h(x′, y′, t′) (6)

where ”\” is the set minus operation. It’s clear that v1 \ v2 is much smaller
than v1. Furthermore, the HOG feature of upper level STV can be computed by
summing up the HOG features of lower level STVs in the same STP. Consider
the outer red cube in Figure 1. Given the HOG of eight lower level STVs in this
cube, the HOG of the upper level, i.e., the red cube, can be computed as follow,

hvup =
∑

(x′,y′,t′)∈vup

h(x′, y′, t′) =

8
∑

i=1

∑

(x′,y′,t′)∈vi

h(x′, y′, t′) =

8
∑

i=1

hvi (7)

The highly efficiency of spatio-temporal feature extraction, which is guaranteed
by computation tricks above, is one of the requirements for real-time detection.

3.2 Local Coordinate Selection

When statio-temporal features are extracted for STV, we can perform Lo-
cal Coordinate Factorization to tell whether this STV belongs to an anomalous
event. But we need to construct local coordinates first. Actually, the local coor-
dinates for our approach can be regarded as video words for BoVW, i.e., they
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Algorithm 1 Local Coordinate Selection

Input: H,λ = 1, S0 K, c
Output: S;
1: Initialize Z0 = S0,a0 = 1
2: for k = 0, 1, 2, ..., K do

3: Sk+1 = argminS : pZk,L(S) = D λ
L
(Zk −

1

L
▽f(Zk))

4: while f0(Sk+1) > pZk,L(Sk+1) do
5: L = L/c
6: Sk+1 = argminS : pZk,L(S) = D λ

L
(Zk −

1

L
▽f(Zk))

7: end while

8: ak+1 = (1 +
√

1 + 4a2
k)/2

9: Zk+1 = (
ak+1+ak−1

ak+1
)Sk+1 − ( ak−1

ak+1
)Sk

10: end for

are some points in the feature space. Analogous to video words, local coordi-
nates can be generated by cluster the spatio-temporal features. The obtained
cluster centroids are local coordinates. However, there are some parameters for
clustering algorithm, for example, we need to specify k for kmeans clustering.
And we find our approach is a little sensitive to this parameter.

Instead, we propose to construct local coordinates from data. Given a set of
spatio-temporal features H = [h1, ..., hn] ∈ R

d×n, where d = 24 is the dimension
of feature, and n is the size of feature set. Actually we don’t need a training set.
This initial feature set H can be constructed by using the first one or two seconds
of the video. Moreover, we can also randomly select some features to reduce n so
that our selection algorithm is computationally feasible. In this paper, we tune n
from 10, 000 to 20, 000 based on the resolution of videos. Then we need to select
some features from H as the local coordinates. In our method, the number of
local coordinates is determined automatically by the algorithm, which is more
adaptive to the test data. Following the idea in [15], we’d like to select an optimal
subset of H as local coordinate set, such that the rest of features can be well
reconstructed from it. We can formulate this criterion as follows,

minS =
1

2
‖H−HS‖2F + λ‖S‖2,1 (8)

where S ∈ R
n×n is the selection matrix, ‖S‖F =

√

∑

i

∑

j S
2
ij is the Frobenius

norm of S, ‖S‖2,1 =
∑n

i=1 ‖Si.‖2 is the L2,1-norm, and λ is the model parameter
and we set λ = 1 in this paper. Finally, by selecting features with ‖Si.‖ > 0, we
can obtain the local coordinates. To solve this problem, we follow the method
proposed in [43]. Consider an objective function f0(x) = f(x)+ g(x) where f(x)
is convex and smooth and g(x) is convex but non-smooth. The key step is to
construct pZ,L(x) = f(Z)+ 〈▽f(Z), x−Z〉+ L

2 ‖x−Z‖
2
F + g(Z) to approximate

f0(x) at point Z. Obviously, we can define f(S) = 1
2‖H − HS‖2F and g(S) =

‖S‖2,1. So we can construct pZ,L(S) as

pZ,L(S) = f(Z) + 〈▽f(Z),S− Z〉 +
L

2
‖S− Z‖2F + g(Z) (9)
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And we can define another function Dτ (.) : M ∈ R
n×n 7→ N ∈ R

n×n

Ni. =

{

0, ‖Mi.‖ ≤ τ
(1− τ/‖Mi.‖)Mi., otherwise

(10)

Because of the limit of space, we can’t show all the details to solve this problem.
Instead we summarize the algorithm in Alg. 1.

