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Abstract. For large-scale and highly redundant photo collections, eliminating
statistical redundancy in multi-view geometry is of great importance to efficient
3D reconstruction. Our approach takes the full set of images with initial calibra-
tion and recovered sparse 3D points as inputs, and obtains a subset of views that
preserve the final reconstruction accuracy and completeness well. We first con-
struct an image quality graph, in which each vertex represents an input image,
and the problem is then to determine a connected sub-graph guaranteeing a con-
sistent reconstruction and maximizing the accuracy and completeness of the final
reconstruction. Unlike previous works, which only address the problem of effi-
cient structure from motion (SfM), our technique is highly applicable to the whole
reconstruction pipeline, and solves the problems of efficient bundle adjustment,
multi-view stereo (MVS), and subsequent variational refinement.

1 Introduction

Multi-view geometry represents the intricate geometric relations between multiple views
of a 3D scene [1]. Together with the SfM points, it can be optimized as a Maximum
Likelihood Estimation, the process of which is called bundle adjustment, and we can
also base on multi-view geometry for MVS and subsequent variational refinement.
However, for large-scale, irregularly sampled, and highly redundant photo collections,
such as Internet photos and video sequences, the statistical redundancy in multi-view
geometry severely decreases the reconstruction efficiency and increases the model stor-
age space and transmission capacity.

The overwhelming majority of existing methods generally solve the problem of ef-
ficient SfM by eliminating image matching redundancy [2–8], hierarchical decomposi-
tion [9–14] and subsampling [15–18]. However, these techniques do not fundamentally
reduce the redundancy in multi-view geometry and are difficult to address the problems
of efficient MVS and variational refinement. In this paper, we proposed Multi-View Ge-
ometry Compression (MVGC), which intends to subsample redundant cameras and is
highly applicable to the whole reconstruction pipeline, that is it can handle the problems
of efficient bundle adjustment, MVS and variational refinement.

Intuitively, our proposed method is based on the observation that a small subset
of images is sufficient to guarantee a consistent final reconstruction while preserving
its reconstruction accuracy and completeness well. We then formulate the compression
problem as a graph simplification procedure. Based on the full set of images with initial
calibration and SfM points, we construct an image quality graph, where each image is

1 Tian Fang is the corresponding author.
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Fig. 1. Results of our method on the Colosseum data set containing 1789 images. (a) The initial
full camera geometry and SfM points which are the inputs of our method. (b) The compressed
camera geometry and SfM points that can be used for an efficient bundle adjustment. (c) The ac-
curate and complete stereo reconstruction results based on the compressed multi-view geometry.
(d) The variational refinement results from the compressed geometry. Note that it is too compu-
tationally expensive for the standard refinement approach to handle the full image collections.

a graph vertex and two vertexes are connected if their corresponding image pair can be
used for a consistent reconstruction. The problem is then to determine a connected sub-
graph with the maximum sum of vertex weight under a certain number of vertexes. A
down-sampling algorithm is then introduced as an approximation to solve the problem.

Our work is closely related to research on skeletal graph for efficient SfM [6]. The
main difference is that our proposed approach is highly applicable to not only SfM, but
also MVS and variational refinement applications. Moreover, the experiment results on
both standard and Internet data sets also quantitatively and qualitatively demonstrate
that our method increases the efficiency of bundle adjustment, MVS, and variational
refinement by approximately a magnitude and better preserves the accuracy and com-
pleteness of the final reconstruction than the skeletal graph [6] and other methods.

2 Related Work

During the past few years, many works have been done to reduce redundancy in the 3D
reconstruction pipeline. An intuitive idea is to eliminate unnecessary image matching
pairs and the vast majority of previous works follow this direction. Rather than matching
all image pairs, Agarwal et. al. [2] identify a small fraction of candidates by means of
vocabulary tree recognition [3]. Frahm et al. [4] utilize approximate GPS tags to capture
only nearby image pairs for matching. Wu [5] exploits the characteristic of large-scale
matching problem that most of image pairs fail to match, and introduce the preemptive
feature matching to filter out superfluous image matching pairs. Since we assume that
image matching is given and initial multi-view geometry is also recovered in this paper,
all the techniques mentioned are complementary to our work.
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(b) Consistent reconstruction (a) Inconsistent reconstruction 

Fig. 2. The interpretation for a consistent reconstruction. (a) and (b) show that, to preserve a con-
sistent reconstruction, especially for MVS and variational refinement, the intersection of common
visible points between the image pair {Ii, Ii+1} and {Ii+1, Ii+2} cannot be empty.

