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Abstract. This paper presents a novel descriptor, geodesic invariant
feature (GIF), for representing objects in depth images. Especially in
the context of parts classification of articulated objects, it is capable
of encoding the invariance of local structures effectively and efficiently.
The contributions of this paper lie in our multi-level feature extraction
hierarchy. (1) Low-level feature encodes the invariance to articulation.
Geodesic gradient is introduced, which is covariant with the non-rigid
deformation of objects and is utilized to rectify the feature extraction
process. (2) Mid-level feature reduces the noise and improves the efficien-
cy. With unsupervised clustering, the primitives of objects are changed
from pixels to superpixels. The benefit is two-fold: firstly, superpixel re-
duces the effect of the noise introduced by depth sensors; secondly, the
processing speed can be improved by a big margin. (3) High-level feature
captures nonlinear dependencies between the dimensions. Deep network
is utilized to discover the high-level feature representation. As the fea-
ture propagates towards the deeper layers of the network, the ability
of the feature capturing the data’s underlying regularities is improved.
Comparisons with the state-of-the-art methods reveal the superiority of
the proposed method.

1 Introduction

Photometric local descriptor [1] is one of the most powerful tools for image
and video analysis. It has attracted extensive research efforts in recent years,
and remarkable progress has been achieved [2–7]. Local descriptor encodes the
micro-structure or statistical information of a region and generates a new de-
scription of it. Ideally, this description should be at least partially invariant to
photometric (changes in brightness, contrast, saturation or color balance) and
geometric (mainly affine transformations, like translations, rotations and scale
changes) transforms [8]. Therefore, it has a wide variety of applications in the
fields of object detection and classification [9], texture analysis [10], image re-
trieval [11, 12], object tracking [13, 14], and face recognition [15, 16].
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Recently, with the rapid development of range sensors, such as Kinect and
SwissRanger, 3D depth information can be readily obtained with low cost. These
devices use either the structured light or time-of-flight (ToF) to measure the dis-
tance between objects and cameras. The images that captured by these devices
are known as range/depth images. Since depth image resolves the distance am-
biguities which exist in the photometric image, a large number of recent appli-
cations have emerged based on it. For instance, 3D scanning and reconstruction
[17, 18], pose and action recognition[19–22].

Comparing depth images with photometric images, the differences exist in
the following aspects.

1) Geometrical structure. Pixels in a depth image indicate calibrated depth
in the scene, rather than a measure of intensity or color [23]. Therefore, depth
images capture the geometrical structure information and resolve the depth am-
biguities, which can greatly simplify some processing step such as background
subtraction.

2) Weak texture. In the depth image, the color and texture variations induced
by clothing, hair, and skin are not observable.

3) High noise. Comparing with the advanced photometric image sensors, the
noise rates of depth sensors are relatively higher, especially in the environments
of strong ambient light.

4) Low resolution. The lateral resolution of time-of-flight cameras is gener-
ally low compared to the standard 2D video cameras, with most commercially
available devices at 320×240 pixels or less. Kinect claims its lateral resolution
as 640×480.

With these essential differences, the well-developed local descriptors for the
photometric images cannot be readily applied for the depth images. For exam-
ple, scale invariant feature transform (SIFT) [7] descriptor and its variants [2]
encode the gradient distribution with respect to the orientations within a local
region. However, without photometric texture, the interest points with distinct
local structure and statistics cannot be identified in depth images. Local binary
pattern (LBP) descriptor [24] and its variants represent the statistics of micro
structures of a region. For depth images, the meaningful structures only exist
at the boundary regions of objects. Therefore, different parts within the objects
cannot be differentiated successfully.

Finding a descriptor that can encode the local information of depth images
effectively is the motivation and target of this paper. In order to achieve this
target, the properties of depth images and their special targeting applications
must be considered during the feature design process. The desirable properties
of the depth descriptors are summarized as follows: Firstly, the descriptors in
the depth should have some invariant properties which are preferable for the
specific applications. Secondly, because the depth images are noisy and texture-
less, the units that being processed should be changed from pixels to some middle
level representations, which might reduce the processing time and improve the
robustness of the descriptor. Thirdly, in order to capture the nonlinear nature
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of the feature, some high level representations should be discovered to improve
the discriminant of the feature.