3.3 Local Coordinate Factorization

As mentioned in [15] and [16], a normal STV may be close to a cluster while
an anomalous STV may be an outlier. We also observe that a normal STV is
always close to some local coordinates. Denote the local coordinates obtained
above as U = [u1, u2, ..., um], where m is the number of local coordinates. The
local coordinate representation v ∈ R

m×1 of a STV represented by HOG feature
h ∈ R

d×1 can be calculated by minimizing the following objective function,

Oh = ‖h−Uv‖2F + µ
m
∑

i=1

|vi|‖ui − h‖
2
F , s.t. vi ≥ 0, ∀i (11)

where µ is a model parameter and we set µ = 10 in this paper. The first term in
Eq. (11) aims to reconstruct h by local coordinates. The second term requires
that the local coordinates selected to reconstruct h should be close to h to
preserve data locality, which is motivated by [44]. Furthermore, this term also
leads to sparse v, i.e., h is reconstructed just by very few local coordinates.
This is important because we have m > d. Without it, any h can be perfectly
reconstructed because U is over-complete in feature space. Motivated by resent
study in Non-negative Matrix Factorization [45–47], we constraint that v should
be non-negative, thus h is reconstructed by addition but not substraction of U,
which will lead to better performance.

Actually, when reconstructed by just few local coordinates, i.e., v is quite
sparse, the normal STV can be well reconstructed with less reconstruction error,
while the reconstruction error for an anomalous STV will be quite large because
it’s always outliers so that it’s far from all local coordinates. Moreover, the local
coordinate representation for normal STV is also different from representation
for anomalous STV. Generally, we observe that the length of v is close to 1 for
most normal STV but far from 1 for anomalous STV. This is also reasonable be-
cause normal STV is always close to some local coordinates. To incorporate both
observations above for anomaly detection, we compute the degree of anomaly as

da = ‖h−Uv‖2F + γ|1− ‖v‖2F | (12)

where γ is to balance the magnitude of both terms. Then da is utilized to deter-
mine whether a STV is anomalous based on its value compared to a threshold
δ. STVs with da larger than δ are determined to be anomalous. δ is determined
by the anomaly probability pa depending on the user’s need. A large pa will
lead to high true positive rate and high false positive rate while a small one will
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Local Coordinate

Normal STV

Anomalous STV

Fig. 2. Local Coordinate Factorization. There are a lot of local coordinates in feature
space. Based on the construction method of local coordinates, normal STV can be
well reconstructed by just few local coordinates, e.g., just one or two. However, there
is large reconstruction error for anomalous STV. Furthermore, the local coordinate
representations of normal STV and anomalous STV are also quite different.

lower both. Empirically, pa can be set to 10−2,10−3,10−4.... In this paper we set
pa = 10−3. Then, as the local coordinate selection procedure, we can compute
da for all STVs in the first one or two seconds in a test video, and set δ such that
the ratio of STVs whose da are larger than δ is about pa. So about pa STVs will
be treated as anomalies. We have a postprocessing step on the initial judgement
to obtain better results, which will be introduced latter.