The proposed algorithm in this paper is closely related to [2, 6–8], which obtain a
small skeletal subset of images from a dense scene graphs. However, rather than di-
rectly discarding redundant cameras as we do, these works only intend to accelerate the
bundle adjustment process by simplifying matching between image pairs and cannot
be appropriately applied to other reconstruction steps (e.g. MVS and variational refine-
ment). Moreover, these methods fail to strictly guarantee that the simplified geometry
can be used for a consistent reconstruction, which is properly handled in our work by
the introduction of quality graph. The hierarchical framework [15] which proposes to
resample a dense SfM points still suffers the same problems. Likewise, the approaches
above are complementary to our work.

Similar to our method, the authors of [16–18] also propose subsampling approaches
to solve SfM problems of video sequences, while they cannot handle diverse and un-
ordered images with complex geometry topology. Canonical view selection methods
for robot localization [19] also refer to similar criteria, however, they need different
considerations when applied to reconstruction problems.

Instead of reducing input redundancy, divide-and-conquer is also widely used to
solve large-scale reconstruction problems. Steedly et al. [9] utilize spectral partitioning
to decouple original sequential images into pieces for easier bundle adjustment. Ni et
al. [10] split the entire bundle problem into sub-maps with their own coordinate systems
for efficient operation, and the authors of [11, 12, 20] also handle the bundle problem
within a relative coordinate system. Rather than recover 3D structure hierarchically at
the image level, Farenzena et al. [13] and Gherardi et al. [14] apply divide-and-conquer
at the variable level.

3 Problem Formulation

The input to our approach is a set of images I = {Ii | i = 1, 2, ..., NI}, where NI is
the number of cameras. Their corresponding camera calibrations are denoted by Π =
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{Πi|i = 1, 2, ..., NI}, which are obtained from a standard reconstruction pipeline [21].
A point cloud P = {Pm | j = 1, 2, ..., NP} is then obtained with triangulation, where
NP is the number of 3D points. It is noteworthy that P can either be sparse 3D points
generated by a general SfM system (e.g. Bundler [22]), or quasi-dense points obtained
from a commonly used MVS pipeline (e.g. Quasi-Dense [23]).

Now, the problem of MVGC is defined as follows: given an image set I, its corre-
sponding camera geometry Π, and triangulated point cloud P, find an image subset I′

that yields a reconstruction with the least loss of reconstruction accuracy and complete-
ness, which are measured by an increasing function w(Ii) for a given image Ii.

Another issue with our approach is to guarantee that the compressed multi-view
geometry can be used for a consistent reconstruction (see Fig. 2), and we therefore
introduce the image quality graph GI, where GI = (V,E) is an undirected connected
graph, with V = {Vi | i = 1, 2, ..., n}, and each graph vertex Vi corresponds to an
image Ii. In order to guarantee that Ii and Ij can be used for a consistent reconstruction,
there ought to exist at least one image Ik satisfying that

(PIi ∩ PIk) ∩ (PIj ∩ PIk) 6= ∅, (1)

where PIi is the set of 3D points visible in camera Ii. And for the graph edge Eij ∈
E connecting vertex Vi and Vj , its edge weight h(Eij) is defined as the number of
cameras {Ik} satisfying equation (1), that is h(Eij) = |{Ik}|. Obviously, Vi and Vj is
disconnected when h(Eij) = 0.

In summary, the problem of MVGC can be mathematically formulated as: given
(I,Π,P) and NI which is the target number of cameras to be preserved, find I′ ⊂ I
satisfying

I′ = argmax
I′

∑
Ii∈I′

w(Ii),

s.t. |I′| = NI and GI′ is connected.
(2)

4 Approaches

4.1 Graph Construction

Recalling thatGI = (V,E), and each graph vertex Vi has a weight scalew(Ii), which is
an increasing function denoting the possibility Ii tends to be preserved in the final sub-
graph. Obviously, we prefer cameras with high accuracy and completeness measures
and we further introduce the regularity measure to avoid irregularly sampled views in
the reconstruction scene. Therefore, the weight scale w(Ii) of image Ii is defined as

w(Ii) = wa(Ii) · wc(Ii) · wr(Ii), (3)

where wa(Ii) is the accuracy measure, wc(Ii) the completeness measure, and wr(Ii)
the regularity measure. Please see Fig. 3 for the visual demonstration.
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Fig. 3. The illustration of graph vertex measures. (a) 3D points triangulated by cameras with large
angles and pixel sampling rate are generally of low covariance (e.g. Pm over Pm+1), and cameras
with great numbers of such points tend to be remained. (b) Cameras covering 3D points of low
density are more inclined to preserve reconstruction completeness (e.g. Ii over Ii+1). (c) We
prefer under-sampled cameras rather than over-sampled cameras (e.g. Ii over Ii+1) to guarantee
a uniform distribution of cameras.

