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Abstract. Facial landmark localization plays an important role for many
computer vision tasks, e.g., face recognition, face parsing, facial expres-
sion analysis, face animation, etc. However, it remains a challenging prob-
lem due to the diverse variations, such as head poses, facial expressions,
occlusions and so on. In this work, we propose a topic-aware face align-
ment method to divide the difficult task of estimating the target shape
into several much easier subtasks according to the topics. Specifically,
topics are determined automatically by clustering according to the tar-
get shapes or shape deviations which are more compatible with the task
of alignment. Then, within each topic, a deep auto-encoder network is
employed to regress from the shape-indexed feature to the target shape.
Deep model specific to each topic can capture more subtle variations
in shape and appearance, and thus leading to better alignment results.
This process is conducted in a cascade structure to further improve the
performance. Experiments on three challenging databases demonstrate
that our method significantly outperforms the state-of-the-art methods
and performs in real-time.

1 Introduction

Face alignment or facial landmark localization is a vital problem in computer vi-
sion since many vision tasks depend on accurate face alignment results, including
face recognition, facial expression analysis, face animation, etc. Although it has
been studied for many years, facial landmark detection on the wild face images
is still a challenging problem due to large shape variations, such as extreme head
poses and facial expressions.

Typical parametric methods, such as Active Shape Model (ASM) [1, 2] and
Active Appearance Model (AAM) [3, 4], employ the statistical model such as
Principal Component Analysis (PCA) to capture the shape and appearance vari-
ations respectively. They perform well for face images with little pose variation,
normal facial expression and good light conditions. However, they fail to get
accurate shapes for those images with large head pose and exaggerated facial
expressions since single linear model can hardly well capture the complex non-
linear variations in the wild data. To handle the large texture variations, van
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et al. [5] extend the traditional AAM to MPPCA-AAM by using a mixture of
probabilistic PCA [6] to model the complex appearance variations resulting in
better performance. However, it is still sensitive to shape initializations as the
traditional AAM.

Recently, regression based methods have achieved impressive results on both
controlled and uncontrolled face images [7–10]. Instead of explicitly representing
the shape or appearance variations with parametric models, these methods at-
tempt to directly learn a mapping from appearance to face shape. As one of the
most promising regression based method, SDM [9] employs a linear regression to
estimate the shape deviation based on shape-indexed feature [7] under a cascade
framework, and it achieves the state-of-the-art performance for facial landmark
detection and tracking on the wild databases, e.g, LFPW [11], LFW-A&C [12],
RU-FACS [13] and Youtube Celebrities [14]. To some extent, SDM is more robust
to inaccurate shape initialization, but it may still get stuck on the images with
extreme pose and exaggerated facial expressions when the initialization shape is
far from the ground truth [15].

To relieve the influence of inaccurate initializations, [7, 8] use multiple ini-
tializations for testing and take the median result of all random fern regressors
as the final estimation. Burgos-Artizzu et al. [16] propose a Robust Cascaded
Pose Regression (RCPR) method to further improve the performance of CPR [7]
under a novel restart scheme. Specifically, given an image, 10% of the cascade
is applied for different initializations and then the variance of their predictions
are checked. If the variance is low enough, the left 90% of the cascade is applied,
otherwise restart with a different set of initializations.

Different from [7, 8, 16], Dantone et al. [17] employ a regression forest to es-
timate the head pose and then individually model the shape and appearance
variations of facial landmarks for each head pose by using conditional regres-
sion forest. They argue that the exploiting of head pose provides a good shape
prior for face alignment and conditional regression forests are easier to learn
since the trees have no need to capture all shape and appearance variations.
A good shape prior can provide better shape initialization even under extreme
pose. Furthermore, Zhao et al. [18] propose an iterative Multi-Output Random
Forests (IMOFR) algorithm to jointly estimate head pose, facial expressions and
facial landmarks, which divides facial landmark detection into subtasks based
on both head poses and facial expressions. It further achieves more accurate
face alignment results than [17]. Zhu et al. [19] employ a mixture-of-trees model
to capture the diverse variations of each viewpoint and partially address the
initialization problem by evaluating the models of all viewpoints, which is thus
accompanied by a high computation problem. Yu et al. [20] propose a group
sparse learning method to select optimized salient facial landmarks for mixture-
of-trees models and further refine the detection result by using two-step cascaded
deformable shape model. This method can perform faster than [19]. However,
it still cannot meet the real-time requirement and the performance degenerates
when it fails to get accurate estimation of salient facial landmarks. In anoth-
er interesting work [15], an exemplar-based approach is proposed to model the
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Fig. 1. Overview of our Topic-aware Face Alignment Algorithm with Deep Auto-
encoders. f denotes a topic prediction function and G is the topic-specific deep models
for face alignment. H(I, S) is the joint shape-indexed features extracted around the
landmarks of face shape S. ∆S is the shape difference between the ground truth and
the current shape.