Now we will show how to solve Eq. (11) to obtain v for a STV represented
by h. Following some simple algebraic steps, we can rewrite Eq. (11) as follows,

Oh = ‖h−Uv‖2F +µ

m
∑

i=1

|vi|‖ui− h‖
2
F = ‖h−Uv‖2F +µ‖(h1T −U)Λ

1
2 ‖2F (13)

where Λ = diag(v1, ..., vm) ∈ R
m×m. Noticing that ‖A‖2F = tr(AAT ), we have

Oh = tr(hhT+UvvTUT−2hvTUT+µ(h1TΛ1ThT−2h1TΛUT+UΛUT )) (14)

Now let φi be the Lagrange multiplier for constraints vi ≥ 0, and define Φ = [φi],
then the Lagrange L is

L = Oh + tr(ΦvT ) (15)

Then we can calculate the partial derivative of L with respect to v as follows,

∂L

∂v
= 2UTUv − 2UTh+ µ(C− 2UTh+D) + Φ (16)
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where column vector C = [hTh, ..., hTh] ∈ R
m×1 and D = diag(UTU) ∈ R

m×1.
Using the KKT conditions φivi = 0, we obtain the following equation,

2(UTUv)ivi − 2(UTh)ivi + µ(C− 2UTh+D)ivi = 0 (17)

Then the equation above lead to the following update rule for v

vi ← vi
2(µ+ 1)(UTh)i

(2UTUv + µC+ µD)i
(18)

The update rules in Eq. (18) is guaranteed to converge and the final solution
will be a local optimum, and similar proof of convergency based on [46] and [48]
can be found in [47].

So to solve Eq. (11), we can randomly initialize v by some non-negative values
and use Eq. (18) iteratively. Eq. (11) can converge in tens of iterations but we
find that 5 to 10 iterations are enough to get satisfactory performance while
guaranteing the efficiency, thus we set the maximum number of iterations to
5. Compared to [15] who proposes to solve a L1-norm regularized least squares
problem which can’t be solved efficiently, our method just needs some simple
matrix operations and few iterations which is quite efficient. Thus our approach
can perform real-time detection while [15] can’t.

3.4 Online Update

As discussed in [15–17], an anomaly detection system should be adaptive to the
background change, both in appearance and motion. So we propose an update
strategy to tune the local coordinates to capture the change in background. The
basic idea is straightforward, i.e., the normal features can be well reconstructed
by local coordinates, or the local coordinates should be as close as possible to
normal features. Since the distribution of normal features is changing slightly
all the time, we need to update the local coordinates simultaneously. Given a
set of n normal features H = [h1, ..., hn] ∈ R

d×n and their local coordinate
representations V = [v1, ..., vn] ∈ R

m×n, the local coordinates U is updated by
minimizing the following objective function,

OU = ‖H−UV‖2F + µ

n
∑

i=1

m
∑

j=1

|vji|‖uj − hi‖
2
F s.t. uij ≥ 0, ∀i, j (19)

Analogous to our strategy in Eq. (13)(14)(15), let Λi = diag(vi1, ..., vim)Rm×m,
ψij be the Lagrange multiplier for constraints uij ≥ 0, Ψ = [ψij ], and the
Lagrange LU = OU + tr(ΨUT ). The partial derivatives of LU to U is

∂LU
∂U

= 2UVVT − 2HVT + µ
n
∑

i=1

(−2hi1
TΛi + 2UΛi) + Ψ (20)

and by using the KKT conditions ψijuij = 0, we can get the update rule for U
like Eq. (17)(18),

uij ← uij
(HVT + µ

∑n

i=1 hi1
TΛi)ij

(UVVT + µ
∑n

i=1 UΛi)ij
(21)
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Though the background may sharply change in long time, the change during a
short time (e.g., two seconds) is always slight. So we just need to update U every
two seconds. Further we can also do random sample among normal features to
obtain a small n (10, 000 to 20, 000 based on the resolution of videos) to guarantee
real-time updating. Moreover, we can use the origin U as the input to Eq. (19)
and execute Eq. (21) just once such that the updated U is different but close to
origin one. As a result, the local coordinates can change all the time to adapt
to the background change but the change in one updating step isn’t too sharp.
In addition, as our feature can capture both spatial and temporal properties of
videos, the update strategy proposed here can be adaptive to background change
in both appearance and motion.