Accuracy measure. First, the remained cameras should preserve the final reconstruc-
tion accuracy as much as possible. Without ground truth data, camera covariance can
be regarded as an alternative to assess the reconstruction accuracy, while even the fast
gauge-free covariance estimation method [23] is extremely both space and time con-
suming for large-scale image collections.

Geometrically, cameras covering more well-qualified 3D points tend to be better
constrained and of smaller covariance. For one camera, we utilize the sum of accuracy
measure of its visible 3D points as an approximation of camera covariance. Inspired
by [24, 25], camera pairs with large angles and pixel sampling rate generally triangulate
3D points of high quality (see Fig. 3(a)), and the accuracy measure of a single point Pm
observed by the image pair {Ii, Ij} is therefore defined as

ga(Pm, Ii, Ij) = e

(
−

(∠IiPmIj−σθ)
2

2σ2∠IiPmIj

)
· s(Pm, Ii, Ij)

s.t. σ∠IiPmIj =

{
θ1 ∠IiPmIj ≤ σθ
θ2 ∠IiPmIj > σθ

, (4)

where s(Pm, Ii, Ij) = min(1/r(Pm, Ii), 1/r(Pm, Ij)), r(Pm, Ii) quantifies the diam-
eter of a sphere centered at Pm and its projected diameter equals the pixel spacing in
Ii, σθ = 20◦, θ1 = 5◦, and θ2 = 15◦.

Therefore, the accuracy measure of one camera Ii is expressed as

wa(Ii) =
∑

Ij∈I, i 6=j
Pm∈PIi∩PIj

ga(∠IiPmIj). (5)
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(a) (b) (c) 

Fig. 4. The graph simplification algorithm. Starting from the initial dense graph shown in (a), we
iteratively remove the vertex with the lowest weight and its corresponding adjacent edges until the
number of vertexes below a threshold (the final graph is shown in (c)). Meanwhile, the obtained
sub-graph is connected so as to guarantee a consistent model.

Completeness measure. Next, the preserved cameras should cover the whole recon-
structed scene, and the completeness in 3D space can be measured by the density of
points in 3D. Generally, cameras containing more 3D points of low density better pre-
serve reconstruction completeness (see Fig. 3(b)), and we compute the sum ofNc lowest
point density as our camera completeness measure, namely

wc(Ii) = max
P′Ii
⊆PIi ,|P

′
Ii
|=Nc

∑
Pm∈P′Ii

d(Pm), (6)

where d(Pi) is the inverse of the density of Pi, and Nc = 10.

Regularity measure. Finally, we should guarantee that the selected cameras are reg-
ularly sampled in the reconstruction scene rather than over-sampled in some regions
with popular viewpoints and under-sampled in others. Similar to [24], we take the
scene content, appearance, and scale into consideration, and introduce the regularity
measure wr(Ii) an increasing function computing the degree the points covered by Ii
are also covered by its adjacent cameras. Quantitatively, each point is given a weight
counteracting a greater number of visible cameras with a good range of parallax within
a neighborhood, and wr(Ii) is given as the sum of its visible point weights, that is

wr(Ii) =
∑

Ij∈I, i 6=j
Pm∈PIi∩PIj

gN (Pm) · gS(Pm). (7)

Here gN (Pm) penalizes the trend of greater numbers of features in common with a
decreasing angle, and gN (Pm) is given as

gN (Pm) =
∏

Ii,Ij∈I, i 6=j
Pm∈PIi∩PIj

gr(Pm, Ii, Ij), (8)
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Table 1. Statistics of the SfM data sets and algorithms.

Sequential Unstructured
Garden Park Street Colosseum Notre Dame Trevi

# of images 948 940 684 1789 712 1789
# of images after MVGC 95 94 68 179 71 179

Mean
position error
[m]

Key frame 0.31 0.24 0.26 – – –
Skeletal graph 0.93 0.82 0.89 0.41 0.34 0.43

MVGC 0.24 0.19 0.22 0.12 0.11 0.09

Running time
[min]

MVGC 0.94 0.88 0.42 2.88 1.57 3.11
BA with MVGC 0.49 0.66 0.49 0.91 0.45 0.87

BA without MVGC 6.84 8.14 3.30 10.22 7.23 12.01

where gr(Pm, Ii, Ij) = min((α/αmax)
2, 1), α is the angle between the rays of Ii and

Ij triangulating Pm, and we set αmax = 60◦, which prefers camera pairs with large
angles in all our experiments.