The contribution of this paper lies in the multi-level feature extraction hier-
archy for depth images. The above targeting properties have been addressed in
the different levels of the hierarchy.

Low-level representation encodes the invariance to the articulate motion. An
active research topic based on depth image is pose and action recognition [20–
22]. In this context, most of the interested objects are non-rigid and consist
of multiple parts, for instance, human/animal body contains torso and limbs,
and human hands contain fingers. Parts of the objects are connected by joints
and have multiple degree of freedoms (DOFs). The overall motion patterns of
objects are articulate motion. It is desirable that the descriptors can provide
consistent representations of the parts in different poses and gestures. The object
is model as a map whose nodes correspond to the pixels on the object and whose
edges represent the neighborhood relationship between the pixels. Based on this
map model, the geodetic gradient is introduced to rectify the feature extraction
which is supposed to be invariant to the articulate motion as long as the local
connection relationship does not change during the motion.

Mid-level representation reduces the computation cost. By unsupervised clus-
tering, the pixels of the depth image are grouped into clusters according to their
3D positions in the scene. And the clustering result is referred to as superpixel
representation, which is used to replace the rigid structure of the pixel grid. On
the one hand, this representation provides a convenient primitive from which to
compute image features and greatly reduce the complexity of subsequent image
processing tasks [25]. Especially for the texture-less depth image, in which only
the pixels on the boundaries of objects have the distinct structural information,
the superpixel based representation reduces the image redundancy dramatically.
On the other hand, since the noise level of depth sensors is higher than photo-
metric sensors, superpixels can suppress the noise effect of the individual pixels
and yield a more robust representation.

High-level representation captures the nonlinear information. Because of the
complexity of data distribution, nonlinear mapping which maps the data from
their original space to some latent feature space is used to achieve better dis-
criminant. Deep learning [26–29] is utilized to find high order dependency be-
tween the dimensions of the feature, which has been successfully applied in many
fields including computer vision [30–32], natural language processing and speech
recognition [33–35]. In this work, the employed deep network is based on stacked
denoising autoencoders (SdA), as the feature evolved towards the deeper layers
of SdA, two desirable properties for classification have been observed: sparsity
and better discrimination.

The overall processing flow of the method is shown in Fig.1. The rest of the
paper is structured as follows. Section 2 introduces the proposed geodesic invari-
ance feature (GIF) in detail and Section 3 extends GIF to the superpixel based
mid-level representation. Section 4 presents a deep learning based method for
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feature mining. Experimental results and comparisons are provided in Section 5.
Finally, we conclude this work in Section 6.

2 Geodesic Invariant Feature (GIF)

The proposed method is inspired by the early works [3, 23, 21] which use the
binary strings generated by pairwise comparisons to represent a local patch. In
[3], the comparisons are based on the intensity of pixels and in [23, 21] the com-
parisons are based on the depth values of pixels. The difference of the proposed
method is that the geodesic gradient is used to rectify the pairwise comparisons
process, which endows the feature with the robustness to the articulate motion.

Given a depth image I, I(p) represents the pixels depth value at position p =
(x, y)T . DCpc,r,F denotes a local descriptor which determined by two parameters:
coverage Cpc,r and feature list F . Cpc,r represents the coverage region of a local
descriptor within the image, where pc is the center and r is the radius of the
coverage region. F = {Pi, . . . , Pn} denotes the list of random feature pairs where
Pi = (piu, p

i
v) is a pair of random positions and n is the number of position pairs.

The simple comparison function is defined as follows:

τ(pu, pv) =

{
1, if |I(pu)− I(pv)| > t

0, otherwise
(1)

where (pu, pv) is a random pair from the list F and t is the comparison
threshold.

