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Abstract. An image is composed by several intrinsic images including
the reflectance and the shading. In this paper, we propose a novel ap-
proach to infer the shading image from shading orders between pairs of
pixels. The pairwise shading orders are measured by two types of meth-
ods: the brightness order and the low-order fittings of local shading field.
The brightness order is a non-local measure, which does not rely on local
gradients, and can be applied to any pair of pixels. In contrast, the low-
order fittings are effective for pixel pairs within local regions of smooth
shading. These methods are complementary, and they together can cap-
ture both the local smoothness and non-local order structure of shading.
Further, we evaluate the reliability of these methods by their robustness
to perturbations, including the errors in reflectance clustering, the vari-
ations of reflectance and shading, and the spatial distances. We adopt a
strategy of local competition and global Angular Embedding to integrate
pairwise orders into a globally consistent order, taking their reliability
into account. Experiments on the MIT Intrinsic Image dataset and the
UIUC Shadow dataset show that our model can effectively recover the
shading image including those deeply shadowed areas.

1 Introduction

An image is produced by several factors jointly, including the reflectance of the
material, the shape of the surface, the positions and the colors of the illuminants
and the parameters of the camera. Barrow and Tenenbaum [1] proposed to de-
compose a single image into intrinsic images, each of which captures a distinct
aspect of the scene. The shading image captures the incident illumination at each
pixel, while the reflectance image reflects the albedo of the surfaces. However it
is essentially an underconstrained problem to recover the shading and reflectance
from a single image. To solve this problem, additional constraints expressing the
properties of the scene and the objects are needed. Most widely used properties
include the local smoothness of shading [2][3][4][5][6], the local smoothness of
reflectance [3][7][8][6] and the global sparsity of reflectance [4][7][8][9]. However,
the smoothness of shading are not applicable to pixels separated by a shadow
edge, while the smoothness of reflectance will be broken by the albedo change.
The sparsity of global reflectance are not valid for complex scenes containing
too many colors. How to add constraints to proper variables remains an open
problem.
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Fig. 1. The flow chart of decomposing a single image into shading and reflectance. (a)
The input image; (b1) The projection of the log image onto the 2D shadow-free plane,
and pixels with similar reflectance have similar values in this plane; (b2) The brightness
map got from projecting the log image along the norm of the shadow-free plane; (c)
The pairwise order of the shading intensity. Dots with the same color represent pixels
with similar reflectance. The arrows point from the higher shading intensities to the
lower ones. The lines without any arrow indicate nearly equal shading intensities. The
width of the lines indicate the reliability of the estimations, while thicker ones stand
for higher reliability; (d) The shading map in log space, which is the output of Angular
Embedding; (e1) and (e2) are the recovered reflectance and shading image, respectively.

An initial work is the Retinex theory proposed by Land and McCann [2]. It
assumes that small gradients in images are caused by shading variations, while
large gradients are resulted from reflectance changes. By ignoring the edges cor-
responding to shading changes, a reflectance image can be recovered by inte-
grating over the left gradient field. The edge types is classified by a threshold
of the magnitude of gradients. This kind of classification is more-or-less inaccu-
rate. Some shadow edges are quite strong under certain circumstances [10], while
the reflectance edges between similar colors are relatively weak. Another way to
classify edges is to utilize shadow-free color spaces [11][12][13][14][9]. Basically,
if an edge appears in the raw image but not the shadow-free image, it should
be a shading edge. Other methods for classifying edges include using classifiers
trained on representative patches with shading or reflectance changes [15] [16],
and utilizing texture information [3]. All these edge-based methods suffer from
a problem that a single misclassified edge will provoke errors to a wide area of
the reflectance image during integration [17].