Moreover, gS(Pm) encourages views with equal or higher resolution than the refer-
ence view, and we use

gS(Pm) =


2/r 2 ≤ r
1 1 ≤ r < 2

r r < 1

(9)

where r = r(Pm, Ii)/r(Pm, Ij).

4.2 Graph Simplification

Unfortunately, the problem of computing the optimal sub-graph is NP-complete, and we
propose an approximation algorithm to obtain it. Starting from an initial dense graph,
we first sort the graph vertexes into a priority queue based on their weight and then iter-
atively delete the vertex with the lowest weight and its adjacent edges until the number
of vertexes equals the target number. Meanwhile, there are two issues we should take
into consideration. First, the graph edge weight, namely h(Eij), changes along with the
vertex removal process. When h(Eij) = 0, Vi and Vj is disconnected, and we ought to
guarantee that the image quality graph is connected until the convergence is met. Sec-
ond, when the graph is simplified, the graph vertex weight w(Ii) also varies. Obviously,
it is computationally unnecessary to update the vertex weight of the entire graph each
time a vertex is removed. In our implementation, we update the vertex weight and real-
locate the priority queue each time 10 vertexes are removed. Admittedly, the obtained
sub-graph is not theoretically optimal, but it still generates satisfactory results.

5 Experiments

To demonstrate that the proposed MVGC is highly applicable to the whole pipeline
of 3D reconstruction, we present the applications of our method in bundle adjustment,
MVS, and variational refinement in the following experiments.
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Fig. 5. Average camera position errors after bundle adjustment at different compression rates. We
can see that the results of MVGC have lower average camera position errors than those using key
frame and skeletal graph on all data sets.

Implementation Our approach is implemented in C++ and the code is completely
CPU-based. All our experiments are tested on a PC with a Quad-core Intel 3.5GHz pro-
cessor and 32GB RAM. We use the publicly available Ceres [26] for bundle adjustment
and Quasi-Dense approach [23] for MVS. We also follow the pipeline described in [27]
for mesh generation and [28] for variational refinement. The parameters in our imple-
mentation are all standard except for Nc, which determines the density of the quality
graph and directly effects the running time of MVGC.

Data set Three categories of data sets are introduced for testing, and they are respec-
tively video sequences with a resolution of 3M pixels obtained from monochrome video
cameras, unstructured high-resolution images from a well-known benchmark [29], and
unstructured photo collections from the Internet captured by various cameras with dif-
ferent focal lengths, distortion and sensor noise, under different conditions of lighting,
surface reflection and scale.

5.1 Applications in Bundle Adjustment

First, the input images are automatically calibrated using the standard approach [21]
and MVGC is then introduced to select a subset of initially calibrated views for bun-
dle adjustment. In our implementation, we avoid using multiple full bundle adjustment,
which is the main time-consuming part of SfM, before MVGC but divide a large SfM
problem into small sub-problems, which are partially bundled, and use the partially
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(a) Original geometry (b) Original image quality graph (c) Simplified image quality graph 

Fig. 6. Graph simplification results of the Trevi data set. Note how the MVGC algorithm preserves
the important topology, but significantly reduces the redundancy of the original graph.

Disuniform 
camera 

distribution 
Camera 

redundancy 

Obvious 
deviation 

Obvious 
deviation 

(a) Original camera geometry (100% views) (b) MVGC (10% views) 

(c) Key frames (24% views) (d) Skeletal graph (10% views) 

Obvious 
deviation 

Fig. 7. Comparisons of video sequence trajectories after bundle adjustment. Compared with the
original full sequence, MVGC best preserves the video sequence trajectory after bundle adjust-
ment while the resampled video sequence trajectories using other methods have obvious devia-
tion, redundancy, or disuniform distribution.

bundled geometry as the input geometry for MVGC. After that the full bundle adjust-
ment of each sub-problem and the final bundle adjustment of the global problem are
performed. In details, we incrementally add cameras and do partial bundle adjustment
for the recently 10 added cameras. When the number of cameras increases relatively by
a certain ratio (e.g. 10%), the geometry of the newly added cameras is regarded as the
initially calibrated geometry, and we use MVGC to resample these cameras. Next, the
newly resampled cameras together with previously resampled cameras are used for a
full bundle adjustment. Then, MVGC is introduced again to resample all the remained
cameras and a full bundle adjustment is performed finally. In other words, MVGC do
require camera calibrations, but only rough camera calibrations.