By applying the comparison function τ(·) to the feature list F , a binary
string f ∈ {0, 1}n is obtained and serves as the feature vector of the descriptor
DCpc,r,F as shown in Fig.2(a)∼(b). In [23, 21], f is used to train the randomized
decision forests and regression forests.

Distance Invariance. In order to make a descriptor be invariant to distance
variation, the coverage of the descriptor should be constant in the real world
space. Based on the knowledge of projection geometry, the radius r of feature
coverage Cpc,r on the image should be defined as:

r =
α

I(pc)
(2)

where I(pc) is the depth value of center pixel pc, and α is a constant de-
termined by the size of the coverage in the real world space and imaging focus.
Intuitively, this equation tells that if the object is closer to the camera, the size
of the descriptor on the image should become larger and vice versa.

Articulation Invariance. In order to endow the descriptor with the articu-
lation invariance, we introduce the geodesic gradient to rectify the feature ex-
traction, which is referred to as canonical direction Γ . Now we are going to
introduce how to calculate the feature with the geodesic gradient. The proper-
ties of geodesic gradient will be presented in the following parts.

By assigning a consistent orientation to each descriptor based on local prop-
erties, the descriptor can be represented relative to this orientation and therefore
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Fig. 1. The processing flow of the proposed method (Best viewed in color). (a) The
input depth image. (b) Floor and ceiling detection (c) The foreground segmentation re-
sult. (d) Geodesic distance map of the foreground object. (e) Low-level feature: geodesic
invariant feature extraction: (e1) is the isoline map and (e2) is the geodesic gradient
map. (f) Mid-level feature: superpixel constrained geodesic invariant feature extraction:
(f1) is the superpixel segmentation result and (f2) is the geodesic gradient map of the
superpixels. (g) Orientation regularized binary feature calculation. (h) Binary feature
strings. (i) High-level feature: depth network for feature mining.
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Fig. 2. Using the geodesic gradient to rectify the feature extraction. (a) Comparison
between the two points generates one bit binary feature value. (b) A region is represent-
ed by the binary string produced by the multiple random comparisons which have been
used in [23, 21]. (c) Random points generated with respect to the canonical direction
Γ . (d) Descriptor contains multiple pair comparisons. (e)∼(f) the random point-pairs
are covariant with the canonical direction Γ .

achieve invariance to the rotation [7]. For a geodesic invariance descriptor, its
coverage is denoted by Cpc,r,Γ , where Γ is used to represents the canonical direc-
tion of the descriptor. The random point-pairs are generated in the polar coor-
dinates where pc is the origin and Γ is the polar axis, as shown in Fig.2(c)∼(d).
Take random point pu for instance, it determined by two parameters, the angle
θu ∈ [0, 2π) and the distance ru ∈ [0, r). Since θu represents the relative angle
between the point pu and Γ , all the point-pairs are covariant with the canonical
direction Γ , as shown in Fig.2(e)∼(f).

Fig. 3. An intuitive example of GIF descriptor: the GIF is represented by the circles
(green) on the right hand of Vitruvian man; the feature of [23, 21] is represented by
the circles (blue) on the left hand.

Fig.3 gives an intuitive example which shows the contribution of the canonical
direction Γ . The feature which covers the right hand of the Vitruvian man is
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the GIF descriptor and the one covers the left hand represents the feature of
[23, 21]. This example shows that the variation introduced by the articulation is
canceled out by the canonical direction Γ , therefore the positions of the given
point pair are relatively stable with respect to the local body parts. But for the
feature of [23, 21], this invariance cannot be readily maintained.
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Fig. 4. Geodesic invariance feature. (a)∼(d) show the invariance of a GIF descriptor
under four different poses. The geodesic distance map, isoline map, geodesic gradient
map and feature extraction are shown from left to right.