Another stream of research combines different types of constraints softly by
additive energies [3][7][4][5][8][6][18]. The energy of smoothness constraints are
often modeled as the negative log of normal distributions over the gradients of
shading and reflectance. The global sparsity of reflectance can be captured by



Intrinsic Image Decomposition from Pair-wise Shading Ordering 3

minimizing either the Rényi Entropy of reflectance [8], the cluster-wise variation
in a shadow-free space [4][19] or the number of different reflectance values [7]. An
energy minimization process ensures that the recovered reflectance and shading
image best satisfy the synthesized constraints. Although these methods avoid
hard classification of gradients, they bring in a new problem that different kinds
of constraints are hinged together and relaxed for compromission. As a result,
the element constraints may not be satisfied accurately. More specifically, the
normal distribution of shading gradients tend to smooth the intensive shadow
edges, while the smoothness of reflectance will blur the texture.

We propose to infer the shading image from shading orders, which capture
not only the shading smoothness between nearby pixels but also the difference
between distant pixels or those separated by shadow edges. The flow chart of
our method is shown in Fig. 1. To estimate the shading orders, we introduce
a brightness measure derived from the Bi-illumination Dichromatic Reflection
Model (BIDR) [20]. The brightness has a linear relationship to the shading inten-
sity, while the reflectance determines the bias. Combining brightness with differ-
ent properties of the scene results in different estimation methods. The sparsity
of reflectance ensures that the pixels can be clustered to a limited number of
categories. For pixels with the same reflectance, the shading orders can be esti-
mated from the brightness orders directly, since their biases will be canceled out.
Unlike the edge-based methods, the brightness order does not rely on gradients
that are sensitive to noise and image blur. It does not add any prior distribution
to the shading either, so it can preserve different kinds of shading changes in-
cluding those sharp shadow edges. For pixels with different reflectance, we first
estimate the difference of biases between different categories. The smoothness of
shading implies that within a small patch the shading is nearly constant, so the
bias difference equals to the brightness order. For pixel pairs within local areas
under smooth shading, their shading orders can also be estimated by low-order
(constant or linear) models of the local shading image. Thanks to the linear
relation between shading and brightness, the coefficients can be easily got by
fitting the local brightness image.

The estimation methods above are complementary, each of which aims at spe-
cific image regions that the underlying properties are valid. Unlike the weighted
summation used by the MRF models, we select the most reliable estimation for
each pair of pixels, so unreliable estimations will not interfere the results. The
reliability of the estimations are determined by the validity of the underlying
properties, which is evaluated based on multiple cues, not limited to the magni-
tude of gradients. The densely sampled local shading orders together with their
reliability are fed to Angular Embedding (AE) [21], resulting in a globally consis-
tent shading image. AE uses complex matrix to encode pairwise orders and their
confidences simultaneously. It uses spectral decomposition to get a near-global
optimal solution. Moreover, it adopts a cosine error function, which is proved to
be more robust to outliers than the traditional L1 or L2 errors [21].

The paper is organized as follows. In Sec. 2, we begin with projecting the raw
image into a shadow-free plane and a brightness dimension. Then we estimate
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the shading order either from the brightness order or a low-order fitting of the
local shading map. The confidences of these estimations are evaluated in Sec. 3,
and the process of inferring the global shading orders is described in Sec. 4.

2 Pairwise Order of Shading from Shadow Free

Projection

In the log space, a surface with only diffuse reflection can be represented by

log Ii = logF iCi
bL

i
a + log

( γ

M i
+ 1

)

(1)

where the superscript i ∈ {r, g, b} indexes the RGB channels. F is the response
of the camera sensor. Cb is the body reflection. La is the ambient illumination,
and M = La/Ld is the ratio between the ambient illumination and the direct
illumination. BIDR [20] assumes that both of the direct and ambient illuminants
are constant across the scene, so the illuminant ratio M is constant. When there
are multiple direct illuminants with the same color, their effect can be summed
up. γ ∈ [0, 1] is the shading intensity.