correlations between landmarks and their surrounding information and then a
feature voting-based face alignment method is employed with non-parametric
shape regularization. This method does not require initial face shape based on
face detection result. Impressive results are achieved on two challenging data
sets, i.e., AFW [19] and IBUG [21], but it is extremely time-consuming.

Auto-encoders and other deep models are widely applied for computer vision
problem and achieve great success for image denoising, image classification, face
analysis, etc [22–26]. Inspired by the success of deep network, some researches
propose to employ it to solve the facial landmark detection problem. Sun et
al. [24] design a deep convolutional neural network (DCNN) for facial landmark
detection and achieve impressive results on two public datasets. However, the
performance under extreme pose and exaggerated facial expressions may degen-
erates since it is hard to train a robust deep model to capture all facial variations
without any prior knowledge. In [26], Wu et al. propose a deep model based on
the Restricted Boltzmann Machines (RBM) for facial landmark tracking with
shape prior in consideration of face pose and expressions. Specifically, deep belief
network is employed to capture the shape variations due to facial expressions and
a 3-way RBM is further used for modeling pose variations. Yet, it is still hard to
handle the extreme variations of face poses and facial expressions simultaneously.
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To deal with the facial landmark detection with large shape variations, we
propose a topic-aware face alignment method to divide the difficult task of esti-
mating the target shape into several much easier subtasks according to the topics,
and an overview of the proposed method is shown in Fig. 1. Different from [17,
18], in which the topics are manually defined based on the appearance varia-
tions of head poses or facial expressions, we define the topics by automatically
clustering the target shapes or shape deviations which are more compatible with
the task of alignment. Then, within each topic, a deep auto-encoder network is
exploited to detect the facial landmarks. Deep models specific to each topic can
well capture the variations in shape and appearance even under extreme poses
and facial expressions. This process is further conducted in a cascade structure
to improve the performance. It is important to note that topic definitions in each
cascaded stage are updated based on target shapes or shape deviations rather
than the fixed manual definitions used in [17, 18]. As a result, the topics are
closely related to the task, i.e., predicting the target shape.

The main contributions of this work are summarized as bellow:

1. By automatically discovering topics according to the target shapes/target
shape deviations, the difficult face alignment task is divided into several
much easier subtasks. As the defined topic is related to the shape, more
compact subtasks can be achieved leading to better alignment results.

2. Deep model is employed as the alignment model for each topic. Benefited the
great ability of modeling nonlinearity, deep model can well capture the di-
verse variations in shape and appearance leading to more accurate alignment
results.

3. Our method outperforms the state-of-the-arts methods on three public data
sets, i.e., XM2VTS, LFPW, IBUG, and performs in real time.

2 Topic-aware Deep Auto-encoder for Face Alignment

In this section, we will first give an overview of our topic-aware deep auto-encoder
(TDA) method for face alignment. Then we will describe the technical details
about each component of our approach.