4 Spatio-temporal Pyramid

In fact, there is noise in the video and our Local Coordinate Factorization method
may sometimes give wrong judgement which may lower the true positive rate and
lift the false positive rate. But we can observe that an anomalous event shows
continuity in space and time, i.e., it’s associated to a relatively large region and it
lasts for a period of time. Thus considering the relationship of STVs in space and
time can promote the detection performance. In this paper, we propose to use
Spatio-temporal Pyramid as illustrated in Fig. 1. Specifically, we use two-level
pyramid and we find that this setting can achieve satisfactory result.

As discussed in Section 3.1, the HOG feature of upper level STV can be
constructed efficiently from lower level STVs. The upper level can capture the
relationship of lower level STVs in space and time and global information of
an event. And because STVs in different levels have different scales, the Spatio-
temporal Pyramid can be utilized to detect multi-scale events. Given a STV in
any scale (either upper level of lower level), we can tell whether it belongs to an
anomalous event by Local Coordinate Factorization individually.

In our experiments, we find an interesting phenomenon. The judgement on
upper level STV tends to have high precision but low recall, i.e., our approach
can claim that a upper level STV is anomalous with high confidence but it may
miss some anomalous STV. We think the reason is that the upper level STV can
capture the global information of an event which fully considers the continuity
of an event in space and time while it may ignore some important local details.
On the contrary, the judgement on lower level STV tends to have high recall
because it can capture the local details of anomalous event but low precision
since it’s too sensitive to local details and noise and ignores the relationship
between STVs. So we propose to combine these two levels as Spatio-temporal
Pyramid to consider both local details and global information as follows.

Firstly, when a upper STV is judged to be normal, it actually may be anoma-
lous. So we should consider the results of 1) its six neighbors and 2) its lower
STVs. In this paper, we consider an upper STV to be anomalous if 1) it’s judged
to be anomalous, 2) three or more of its neighbors are anomalous, and 3) five or
more of its lower level STVs are anomalous. The first criterion is based on the
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high-precision result for upper level STV. The second criterion is based on the
continuity of events. The third criterion is based on a voting scheme, because
it’s reasonable to assume that though one lower STV may be influenced by noise
or local details, it’s difficult for most STVs to generate wrong judgement.

Secondly, as a lower level STV can’t capture the continuity of events, so
the judgement of a STV should be incorporated with its upper level STV and
neighbors. So a lower level STV is considered to be anomalous if it’s judged to
be anomalous and 1) two of more of its neighbors are anomalous or 2) its upper
level STV is anomalous.

Based on the Spatio-temporal Pyramid and criteria above, we take into con-
sideration the continuity of events, the relationship between STVs in space and
time, and the local details simultaneously which can promote the performance
significantly. Furthermore, the Spatio-temporal Pyramid allow us to perform
multi-scale detection.

5 Experiments

To validate the effectiveness of the proposed approach, we test it in the following
two public datasets for anomaly detection: anomaly behavior detection dataset
[49]3 and UCSD pedestrian dataset [14]4. The evaluation and comparison of
different approaches are presented in precision-recall, ROC curves and EER at
both frame level and pixel level. As mentioned before, we use a two-level pyramid,
and the the size of lower level STV is 10 × 10 × 10. To extract HOG features,
we set nφ = 8 and nθ = 16. We set λ = 1 for local coordinate selection in Eq.
(8), µ = 10 for Local Coordinate Factorization in Eq. (11) and online update in
Eq. (19), and pa = 10−3. In fact, our method doesn’t need training procedure.
It just use the first two seconds of a test video to select initial local coordinates.
Furthermore, we set that the local coordinates are updated every two seconds.
We compare our approach to several state-of-the-art approaches for anomaly
detection: Optical Flow [11], MDT [14], Sparse Reconstruction (Cong et al.)
[15], spatio-temporal oriented energies [49], Dominant Behavior (Roshtkhari et
al.) [17], Saligrama et al. [50], Reddy et al. [51] and Bertini et al. [16].