The BIDR model [20] delivers a shadow-free plane whose normal direction
is:

wi =
log( 1

Mi + 1)
√

∑

i(log(
1

Mi + 1))2
(2)

It is the direction of the parallel lines pointing from the dark pixels (whose
γ = 0) to the bright ones (whose γ = 1) with the same body reflectance Cb.
We call it the brightening direction. See Fig. 2 for an example. The pixels are
projected into the space spanned by the dimension along w and the plane UV
perpendicular to it:

Iw = log I · w
Iu = log I · u = logFCbLa · u
Iv = log I · v = logFCbLa · v

(3)

where u and v are unit base vectors of the UV plane. · is the inner product. We
can see that the projections Iu and Iv are invariant to the shading intensity,
and pixels with similar reflectance Cb are staying closely together. The brighten-
ing direction is assumed to be exactly the direction that the distribution of the
pixels in its null space gets the minimum entropy [22][20]. Fast Gaussian Trans-
form is adopted to calculate the Rényi Entropy efficiently [22]. Histogram-based
techniques can further accelerate the process [23].

The shading intensity is fully captured by the projection Iw, and we call it
the brightness. To further analyze the relation between the brightness and the
shading intensity, we first approximate the log function of shading intensity in
Eqn. 1 by the following linear function:

log(
γ

M i
+ 1) ≈ γ

M i
(4)
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(a) (b) (c) (d)

Fig. 2. The brightening direction and shadow-free plane. (a) The raw image; (b) The
pixels in log RGB space. The white, orange, blue and dark red pixels form 4 nearly
parallel lines; (c) Projections of pixels on the shadow-free plane. The shadow-free plane
is perpendicular to the brightening direction. We can see that the pixels fall into 4
groups on the shadow-free plane, each for a distinct color. The red stars indexed by
1∼ 4 are cluster centers for white, orange, blue and dark red pixels, respectively; and
(d) The cluster image. The pixels are successfully categorized by reflectance.

which is valid when γ
Mi is small. Then the brightness can be rewritten to be:

Iw = log I · w

≈
∑

i

logFCbLa

1
Mi

√

∑

i
1

(Mi)2

+
∑

i

γ
Mi

1
Mi

√

∑

i
1
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= Ib(Cb) + γ̃

(5)

The brightness Iw is composed of two parts: the ambient reflectance Ib(Cb) =
∑

i logFCbLa

1

Mi
√

∑

i

1

(Mi)2

that is a function of the body reflectance Cb, and the

scaled shading intensity γ̃ =
√

∑

i
1

(Mi)2 γ. The scale factor will not affect the

shading order, so we just omit it for now. It will be recovered in Sec. 4.1.
The linear relationship between brightness and shading intensity is the basis

for estimating shading orders. Consider a pair of pixels at positions p and q.
According to Eqn. 5, the shading order can be estimated by:

O(p, q) = γ̃(p)− γ̃(q) = (Iw(p)− Iw(q))− (Ib(p)− Ib(q)) (6)

The ambient reflectance Ib are unknown biases varying with the body reflectance
Cb. If a pair of pixels have the same body reflectance, their shading order is
equal to their brightness order. Otherwise we need to know the difference of
their ambient reflectance beforehand. We estimate the difference of ambient re-
flectance between different categories of pixels according to the sparsity of global
reflectance, as described later in this section. However, the difference of ambient
reflectance cannot be accurately estimated for some images, then we resort to
the shading-smoothness-based methods.

In natural scenes, the shading intensities vary smoothly in most parts of
the images. This property suggests that we can fit the local shading map by
low-order functions.
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First-order Smoothness (FS). The normal directions of flat surfaces change
slowly, so the angle between the incident light and the normal direction will not
change too much. According to the cosine law of the Lambertian reflection, the
shading intensity will not change too much either. We assume that the first-order
derivative of the shading field is almost 0 everywhere. Consequently, the adjacent
pixels have identical shading intensity. This assumption is valid for nearly flat
surfaces, when no shadow boundaries occur on them.

Second-order Smoothness (SS). For a local area of a smooth surface, the
normal direction rotated smoothly. As a result, the shading intensity will change
smoothly. We assume that the second-order derivative of the shading field is
close to 0, so we can fit the local shading field centered at p by a linear function.
We further assume that the adjacent pixels of p share the same body reflectance

with p. Under this assumption, the slope of the linear model ∂γ̃(p)
∂p

= ∂Iw(p)
∂p

,

where ∂Iw(p)
∂p

is the first-order derivative of Iw evaluated at p.