2.1 Method Overview

Facial landmark detection on the wild face images is quite challenging mainly due
to the large shape variations. To tackle this problem, we propose a topic-aware
deep auto-encoders for the wild face alignment, which divides the difficult task
of predicting the target shape into several much easier subtasks according to the
topics, as illustrated in Fig. 1. To make the division of subtasks more compatible
with the whole task, the topics are defined according to the target shape (or
shape deviations). Furthermore, considering the great ability of capturing the
nonlinearity, the deep auto-encoder is employed to solve the subtask within each
topic to achieve better prediction.
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Given an image I, the problem of facial landmark detection is generally
formulated as learning a non-linear function D to predict the shape from the
image:

D : S ← I, (1)

where S is the face shape of input image I, i.e., the location of each landmark.
In the wild condition, D is quite difficult to learn due to the large variations of
shape and appearance. Therefore, we propose to divide D into several easier ones
{D1, D2, · · · , Dw} according to the topics T = {T1, T2, ..., Tw}. In this work, the
topics T are defined by clustering the face images according to the shape (or
shape deviation if the output of Di is the deviation rather than the shape). To
predict the topic of any input image, a deep auto-encoder f is used to model the
regression from the input image to the topics:

T = f(I), T ∈ T . (2)

Within each topic, the variations is more compact than the overall topics, and a
better shape prior ST , i.e., the mean shape specific to each topic, can be achieved.

Then, for each topic T ∈ T , we design another deep auto-encoder network,
denoted as gT , which attempts to infer the shape deviation ∆S = Sg − ST as
follows:

gT : ∆S ← H(I, ST ), (3)

where Sg is the ground truth face shape (i.e., the target shape), H is the feature
extraction function, and ST is the shape prior of topic T or the shape from the
previous stage.

After learning all topic-specific face alignment models G = {gT1 , gT2 , ..., gTw},
the mapping function D from image I to face shape S can be reformulated as:

S = D(I) = ST + G(I, T ), (4)

with G(I, T ) = gT .
The above process is further conducted in a cascade procedure to improve

the performance.

2.2 Topic Definition and Prediction

Topic Definition. In our method, the topics are defined by clustering the
target shapes or shape deviations via k-means in each cascade stage. For the
first stage, the topics are achieved by clustering according to the target shape,
i.e., the ground truth shape Sg. As shown in Fig. 2(a), five topics are exploited
by clustering which are roughly consistent with head pose variations since the
head pose variations dominate the shape distribution of that dataset. A good
shape prior can be easily achieved by taking mean face shape specific to each
obtained topic.

For the successive stages, the topics are achieved by clustering according to
the shape deviations, i.e., the difference between the ground truth shape and the
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Fig. 2. Topic discovery at each stage. Five topics are exploited by clustering the target
shapes or shape deviations for each stage. For stage 1, we directly show the cluster
centers of each topic, i.e., the mean shape of each topic. For stage 2 and 3, the cluster
centers, i.e., the mean shape deviation, is added to the frontal face shape for better
exhibitions.

shape from previous stage ∆Sj−1 = Sg − Sj−1, because the alignment model
in the jth (j > 2) stage attempts to predict the shape deviations rather than
the shape directly. In other words, the topics are defined according to the face
shape deviations(i.e., the target of the task) rather than appearance. Finally,
as shown in Fig. 2(b) and 2(c), the topics in each stage are different since the
tasks, i.e., the deviations are different in each stage. Compared with the existing
methods [17, 18] which also divide the overall tasks into several subtasks, our
method is different in two-folds: 1) [17, 18] define the topics according to five
head pose (profile left, left, front, right, profile right) or together with three
facial expressions (neutral, happy and others), i.e., the characteristic of input
image, while our method defines the topics according to the target shapes or
shape deviations, i.e., the output of alignment task; 2) In [18], the topics are
kept the same in all stages since characteristic of the input image is the same
across all stages, while in our method, the topics in each stage are different
since the task, i.e., the shape deviation, in each stage is different. Overall, the
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definition of topics in our methods can make division of topics more compatible
with the overall task, leading to better results.