The author in [5] shows that partial BA guarantees good camera geometry locally,
which can provide satisfactory input geometry for MVGC. The author in [5] also proves
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Table 2. Statistics of the MVS data sets and algorithms.

Benchmark data sets Internet data sets
fountain-R25 Herz-Jesu-R23 Square Notre Dame Colosseum

# of images 25 23 1907 712 1789
# of images after MVGC 13 12 191 71 179

Running
time [min]

MVGC 0.13 0.15 3.26 1.57 2.88
MVS with MVGC 6.44 6.98 90.14 33.13 85.01

MVS without MVGC 17.48 16.20 922.23 344.80 835.60

that for the majority of large-scale dataset, the time cost of partial BA is much smaller
than those of full BA. So the efficiency of SfM improves greatly as we remarkably im-
prove the efficiency of full BA as shown in Table 1. For example, the overall time of full
BA of Trevi dataset with and without MVGC are 0.87 and 12.01 minutes respectively.
The partial BA and the other time costs with and without MVGC are 2.73 and 3.96
minutes respectively. Therefore, the overall time of SfM with and without MVGC are
3.6 and 15.97 minutes respectively.

Table 1 also shows the statistics of the data sets for bundle adjustment, and about
90% of cameras are removed using the method of key frame, skeletal graph [6], and
MVGC respectively. Here we define compression rate as the percentage of discarding
cameras. We can see from Table 1 and Fig. 5 that, on both sequential and unstructured
data sets, MVGC obviously outperforms key frame and skeletal graph in average cam-
era position errors after bundle adjustment while improving the efficiency of bundle
adjustment by almost a magnitude. Fig. 7 gives the qualitative demonstration of the
outstanding performance of our method. Fig. 6 also provides the visual demonstration
of the graph simplification result of the Trevi data set.

5.2 Applications in Multi-view Stereo

Both on the benchmark and Internet data sets, we use full image sets for SfM and
MVGC to select a subset of views for dense 3D reconstruction. The general statistics
of MVS data sets shown in Table 2 indicate that approximately 50% of cameras are
discarded in the benchmark data sets and 90% in the Internet data sets. As shown in
Fig. 8(a) and Fig. 8(b), the relative error of MVS reconstruction with MVGC is al-
most the same as that using full image sets on the benchmark data sets. The curves
of average relative errors at different compression rates of the Internet data sets are
provided in Fig. 8, which further confirms the superiority of MVGC over the skeletal
graph and key frame in applications of MVS. Fig. 9 provides visual results of MVS of
the fountain-R25 and Notre Dame data sets. Unlike the MVS results using the skeletal
graph and random image selection, which are compromised by incomplete regions, our
compressed multi-view geometry preserves reconstruction accuracy and completeness
best in the final reconstruction.
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Fig. 8. Average relative errors of benchmark and Internet data sets in the MVS application. (a) and
(b) are comparisons of average relative errors of the benchmark data sets between reconstruction
using full image sequences and compressed geometry (50% views). We observe that the absolute
reconstruction accuracy using compressed geometry is almost the same as that using complete
geometry. (c) and (d) show the average relative errors of the benchmark data sets at different
compression rates. (e), (f) and (g) present the average relative errors at different compression
rate of the Internet data sets. Likewise, MVGC outperforms the skeletal graph and random image
selection methods in any compression rate.

Original (100% views) Skeletal graph (10% views) Random (10% views) MVGC (10% views) 
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Fig. 9. Comparisons of MVS dense results of the fountain-R25 and Notre Dame data sets in the
MVS application. Note the incomplete regions highlighted by dashed rectangles and that the
reconstruction from the compressed geometry is complete.
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Table 3. Statistics of variational refinement data sets and algorithms.

Benchmark data sets Internet data sets
fountain-P11 entry-P10 castle-P19 Trevi Square Basilica

# of images 11 10 19 1789 1907 1103
# of images after MVGC 6 5 10 54 57 33

MVGC 0.09 0.07 0.12 3.88 3.67 2.98
Running
time [min]

Refinement with
MVGC 12.01 8.23 22.61 273.13 324.67 160.00

Refinement without
MVGC 43.36 36.93 86.04 N/A N/A N/A
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Fig. 10. Relative error histograms of the benchmark data sets in the variational refinement appli-
cation. It is obvious that the remarkably improved efficiency using MVGC almost compromises
no reconstruction accuracy.