Formally, we can estimate the order of shading intensity O between pixels p
and q in the following ways:

O(p, q) =































I
w(p)− I

w(q) if Cb(p) = Cb(q)

I
w(p)− I

w(q)− (Ib(p)− I
b(q)) if Cb(p) 6= Cb(q)

0 if q ∈ N(p)

∂Iw(p)

∂p
· (p− q) if

∂2(Iw(p))

∂p2
≈ 0

(7)

where N(p) is the neighborhood of p, and p− q is the spatial distance between
p and q. In practice, we calculate the derivative and the spatial distance in
horizontal and vertical directions separately. Notice that, the preconditions of
the estimations are not mutual exclusive, so different methods may be applicable
to the same pair of pixels. We need to choose the most reliable estimation, whose
preconditions are best satisfied. See Sec. 3 for details. In the mean time, the
preconditions together cover all possible situations, so we can find at least one
suitable method for each pair of pixel. The redundancy and completeness of
these methods result in robust estimations of pairwise shading orders.

According to Eqn. 7, the differences of ambient reflectance Ib are needed for
estimating shading order between pixels with different body reflectance. It is
infeasible to calculate the absolute value of Ib due to several unknown factors of
it (Eqn. 5). Instead, we cluster the pixels by body reflectance, and estimate the
difference of ambient reflectance between different categories. We assume that
pixels within a small patch have similar shading intensities. According to Eqn.
6, if the shading intensities γ̃ are the same, the difference of ambient reflectance
will be equal to the difference of brightness. Fig. 3 gives an example with two
categories. The image is divided into dense grids with 10 pixels in each side.
We calculate the difference of ambient reflectance between the categories within
each grid. Then we generate a histogram of those grid-wise measures, and take
the highest peak to be the final estimation. The reliability of the estimation P
is set to be the height of the highest peak accordingly.
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Fig. 3. Estimating the difference of ambient reflectance between categories. (a) The
image. (b) The cluster label image. Green: Pixels from category G1; and Red: Pixels
from category G2; (c) Left: The brightness image Iw with some representative patches
indicated by the squares. Right: The median brightness of the two categories within
each patch as well as their difference. The difference got from the blue square is an
outlier, since there is a shadow edge inside it. So does the green one. (d) The histogram
of the patch-wise differences of ambient reflectance between the two categories. The
grids with only one category of pixels are ignored. The peak of the histogram is selected
to be the estimated difference of ambient reflectance, which is 1.3 for this image. (e)
The estimated shading intensity. It is got from adding the brightness of category G2

by the difference of ambient reflectance 1.3 while keeping the brightness of category
G1 unchanged.

When there are multiple categories in the image, we need to estimate the
difference of ambient reflectance between each pair of categories. However, some
categories are not close enough in the image plane, such that none of the local
patches contain pixels from both of these categories. To bridge the gap, we resort
to the other categories lying between. We build an undirected graph G = (V,E),
where V is the set of nodes representing the categories, and E is the set of edges.
The weight of the edge Es,t between node s and t is set to be 1/Ps,t, where Ps,t

is the confidence of the estimation of their ambient reflectance order as described
before. When Ps,t is 0, it means category s and t are not adjacent and E(s, t)
will be cut off. We can get an estimation of the ambient reflectance difference
between any two nodes by summing up the ambient reflectance differences along
the path connecting them. To get the most consistent pairwise difference, we
extract the Minimum Spanning Tree (MST) of the graph G. The MST ensures
that there is one and only one path between any pair of nodes, so the difference of
ambient reflectance between the nodes can be uniquely determined. In the mean
time, the summation of confidences of the pairwise differences are maximized.