Topic Prediction. After topics T are defined based on face shapes, a nonlinear
function, i.e., f in Eq. (2), is designed to predict the topic T ∈ T of any input
image I. Deep models like deep auto-encoder networks [22] is a good choice for its
favorable ability of modeling the nonlinearity. Specifically, a deep network with
m− 1 hidden layers is designed. The prediction function f can be formulated as
the following optimization problem:

f∗ = arg min
f
||T − ψm(ψm−1(...ψ1(I)))||22 + λ

∑m

i=1
||Wi||2F, (5)

ψi(ai−1) = σ(Wiai−1 + bi) , ai, i = 1, ...,m− 1, (6)

ψm(am−1) = Wmam−1 + bm , am, am ∈ T , (7)

where ψi is the nonlinear mapping of ith layer of deep auto-encoder networks
parameterized with Wi and bi,

∑m
i=1 ||Wi||2F is a weight decay term to prevent

over-fitting, σ is a sigmoid function which characterizes the nonlinearity mapping
for feature representations {a1, a2, ..., am−1} at the first m−1 layers. At the last
layer, linear regression is employed to get the topic prediction T . Eq. (5) is
iteratively optimized by L-BFGS [27]. After obtaining the solution f∗, the topic
T of given image I can be achieved as T = f∗(I) = ψm(ψm−1(...ψ1(I)).

2.3 Topic-specific Deep Auto-Encoder for Face Alignment

For a topic T , the face alignment task can be formulated as learning a regression
function to predict the shape deviations ∆S between current shape ST and the
ground truth Sg. Considering that the regression function is a complex nonlinear
mapping, a deep auto-encoder network denoted as gT , T ∈ T is designed to infer
the shape deviations, as shown in Fig. 1.

Specifically, within each topic T (T ∈ T ), the shape-indexed SIFT [28] fea-
tures denoted as H(I, ST ) are extracted around all facial points and further
concatenated as the input for the deep network gT . The deep network is opti-
mized as follows:

g∗T = arg min
gT
||∆ST − φT,n(φT,(n−1)(...φT,1(H(I, ST ))))||22 + η

∑n

i=1
||WT,i||2F.

(8)
φT,i(aT,(i−1)) = σ(WT,iaT,(i−1) + bT,i) , aT,i, i = 1, ..., n− 1, (9)

φT,n(aT,(n−1)) = WT,naT,(n−1) + bT,n , ∆ST , (10)

where φT,i is the nonlinear mapping of ith layer of gT parameterized with WT,i

and bT,i. n is the number of layers in the deep network and
∑n
i=1 ||WT,i||2F is a

weight decay term. After obtaining the solution g∗T , the shape deviations can be
achieved as ∆ST = g∗T (I) = φT,n(φT,(n−1)(...φT,1(H(I, ST )))).
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The deep network gT with n layers has many parameters and is easier to
get stuck in local minimum. To relieve this, we initialize the first n − 1 layers
through an unsupervised pre-train process. The objective function of the pre-
train process for ith layer is:

{φT,i∗, ϕT,i∗} = arg min
φT,i,ϕT,i

||aT,(i−1)−ϕT,i(φT,i(aT,(i−1)))||2+α(||WT,i||2F+||W ′T,i||2F),

(11)
where φT,i(x) = σ(WT,ix+bT,i) and ϕT,i(x) = σ(W ′T,ix+b′T,i). For the first layer,
we take the shape-indexed SIFT feature as input, e.g., a0 = H(I, ST ) and the
output of this hidden layer is treated as the input of following layer. With the pre-
trained parameters of the first n− 1 layers and randomly initialized parameters
of the last layer, the whole network is fine-tuned according to Eq. (8).

After learning all topic-specific face alignment models G = {gT1 , gT2 , ..., gTw},
the face shape S of any image can be achieved by adding the predicted shape
deviation ∆ST from the corresponding model gT to the shape prior ST : S =
ST + ∆ST , where T is predicted topic from deep model f . The topic-specific
deep models for face alignment can well capture the detailed variations in shape
and appearance of each topic, which show favorable ability for handling extreme
head pose and facial expression variations.

2.4 Cascade Topic-aware Face Alignment

Given an image I, we can get a shape prediction S from topic estimation model
f and topic specific face alignment models G. However, it is hardly to achieve ac-
curate face alignment result with only one stage process as demonstrated above.
So we perform topic-aware face alignment algorithm in a cascade structure.