Calculation of canonical direction Γ is inspired by the insight that geodesic
distances on a surface mesh are largely invariant to mesh deformations and rigid
transformations [36]. More intuitively, the distance from the left hand of a per-
son to the right hand along the body surface is relatively unaffected by her/his
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posture. For the given object, fg represents the foreground object segmentation
results as shown in Fig.1(c). p0 represents the centroid pixel of fg which marked
as the red cross in Fig.1(d). Calculation of canonical direction Γ contains fol-
lowing steps:

1. The geodesic distance map Id is generated by calculating geodesic distances
between the pixels on the fg and p0 using Dijkstra’s algorithm, as shown in
the first column (from left) of Fig.4.

2. The pixels with equal geodesic distances to p0 are marked in the isoline map
as shown in the second column (from left) of Fig.4.

3. For each pixel, canonical direction can be either calculated as

Γ = arctan

(
∂Id
∂x

,
∂Id
∂y

)
(3)

or as the direction that pointing along the shortest path obtained from step
1. In this paper, we adopt the second approach and the examples of canonical
direction are shown in the third column (from left) of Fig.4.

The nature of canonical direction Γ is presented in the right most column of
Fig.4, in which the hand patches of four different poses are shown. Rectified by
Γ , the positions of the point-pairs are stable with respect to the body parts in
different poses. Therefore, the invariance to the articulation can be obtained.

3 Superpixel Constrained Geodesic Invariant Feature
(ScGIF)

In this section, we develop the superpixel constrained geodesic invariant feature
(ScGIF) and use it as the mid-level representation of the depth data. The benefit
of this mid-level representation is twofold: firstly, the processing speed can be
improved by a big margin; secondly, better robustness to the noisy depth data
can be achieved. The motivation of ScGIF is based on the following observations:

1. The time complexity of the Dijkstra’s algorithm used in Section 2 for build-
ing the geodesic distance map is O(|E|+ |V |log|V |), where |E| is the number
of edges and |V | is the number of vertices in the map. The processing speed is
directly related to the number of pixels on the foreground object fg. There-
fore, if the number of pixels can be reduced, the processing speed can be
improved.

2. The depth data obtained by the range sensor are noisy. The noise may come
from the shadows of the objects, the strong ambient light that overwhelm the
IR light or object materials that scatter the IR light. Therefore, the per-pixel
feature extraction/classification are prone to be affected by the noise.

Based on the above observations, we replace the rigid structure of pixel grid
by perceptually meaningful atomic regions, superpixels. The superpixel method
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(a) (b)

Fig. 5. Superpixel segmentation results. (a) Ground truth label of the depth data. (b)
SLIC superpixel segmentation of the data

we used is based on SLIC [25], and a segmentation example is illustrated in Fig.5.
Original SLIC method clusters the pixels based on their [l, a, b, x, y] components
where l, a and b are the color components in Lab space and x and y are the coor-
dinates of the pixel. In our case, the clustering is performed based on [x, y, z, L]
where x, y and z are the coordinates in the real world space and L is the label
of pixel. L is optional for the clustering and only used for offline training and
evaluation. Using L, we can make sure that the pixels within the same superpix-
el have consistent labels, as shown in Fig5(a)∼(b). During online classification,
only real world coordinate [x, y, z] is used for superpixel segmentation.

For each superpixel, we record the mean depth value of all the pixels that
belongs to it. The random point pair comparison is replaced by the superpixel
pair comparison. As illustrated in Fig. 6, the point pair (pu, pv) is mapped to
their corresponding superpixel (p′u, p

′
v), and comparison is carried out between

their mean depth values. The canonical direction Γ pointing along to the shortest
path towards the object centroid p0.

pu

pc

Pu

pv

Pv

p0

Fig. 6. Feature calculation for the superpixels

By SLIC clustering, the unit being processed is changed from pixel to super-
pixel. For depth frame with VGA size, the foreground objects may contains tens
of thousands pixels, but this lead to only a few hundreds of superpixels. There-
fore, the processing load is reduced dramatically. In additional, using the mean
value to replace the individual pixel depth can further improve the robustness
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to the noise. These improvements are going to be verified in the experimental
section.