The sparsity of the reflectance spectra within a single image [24] implies
that we can cluster the pixels into a small number of categories by their body
reflectance. Notice that, pixels on the shadow-free plane UV are well organized
by their reflectance (see Fig. 2(c) for an example). A simple k-means is used to
cluster the pixels by reflectance in the shadow-free plane UV . The number of
clusters is set to be the number of peaks (local maxima) in the 2D histogram of
Iu and Iv. The bin size of the histogram is empirically set to be 0.03.
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3 The Reliability of the Pairwise Orders

We can get several estimations of the shading order from the methods described
in Eqn. 7. These methods are designed according to certain properties of the
scene, such as the smoothness of shading field. However, these properties may
be invalid for certain parts of the scene, so the estimations from the proposed
methods are more or less different from the ground-truth. We analyze the ro-
bustness of the properties to the perturbations that may happen in the scene
or to local areas. Then we evaluate the validity of these properties for each
pair of pixels through calculating the joint probability of the occurrences of the
perturbations they are not robust to.

The confidence of individual method is calculated by a Noisy-Or model, which
is the probability of all its preconditions being satisfied:

Cm(p, q) =
∏

n∈Cm
1− Pn(p, q) (8)

where m belongs to the set of methods in Eqn. 7, namely the Brightness Or-
der (BO), the Brightness Order minus Bias difference (BOB), the First-order
Smoothness (FS) and the Second-order Smoothness (SS) of shading. Cm is the
set of perturbations that the estimation method m is not robust to, as listed in
Tab. 1. The probability Pn(p, q) measures the probability of the perturbation n
occurring between pixel p and q. We first calculate a distance measure between
the pair of pixels according to each feature, and translate the distance into prob-
ability by a sigmoid function in the form of sigm(x;w) = 2

1+e−wx − 1. Here w is
a positive scalar, which is a parameter of the model.

Table 1. The robustness of the methods for estimating the pair-wise shading orders
with respect to different perturbations.

Perturbations BO BOB FS SS

Clustering Error (CE) Yes No Yes Yes
Local Reflectance Variation (LRV) No No Yes No
Reflectance Change (RC) No Yes Yes Yes
Shadow Edges (SE) Yes Yes No No
Spatial Distance (SD) Yes Yes No Moderate

Cluster Error (CE) denotes the uncertainty of the clustering results in the
shadow-free plane. When the pixels are incorrectly assigned to the categories,
their ambient reflectance cannot be well represented by the estimated ambient
reflectance of their categories. We model each cluster as a multivariate normal
distribution, and calculate the probability of each pixel belonging to the cat-
egory that the pixel is assigned to. The Cluster Error for a pair of pixels is
represented as the probability that at least one of the pixels does not belong to
its assigned category. In addition, the difference of ambient reflectance between
color categories are inaccurately estimated sometimes, causing step edges at the
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boundaries between different categories. The final Cluster Error is calculated by:

PCE(p, q) = (1− PC(p)PC(q)) · sigm(eγ̂(p, q);w1) (9)

where PC denotes the probability of a pixel belonging to the category that it
is assigned to. The subscript γ̂ stands for the brightness map Iw minus the
categorical ambient reflectance. Inspired by the similarity measure in [25], we
set the strength of the step edge eγ̂(p, q) to be the largest magnitude of the
gradients of γ̂ evaluated at the pixels along the path connecting p and q.

Local Color Variance (LCV) reflects the textureness of the local regions.
In highly textured areas, the blur effect over different colors will produce various
mixed colors, whose ambient reflectance are unpredictable. In implementation
we represent LCV as follows:

PLRV (p, q) = sigm(max(σ(Iuv(p)), σ(Iuv(q)));w2) (10)

where σ(Iuv(p)) is the sum of the standard variations of Iu and Iv within the
3x3 window centered at pixel p.

Reflectance Change (RC) is modeled as follows:

PRC(p, q) = sigm(duv(p, q);w3) · sigm(ew(p, q);w4) (11)

where duv is the geometric distance in shadow-free space UV . Similar to eγ̂(p, q),
ew(p, q) is the magnitude of the edge lying between p and q in the brightness
image. It is used to distinguish regions with similar color but different reflectance
intensities, especially achromatic regions like white and gray. The underlying
assumption is that the edges caused by reflectance change are often stronger
than those caused by shading changes.