After obtaining the shape estimation S1 from the first stage, we further
cascade L − 1 stages to refine the face alignment result, where the jth stage
attempts to predict the shape deviation ∆Sj−1 = Sg − Sj−1 based on shape-
indexed feature H(I, Sj−1), j = 2, 3, ..., L. It is worth noting that topics T j
at each stage j is redefined by clustering with current target shape deviation
∆Sj−1. After defining the topics, we employ a deep auto-encoder network to
predict the topic T ∈ T jbased on shape-indexed feature H(I, Sj−1). For each
stage j, the objective function of topic estimation model f j is formulated as
follows:

f j∗ = arg min
fj
||T j − ψjm(ψjm−1(...ψj1(H(I, Sj−1))))||22 + λ

∑m

i=1
||W j

i ||
2
F, (12)

After getting the topic estimation at stage j, we divide the whole training
set into several subset based on the topic estimation result. Then a deep face
alignment model gjT specific to each topic T ∈ T j are trained with face images

of the corresponding topic. The objective function of deep model gjT is shown
below:

gj∗T = arg min
gjT

||∆Sj−1T −φjT,n(φjT,(n−1)(...φ
j
T,1(H(I, Sj−1))))||22+η

∑n

i=1
||W j

T,i||
2
F.

(13)
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Finally, the overall model Gj = {gjT1
, gjT2

, ..., gjTw
} for the jth stage consists of

the face alignment models specific to each topic.

After cascading L stages, the overall topic-aware face alignment model D
can be represented as: D = {f1, f2, ..., fL;G1,G2, ...,GL}. As a result, the face
alignment performance is gradually improved stage by stage as shown in Sec.3.2.
Our algorithm converged with 3 or 4 stages.

3 Experiments

In this section, the proposed topic-aware deep auto-encoder (TDA) method is
evaluated on three public datasets. Firstly, the performance of each stage of TDA
is investigated, and then the overall method is compared with the state-of-the-art
methods.

3.1 Datasets and Methods for Comparison

To evaluate the effectiveness of the proposed TDA method, five public dataset-
s are used, i.e., XM2VTS [29], LFPW [11], HELEN [30], AFW [19] and
IBUG [31], among which three ones, i.e., IBUG, XM2VTS and LFPW test set,
are used for testing, while the others are used for training. XM2VTS dataset con-
tains 2360 face images of 295 individuals collected under laboratory conditions
and the other datasets are collected from the internet, which contain more chal-
lenging images in the wild. LFPW contains 1432 images, including 1132 images
for training and 300 images for testing. It is firstly published with 29 landmarks
annotations by [11]. HELEN consists of 2330 high resolution images from Flick-
r with 194 annotated landmarks, which contains large variations such as head
pose, facial expression, partially occlusion, etc. In AFW, 205 images with 468
faces are also collected from Flickr, containing complex backgrounds with large
variations in head pose and facial expressions. However, only 6 landmarks(the
center of eyes, tip of nose, the two corners and center of mouth) are released
for this dataset [19]. Recently, the four datasets, i.e., XM2VTS, LFPW, HELEN
and AFW, mentioned above, are relabeled with 68 landmarks and published in
website [21]. Fig. 3(a) shows the definitions of 68 landmarks. The face detection
results are also provided in website [21]. Besides these datasets, another 135 im-
ages with extreme head pose and facial expressions are released in website [21],
denoted as IBUG dataset.

The proposed TDA model is trained with the images from LFPW training
set, HELEN and AFW. For testing, the XM2VTS, LFPW test set and IBUG
dataset are employed. XM2VTS dataset formulates a laboratory scenario, while
LFPW test set and IBUG formulate the uncontrolled scenario which means
much more challenging. Especially, IBUG dataset is even more challenging than
LFPW due to the extreme head pose and exaggerated facial expressions. For all
experiments, the number of stages is 3 and the number of topics is 3 for each
stage.
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(a) (b)

Fig. 3. Definition of facial landmarks: (a) 68 points mark-up. (b) 49 points mark-up.