5.3 Applications in Variational Refinement

In this application, the full image sets are used for SfM and MVS, and we then intro-
duce MVGC to select a subset of views for variational refinement. According to the
statistics in Table 3, the proposed algorithm reduces approximately 50% of the images
in the benchmark data sets and 97% of the images in the Internet data sets for refine-
ment. As demonstrated by the relative error histograms in Fig. 11, the reconstruction
accuracy using compressed geometry is almost the same as the one using full image
sets on the benchmark data sets but we only spend about 25% of the running time of the
method without compression. Since standard refinement algorithms are generally based
on an energy summation traversing all image pairs to compute the cross correlation of
photo consistency, as the number of images explodes, the increased time consumption
becomes unacceptable, particularly for redundant Internet data sets. Take the Trevi data
set as an example, for the full image set approximately 319k image pairs are needed for
pairwise correlation computation, while only 3% of these image pairs are needed after
MVGC. Fig. 11 and Fig. 12 provide some visual results of variational refinement of the
benchmark and Internet data sets.

5.4 Discussions

Graph vertex weight measures Another important issue for our experiments is to
validate the effectiveness of the accuracy, completeness, and regularity measures in the
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(a) The original triangulated mesh (b) 100% views for refinement (c) 32% views for refinement using MVGC 

Fig. 11. Comparisons of variational refinement results of the Herz-Jesu-P25 data set in the vari-
ational refinement application. The refinement results using compressed geometry still recovers
the same details, edges, and topology as the refinement results using full image sets.

(a) Trevi Fountain Reconstruction (3% views for refinement) 

(b) St. Peter’s Square Reconstruction (3% views) 

(c) St. Peter’s Basilica Reconstruction (3% views) 

Fig. 12. Variational refinement results of the Internet data sets using MVGC. The figures from left
to right are samples of Internet image collections, SfM points and corresponding camera geom-
etry, initial triangulated meshes with a decent amount of noise, and finally refined mesh models.
We should note that the data sets above cannot be handled by standard refinement methods using
full image sets.

image quality graph. Table 4 shows the average camera position errors of the sequential
and unstructured data sets in SfM for different choices of vertex weight measures. We
observe that the MVGC algorithm with accuracy, completeness, and regularity mea-
sures performs the best while the absence of anyone of these weight measures will lead
to the degeneration of the reconstruction accuracy.
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Table 4. Average position errors for different choices of vertex weight measures after bundle
adjustment. “A” is the accuracy measure, “C” the completeness measure, and “R” the regularity
measure. The MVGC algorithm with accuracy, completeness, and uniformity measures has the
lowest average position error after bundle adjustment.

A+C A+R C+R A+C+R

Sequential
data sets

Garden 0.32 0.27 0.30 0.24
Park 0.26 0.20 0.24 0.19

Street 0.34 0.31 0.29 0.22

Unstructured
data sets

Colosseum 0.19 0.18 0.16 0.12
Notro Dame 0.22 0.16 0.18 0.11

Trevi 0.14 0.12 0.12 0.09

Running time As indicated in Table 1, Table 2, and Table 3, the running time of MVGC
is minor, and the largest is 3.67 minutes for the Trevi data set. While our proposed
method significantly reduces the time and memory consumption of bundle adjustment,
MVS, and variational refinement by almost a magnitude, and makes the previously
impossible variational refinement using Internet data sets manageable.

6 Conclusions

We propose an approach to compress multi-view geometry by obtaining a subset of
views from the original full camera geometry while maximizing the reconstruction ac-
curacy and completeness. The key technical contribution is the introduction of image
quality graph, and the problem is then transformed to computing a sub-graph from the
original dense graph. MVGC is highly applicable to bundle adjustment, MVS, and vari-
ational refinement, and introduces remarkable improvement in efficiency with almost no
loss of reconstruction accuracy and completeness. The experiment results on both stan-
dard and Internet data sets demonstrate the remarkable improvement in efficiency with
almost no loss of reconstruction accuracy and completeness. As for the future work, it
is interesting to theoretically explore the optimum subset of multi-view geometry, al-
though our approximation approach has provided satisfactory results. Going forward,
hopefully we could extend our method to a hierarchical pipeline so as to validate our
pipeline on larger data sets, especially the most prevalent city-scale data sets.
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