Shadow Edges (SE) are caused by occlusions of the direct light. They
are always quite intensive compared to those shading changes caused by surface
normal change. We measure the probability of existing a shadow edge between
pixel p and q by:

PSE(p, q) = sigm(eγ̂(p, q);w5) (12)

The biased shading intensities γ̂ is defined the same as that in Eqn. 9, but scaled
by a different weight.

Spatial Distance (SD) affects the accuracy of fitting the local shading by
low order models. The probability of a pair of pixels being far away from each
other is calculated by:

PSD(p, q) = sigm(ds(p, q);w6) (13)

where ds is the geometric distance.

4 Infer the Global Shading Map from Pairwise Shading

Orders

The local estimations from different methods are combined through selecting the
most confident one of them, while the confidence is calculated accordingly:

C(p, q) = max
m

Cm(p, q) (14)
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Now we have got a matrix O of the pairwise orders of the shading intensities
together with their confidence matrix C. To get a global shading map, we need to
align these pairwise measurements. Here we use the Angular Embedding method
[21] to embed the shading intensities of the pixels into the angular space, such
that the global orders of the embedded points keep their pairwise orders.

Let Z(p) = eiγ(p) denote the embedding of the shading intensity of pixel p
on the unit circle in the complex plane. Here i =

√
−1. The norm of Z(p) is

always 1, and the angle Θ(p, q) from Z(p) to Z(q) is the order of shading inten-
sity between p and q. It is expected that Θ(p, q) is consistent with the pairwise
shading order O(p, q), when it gets a high confidence. Angular Embedding min-
imizes the difference between the embedding Z(p) and the estimation of it from
its neighbors, Z̄(p) weighted by its total confidence D(p, p):

min
Z

∑

p

D(p, p) · ‖Z(p)− Z̄(p)‖2

s.t. ‖Z(p)‖ = 1, ∀p
(15)

where D is a diagonal degree matrix:

D(p, p) =

∑

q(C(p, q))
∑

p,q(C(p, q))
(16)

and

Z̄(p) =
1

∑

q(C(p, q))

∑

q

C(p, q) · Z(q) · eiO(p,q) (17)

This optimization problem is hard to solve, since it has n constraints, where n
is the number of sampled pixels. In implementation, the constraints are relaxed
to be Z ′DZ = 1′nD1n. To make the optimization tractable, we consider only
the orders between nearby pixels. The neighborhood is set to be a square of 30
pixels in each side. The confidence of the orders between a pixel with any pixel
outside its neighborhood is set to be 0.

The optimization problem in Eqn. 15 is solved by a spectral partitioning
algorithm [25] with complex-valued eigenvectors. The solution is the angle of
the first eigenvector ∠Z0 which has the smallest eigenvalue. It should be pointed
out that the angles of the points on the unit circles are within the scope of
[−π, π]. We need to ensure that the angle between any pair of Z(p) and Z(q) is
no larger than 2π, otherwise the points may overlap with each other. We scale
the brightness image Iw and the the ambient reflectance images Ib by a positive
scalar in the beginning, such that the difference of brightness is no larger than
2π. The scaling operation will not disturb the order of Z, and it will be recovered
in Sec. 4.1.

The angles ∠Z0 keep the pairwise order of the shading intensities, but the
absolute values of the angles have no determined mappings to the shading in-
tensities. Angular Embedding allows the points to rotate as a whole around
the original point. Fig. 4 gives an example. We can see that the angles of the
brightest pixels in this image appear in the interval of [−π,−0.5π], lower than
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Fig. 4. An example of the Angular Embedding results. (a) The image; (b) The output
embedding with the smallest eigenvalue. There is a gap between the brightest and the
darkest pixels; (c) The histogram of the angles of embedding. The bins with zero counts
are generated by the gap. The pixels fell into the bins to the left of the zero-count bins
will be shifted to the right by 2π; (d) The relation between the output angles and the
biased shading intensities γ̂. Most of them stay roughly in a line; and (e) The recovered
shading image in log space.