The proposed TDA method is compared with a few state-of-the-art methods,
e.g., Dantone et al. [17], Zhu et al. [19], Yu et al. [20], DRMF [10] and SDM [9].
For Dantone et al.’s method, the model released by authors can only detect
10 landmarks, we retrain it to detect 68 landmarks with the same training set
for fair comparison. For Zhu et al.’s method, we use the model provided by
Asthana et al., which shows better performance in [10]. The public code of SDM
only predict 49 inner landmarks (as shown in Fig. 3(b)), so we retrain the SDM
method to detect the 68 landmarks with the same training set as ours. Following
the CMU 68 points mark-up, the methods, i.e., Dantone et al, Zhu et al., and
SDM, are trained to detect 68 landmarks, while the original implementations
of Yu et al.’s method and DRMF are directly used and they can only estimate
66 facial landmarks (as shown in Fig. 3(a) except two inner mouth corners).
Therefore, in order to conduct a fair comparison, all methods are evaluated with
the common 66 facial points.

Since all methods are initialized from face detection result, our TDA, SDM [9]
and Dantone et al. [17] are conducted with face detection results from [21] and
the face detectors for other methods [10, 20, 19] are kept the same as their papers.

To measure the performance of face alignment, the normalized root-mean-
squared error (NRMSE) is employed. On XM2VTS and LFPW datasets, the
NRMSE is normalized by the inter-ocular distance, while on IBUG, it is nor-
malized by the face size for clear exhibition since this dataset is extremely diffi-
cult. Besides, the cumulative function (CDF) of NRMSE is used for performance
evaluation.

3.2 Experimental Results

Performance of Each Stage. The proposed TDA is designed in a cascade
structure, and thus we investigate the performance of facial landmark detection
at each stage. The experiments are conducted on the most challenging IBUG
dataset in terms of average detection accuracy of 66 facial landmarks. The ex-
periment results are shown in Fig. 4. The “Mean Shape” denotes the alignment
result by fitting a mean face shape to the face detection window. The “Top-
aware Shape Prior” also takes the mean shape as the fitting results, but the
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Fig. 4. Performance of each stage on
IBUG.
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Fig. 5. Experiment on XM2VTS.

mean shape is from the corresponding topic at the first stage rather than the
overall mean shape. “Stage 1,2,3” represent the facial detection result from the
topic-aware deep face alignment model at each stage respectively.

As seen from Fig. 4, shape priors provided by topic discovery is more accu-
rate than simply taking the mean shape as initialization, which demonstrates the
effectiveness of topic-aware strategy for face alignment, especially under extreme
head poses and facial expressions. Moreover, the deep auto-encoder network spe-
cific to each topic significantly improve the detection accuracy at stage 1. This
improvement comes from two aspects, better shape prior from topic discovery
and better capture of the detailed variations in shape and appearance from the
deep model. Stage 1 handles the large variations and achieves a much better
shape, but it is not accurate enough. To further handle the small shape varia-
tions and ensure a better shape, stage 2 and 3 are cascaded. As expected, the
performance is improved progressively. It should be noted that, in order to well
capture the subtle variations, a higher resolution image containing more subtle
information is used in stage 3.

The experiments are conducted on a desktop (Intel i7-3770 3.4GHz CPU)
with MATLAB implementation. The overall run time of TDA is about 150 mil-
liseconds for one image, which means TDA is less time-consuming and can run
in real-time.

Experiments on XM2VTS. We firstly compare the proposed TDA with the
existing methods on the XM2VTS dataset. In XM2VTS, 2360 face images are
collected over 4 sessions under the laboratory environment. It contains variations
in shape and appearance due to identity, glasses, beard and so on. In DRMF [10],
two face detectors are attached, and we choose the Viola-Jones face detector since
all face images in this dataset are almost near frontal. For fair comparison, only
the common face images returned by all face detectors are used for evaluation.

Fig. 5 shows the comparison results in terms of cumulative error distribution
curves. Although Dantone et al. [17] divide the face alignment task as ours, it
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Fig. 6. Experiment on LFPW.
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Fig. 7. Experiment on IBUG.

performs the worst as seen from Fig. 5, mainly due to the limitations of manual
division of variations and its limited ability of capturing complex nonlinearity.
Zhu et al. [19] performs a little better followed by Yu et al. [20], however both are
worse than DRMF [10] and SDM [9], possibly because Zhu et al. does not model
the correlation of nonadjacent nodes in the mixture-of-trees model, and Yu et al.
suffer from the local minimum problem caused by Gauss-Newton optimization.
Benefitted from the regression based framework, DRMF and SDM perform much
better, and SDM performs even better than DRMF with finer shape-indexed
feature. Moreover, our TDA method outperforms SDM, with an improvement
up to 5% when NRMSE is 0.05, by taking the advantages of the topic-aware
strategy and the deep models in a cascade structure.