4 Feature Mining through Deep Network

Generally, high dimensional data have complex distribution in their feature s-
pace. If the nonlinearity of the data is handled properly, the performance can be
improved dramatically. There are two possible approaches to exploit nonlinear-
ity of the data. The first approach is to leave this task to the classifiers, such as
support vector machines (SVM) which use kernel functions to build nonlinear
classifiers to model the complex data distribution. The second approach is to use
an intermediate stage, between the original feature and the classifier, to map the
feature from its original space to some latent feature space where the data may
have more compact distribution. The second approach also called representation
learning or feature learning which is the essence of deep learning. The sequential
training manner makes it especially suitable for learning task under the big data
environment.

In this section, we attempt to exploit the high order nonlinearity of the data
by deep networks. Specifically, the employed deep network is based on stacked
denoising autoencoders (SdA) [37–39]. Through SdA, the data are projected
nonlinearly from its original feature space to some latent representations. We
refer to these representations as SdA-layerx feature spaces. SdA can eliminate
the irrelevant variation of the input data while preserving the discriminant in-
formation that can be used for classification and recognition. Meanwhile, the
propagation process of the data from the top layers to the deep layers of the S-
dA generates a series of latent representations with different abstraction ability.
The deeper the layer, the higher level of abstraction.

The structure of our SdA deep network is illustrated in Fig.7(a). It contains
five layers: 1 input layer, 3 hidden/SdA layers and 1 output layer. Each layer
contains a set of nodes and the nodes between the adjacent layers are fully
connected. The number of nodes in the input layer equals to n, which is the
number of random pairs. The binary strings of ScGIF are feed directly to the
network as the input layer. The number of nodes in the output layer is d which
equals to the number of labels. The rationale and training details of SdA is
beyond the scope of this paper, please refer to [37–39] for more details.

Since we have claimed that the representations learnt by SdA can eliminate
the irrelevant variation of the input data while preserving the information that is
useful for the final classification task, it is important to investigate what actually
have been learnt through this deep feature hierarchies. We plot the features of
different layers of SdA in Fig.7(b)∼(e), which provide us with some insight of SdA
learning. Fig.7(b) is the binary string of ScGIF descriptor which feed directly to
the input layer. Fig.7(c)∼(e) are the features that have been learnt by SdA layer
0 ∼ 2. A very interesting observation is that as the data propagate towards the
deeper layers of the network, a trend of sparsity can be clearly observed. Until
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final layer of SdA, the number of no-zero entries reduced to 331, which accounts
for only 16.6% of the 2000-dimentional feature space.
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Fig. 7. The structure of SdA and its layer outputs. As the feature propagate from the
SdA-layer0 feature space to the SdA-layer2, a trend of sparsity can be clearly observed.

5 Experiments

In this section, we present the details of parameter setting, dataset, and the
comparison results with the state-of-the-art methods.

Dataset. We collect a depth image dataset using Kinect sensor. Four actors
perform different poses and actions. There are 6930 depth frames of VGA size.
For each human body, 15 body parts are labeled. An example of the ground truth
label is illustrated in Fig.5(a). The total number of labeled pixels is around 80
million. We randomly select 50% frames for training, 10% frames for validation,
and the rest 40% frames for testing.

Baselines. The first baseline descriptor that we used is the accumulative
geodesic extrema descriptor proposed by Christian et al.[36], and it is referred
as to AGEX. The second baseline descriptor is presented by Shotton et al. [23, 21]
which is variant of the BRIEF[3] descriptor in the depth image. Therefore, this
descriptor is referred to as BRIEFd. The geodesic invariant feature presented in
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Section 2 is denoted as GIF, the superpixel constrained geodesic invariant feature
in Section 3 is denoted as ScGIF, and the feature obtained by deep learning in
Section 4 is denoted as ScGIF+SdA.

5.1 Contribution of canonical direction rectification

To highlight performance improvement obtained by using the canonical direc-
tion, we compare the BRIEFd and GIF in more details. Both of these two meth-
ods are pixel-wise descriptors and the only difference between them is with or
without canonical direction rectification. Random forests are learnt as the clas-
sifiers which contain 3 random trees and the maximum level of each tree is 20.