those of the dark pixels. As a result, the brightest pixels will be mistaken to
be ”shadowed”. To solve this problem, their angles need to be increased by 2π
instead. Notice that, the darkest pixels and the bright pixels are always sepa-
rated by a noticeable gap on the circles in the complex plane. The gap can be
easily located by the consecutive empty bins of the histogram of the angles ∠Z0.
All the pixels whose angles are smaller than the darkest pixels will be increased
by 2π. After that, the angles will have a roughly linear relation to the biased
shading intensities γ̂ (See Fig. 4 (d)). That is because most of the input pairwise
shading orders are calculated by the brightness orders (through the BO or BOB
method), while the brightness has a global linear relationship to the shading
intensities. We further normalize the angles ∠Z0 to be within the interval of [0,
1], which produce the final shading intensities γ (See Fig. 4 (f)).

4.1 Recovering Shading and Reflectance

The reflectance image is regarded to be the brightened image under full direct
illumination. That is, the shading intensity γ is 1 for every pixel of the image.
From Sec. 4 we have already got the shading intensities, now we can recover
the reflectance by raising the shading intensities of all the pixels to 1 along the
brightening direction. According to Eqn. 1 and 4, the log image logI is close to
a linear function of γ with an unknown slope k. The recovered reflectance image
is:

Ri = elogI
i+kwi(1−γ) = Iiekw

i(1−γ) (18)

while the shading map can be got by:

Si = ekw
i(γ−1) (19)

We find a reasonable slope k through a voting process. For each channel i and
each pixel p, we find the scalar k̃i(p) that makes the recovered Ri(p) equal to the
maximum value of Ii over the image. Then we calculate the histogram of k̃i(p),
and record the bin that got the most votes, denoted by k̃i. Here we empirically
set the bin size to be 0.05. We set the slope to be k = medianik̃

i.
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5 Experiments

We evaluate our method on the MIT Intrinsic Images dataset [26], which is
a widely used benchmark for evaluating intrinsic decomposition methods. The
images are taken in a controlled environment, where the direct illuminations
are always white and the ambient illuminations are limited through painting the
background to be black. We further test our method on the UIUC shadow dataset
[27], where the direct illuminants and the ambient illuminants are uncontrolled.

To quantitatively evaluate the results, we use both the Mean Squared Er-
ror (MSE), the Local Mean Squared Error (LMSE) [26], the absolute LMSE
(aLMSE) and the correction [28]. Among these metrics, correlation and MSE
measure the error in a global way, while LMSE and aLMSE take an average of
local errors on small image windows. For each image, the performance of shading
image and reflectance image are calculated separately and the average of them
is taken to be the result. The final result is the average of the performances
over all the images. The main parameters of our model are the positive weights
of the sigmoid function in Sec. 3. In our experiments we set w1 to be ln3/0.1,
which ensures that the sigmoid function maps a step edge of strength 0.1 to a
probability of 0.5. We set w2 ∼ w5 to be ln3/0.2, ln3/0.08, ln3/0.1 and ln3/0.1,
respectively. Especially, we set the w6 of the FS method to be twice as much as
that of the SS method. We find the medium of the spatial distances of all the
pixel pairs d̄s, and set w6 to be 6ln3/d̄s for the FS method. These parameters
are used for all the images of our experiments.