The first dataset is Belleview. It’s a traffic scene where the lighting condi-
tions changes during the day gradually. Cars running from top to bottom is
normal event, while cars entering or exiting from the intersection from left or
right and people in the lane is the anomalous event. The second is Boat-river

dataset. The anomalous event is a boat that passing the scene. The third is
Train dataset where anomalies are moving people. The results on three datasets
above, including the anomalous regions detected by our approach (highlighted
in red) and the precision-recall curves of different approaches, are shown in Fig.
3, Fig. 4 and Fig. 5 respectively. We can observe that our approach is superior
to state-of-the-art methods, e.g., Zaharescu et al. and Roshtkhari et al.. Three
main reasons are: 1) our approach can update model timely so that it’s quite

3 http://www.cse.yorku.ca/vision/research/
4 http://www.svcl.ucsd.edu/projects/anomaly
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Fig. 3. Experiments on Belleview Dataset
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Fig. 4. Experiments on Boat-Holborn Dataset
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Fig. 5. Experiments on Train Dataset

robust to drastic background change, 2) our approach takes a full consideration
of the relationship between neighbor STVs thus it’s robust to local noise, and
3) our approach considers the continuity of anomalous event in space and time.

In the UCSD datasets (Ped1 and Ped2), the anomalies are non-pedestrian
entities (e.g., cyclist, skaters, small carts) and pedestrians moving in anomalous
motion. We follow the evaluation utilized in [14] and [16]. In the frame level, an
anomalous frame is considered correctly detected if at least one pixel is detect-
ed as anomalous. In the pixel level, an anomalous frame is considered correctly
detected only if at least 40% of the anomalous pixels are detected correctly. The
anomalous regions detected and the ROC curves of other approaches for Ped1
and Ped2 datasets are shown in Fig. 6 and Fig. 7 respectively. And the Equal
Error Rate (EER) for both frame level and pixel level detection of different ap-
proaches is shown in Table 1. The results show that our approach can outperform
all other state-of-the-art approaches, both at frame level and pixel level. And we
need to highlight that our approach is unsupervised which doesn’t require any
training data, and can perform real-time detection because it’s quite efficient.
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Table 1. Comparison of the proposed approach and the state-of-the-art for anomaly
detection using Ped datasets. Approaches with * can perform real-time detection.

Ped1 Ped2
EER (frame) EER (pixel) EER (frame) EER (pixel)

Optical Flow* [11] 38% 76% 42% 80%
Saligrama et al. [50] 16% - 19% -

MDT [14] 25% 58% 25% 55%
Cong et al. [15] 19% - 20% -

Reddy et al.* [51] 22.5% 32% 21% 31%
Bertini et al.* [16] 31% 70% 30% 68%

Roshtkhari et al.* [17] 15% 29% 17% 30%
Ours* 12% 25% 13% 26%
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6 Conclusions

In this paper, we propose a novel approach to perform real-time and multi-scale
anomaly detection. Specifically, we use spatio-temporal features to capture the
characteristics of STV in both appearance and motion in order that our approach
can detect spatial, temporal, and spatio-temporal anomalies. Then we utilize
Local Coordinate Factorization to efficiently tell whether a SVT belongs to an
anomaly. Then to consider the relationship between STVs, and the continuity of
an event in space and time, we propose to use Spatio-temporal Pyramid, which
can further support multi-scale detection. We also propose an efficient online
method to update local coordinates such that our approach is self-adaptive to
background change. Finally, we conduct extensive experiments on several public
datasets for anomaly detection and compare our approach to state-of-the-art
approaches. The results show that it achieve superior performance at both frame
and pixel level and our approach can outperform state-of-the-art approaches.
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