The confusion matrices are illustrated in Fig.8, in which (a) is the confusion
matrix of BRIEFd and (b) is the results of GIF. Average accuracy is increased
from 77.7% to 82.9% and overall accuracy is improved from 80.0% to 84.8%.
From these results, two observation can be obtained.

1. With the help of canonical direction, about 5% accuracy improvement can
be achieved for both overall accuracy and average accuracy.

2. The improvements for parts on the limbs are higher than the parts on the
torso. A possible explanation is that the articulate variation are more promi-
nent on the limbs, and canonical direction can counteract these variations
effectively.

(a) (b)

Fig. 8. Confusion matrix of the classification results (random forest): (a) Confusion
matrix obtained using the BRIEFd feature. (b) Confusion matrix of the GIF feature.

5.2 Comparison with the state-of-the-art methods

The detailed comparison of the per-class classification accuracy are presented in
Fig.9. Regarding the AGEX method [36], since we are working on the classifi-
cation task, we use their patch based descriptor without the geodesic EXtrema
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Fig. 9. Comparison results of each body parts.

detector. The random forest is used as the classifier and the training process
is very similar to BRIEFd and GIF. The only difference is that we replace the
random pair comparison with the random dictionary patch filtering. Following
the setting in [40], 2000 random sub-patches for each joint are randomly gener-
ated and used as the dictionary. The error bars of all the methods are obtained
by 5-round of cross validation. The visualization of the classification results of
ScGIF and ScGIF+SdA are illustrated in Fig.10(a) and (b). From this result,
we have following observations:

1. Among all the five methods, the performance of the dictionary patch match-
ing based descriptor (AGEX) is lower with the others. One possible expla-
nation is that the dictionary patches for the depth data are lack of textures
and cannot provide enough discrimination information[40].

2. The proposed GIF descriptor and its two variants can outperform the other
baseline methods. Especially for the hands and feet, accuracies have been im-
proved by a big margin. This further verify the contribution of the canonical
direction rectification.

3. Comparing the pixel based methods (BRIEFd and GIF) with the superpixel
based methods (ScGIF, ScGIF+SdA), improvements for both of the mean
classification accuracy and the standard deviation have been observed, which
indicate superpixel is helpful for resenting the noise and texture less depth
data.

In addition, we analyze the efficiency of the proposed methods. The accuracy
versus rum time figure is illustrated in Fig.10(c). Here, only classification time is
considered and the foreground segmentation time is not took into account. The
testing platform consist of Intel i7 3.7G processor and 32G RAM. BRIEFd is
the fastest one since there are only simple pixel comparison involved in the eval-
uation. Superpixel is critical for the speed improvement. It increase the speed
of GIF from 3.7 fps to 30 fps (ScGIF). This verifies another assumption about
the superpixel: the superpixel based representation can reduce the image re-
dundancy and improve the processing speed dramatically. The accuracy winner
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Fig. 10. Classification results of superpixel and superpixel+SdA.

ScGIF+SdA runs at 15 fps on a GTX 780i GPU using python lib theano (only
the SdA part is running on GPU, superpixel is still on CPU). Since the evalua-
tion process of the deep networks has high parallelism, the GPU time (including
copy the data from host to device) for each frame is only 28.7 ms.

6 Conclusion

In this work, we presented a geodesic invariant feature and its two variants to
encoding the local structure of the depth data. These new descriptors were ap-
plied in the context of human body parts recognition. Specially, the proposed
descriptors form a multi-level feature extraction hierarchy: pixel based low-level
representation addressed the articulation variation of human motion by introduc-
ing the canonical direction to rectify the feature extraction process; superpixel
based mid-level representation replaced the rigid structure of the pixel grid by
perceptually meaningful atomic regions which reduced the computation cost and
improve the robustness to the noise; high-level feature exploit the nonlinearity
of the data by deep networks which further improve the performance of the
descriptor. We compare the proposed method with the state-of-the-art method-
s. Encouraging results have been observed. The proposed method can achieve
superior classification accuracy and visual quality.
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