5.1 Results on MIT Intrinsic Image dataset

We take the image with only diffuse reflection as input, since specular reflection
is out of the scope of this paper. We compare our method to the state-of-art
together with some classic approaches as listed in Tab. 2. For each method, a
single group of best parameters are used for all the images. Our method achieves
the best performance on the correlation and LMSE metric. The SIRFS model
gets the lowest MSE [8], but their method relies on priors got from training im-
ages. Weiss [29] gets the best aLMSE, but their method takes image sequences
captured under different illuminants as input. Among the single-image based
methods without training, our model gets the best performance over all the met-
rics. Specifically, our method performs much better than the method of Color
Retinex [26]. One important reason is that our method explicitly take the ambi-
ent illuminant into consideration (although it is very weak in this dataset), which
results in a better shadow-free plane than that used by Color Retinex. Fig. 5
gives some concrete examples. One important advantage of our method is that
we can recover the reflectance of very dark areas. The reason is that our model
carries out the local fusion of estimations from different methods by a maxi-
mization operation (Eqn. 14), which preserves the large shading orders between
pixels separated by shadow edges. In comparison, the method of Gehler et al. [4]
often smoothes the shading map through adding strong smoothness constraints,
leaving residuals of shadows in the recovered reflectance image. This problem is
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even more serious for the SIRFS model [8], since the smoothed surfaces of the
objects in this model always generate smooth shading image. The method of
Jiang-HA [28] is based on the global correlation between the mean luminance
and luminance amplitude, which recovers the global shading distribution well
but not the details in local regions (e.g., the symbols on the raccoon).

Correlation MSE LMSE aLMSE

Grey Retinex [2] 0.6494 0.1205 0.0329 0.3373
Tappen et al. [16] - - 0.0390 -
Color Retinex [26] 0.7146 0.1108 0.0286 0.2541
Jiang-A [28] 0.6184 0.1533 0.0421 0.3988
Jiang-H [28] 0.5829 0.1524 0.0483 0.3476
Jiang-HA [28] 0.6109 0.1579 0.0454 0.3631
Shen-SR [7] 0.7259 0.1223 0.0242 0.2454
Shen-SRC et al. [7] - - 0.0204 -
Gehler et al. [4] 0.7748 0.0985 0.0244 0.2544
Serra et al. [17] 0.7862 0.0834 0.0340 0.2958
Li et al. [18] - - 0.0190 -
Chang et al. [19] - - 0.0229 -
Ours 0.8582 0.0684 0.0189 0.2252

Weiss [29] 0.7709 0.0900 0.0210 0.1953

SIRFS [8] 0.8095 0.0567 0.0279 0.2329

Table 2. Results on the MIT Intrinsic Images dataset. Higher correlation and lower
MSE, LMSE and aLMSE are better. The method SIRFS is evaluated on 8 images
including cup2, deer, frog2, paper2, raccoon, sun, teabag1 and turtle, while the other
images are used for training.

5.2 Evaluation under chromatic illuminations

We test our method’s ability of handling both direct and ambient illuminants
on the UIUC shadow dataset [27]. Fig. 6 shows several examples. We compare
our method to the method of Jiang-HA [28] and the method proposed by Gehler
et al. [4]. We also compare it to the region-pair-based shadow removal method
proposed by Guo et al. [27]. For this method the shading map is replaced by
a shadow map, in which black pixels indicate shadows and gray ones indicate
penumbra. We can see that our method successfully recovers the shading map,
not only for the cast shadows but also for the self shading (the first image of
Fig. 6). For the image of the cup, only our method recovers the deeply shadowed
area inside the cup. In the outdoor scenes (the last 3 columns of Fig. 6), the
ambient illuminants are usually the blue sky, which turns the shadowed areas
more blueish than the bright areas. Our model recovers their reflectance by
lighting the dark pixels along the yellowish brightening direction, while the other
intrinsic decomposition methods often fail to recover the color of them.
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Image

Ours

SIRFS

Gehler 

et.al.

Jiang-

HA

Fig. 5. Typical results on the MIT Intrinsic Images dataset.

Image

Ours

Guo et.al.

Gehler et.al.

Jiang-HA

Fig. 6. Typical results on the UIUC shadow dataset.

6 Conclusions

We proposed a model to decompose a single image into reflectance and shading
by pairwise shading orders. It overcame the limitations of edge-based methods
that rely solely on local gradients. The shading orders were estimated by several
individual methods, each of which aimed at specific types of image regions. We
experimented on different kinds of images, and achieved promising results on
most of them. We adopted a new strategy of integrating local cues, that was
local competition and global collaboration. The local competition prevented the
cues from different sources interfering each other. Especially, it kept the sharp
shadow edges from being weaken by the shading smoothness constraints.
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