Experiments on LFPW. To investigate the robustness to the large variations
such as head pose and facial expression, all methods are further evaluated on the
Labeled Face Parts in the Wild (LFPW) dataset, which contains large variations
from pose, expression, occlusion, etc. The URLs of the 300 testing images are
shared by [11], but some of them are no longer available. Recently, 224 testing
images of LFPW are published as part of 300-W dataset [31]. So these 224 testing
images from [31] are used for testing. For DRMF method, the tree-based face
detector is employed for the wild scenario to achieve better face detection result.

The comparison results are shown in Fig. 6. As seen, all methods degener-
ate on this dataset as LFPW contains larger shape variations. On this dataset,
Dantone et al. [17] also performs the worst as on XM2VTS. Yu et al. [20] is
comparable to Zhu et al. [19] since Yu et al. degenerates a little due to inac-
curate initializations from optimized part mixture models, especially in case of
large variations. Similarly as on XM2VTS, DRMF and SDM perform better, and
our TDA outperform all of them. Compared with the best performer SDM, the
improvement of our TDA is even up to 10% when NRMSE is 0.05. Moreover,
TDA achieves nearly perfect result, i.e., 100%, when NRMSE is 0.1. These com-
parisons demonstrate that our TDA is more robust to the large variations. On
one hand, the improvement comes from the better shape prior from the topic-
aware strategy, and on the other hand, the deep auto-encoder network can well
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Fig. 8. Comparison with [15] on IBUG.

model the nonlinear mapping from the shape-indexed feature to shape, leading
to further improvements.

Experiments on IBUG. IBUG, as another wild dataset, is more challenging
than LFPW due to the extreme head poses and exaggerated facial expressions.
The evaluation results of all methods are presented in Fig. 7. Considering the
extreme challenges on this dataset, NRMSE is normalized by the face size rather
than inter-ocular distance for clear exhibition.

As seen from Fig. 7, the similar conclusions can be obtained that SDM per-
forms the best among the existing methods and our TDA method outperforms
SDM. Even under the extreme shape variations, our algorithm outperforms all
the other methods, demonstrating the effectiveness of our TDA, especially under
the large variations.

Furthermore, we compare our TDA to method [15]. Smith et al. [15] propose
a data-driven approach which is robust to extreme head pose and expressions
and achieves state-of-the-art performance on IBUG dataset. Since only the de-
tection result of 49 facial points (as shown in Fig. 3(b)) is published in [15], the
common 49 landmarks are evaluated for fair comparison. As shown in Fig. 8,
our method also outperforms [15] with more accurate detection result when N-
RMSE is below 0.07. Moreover, the MATLAB implementation of [15] requires
25.5 seconds for processing one image while the run time of our method is on-
ly 150 milliseconds per image, which demonstrates that our method performs
more efficiently than [15]. We also compare our TDA with several deep learning
methods, i.e., DCNN [24] and Zhou et al. [32] on IBUG: 1) The DCNN achieves
an average error of 0.1052, while our TDA achieves better performance with an
average error of 0.0848 in terms of five common landmarks. 2) The mean error of
Zhou et al. is 0.1455, and our TDA achieves a much lower mean error as 0.1156 in
terms of 19 common points. From these comparisons, our TDA also outperforms
DCNN [24] and Zhou et al. [32] on the extremely challenging dataset benefited
from automatic topic discovery. Fig. 9 shows the detection results of our TDA
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Fig. 9. Exemplar results from IBUG dataset.

on some challenging images with simultaneous extreme poses, facial expressions
and partial occlusions.

4 Conclusions

In this paper, we present a topic-aware deep auto-encoder network for face align-
ment. Instead of directly tackling the difficult alignment under large variations,
we firstly divide it into several easier subtasks according to the topics, which
are defined by clustering according to the target shapes or shape deviations.
Then within each topic, a deep auto-encoder network is designed to regress from
the shape-indexed feature to the shape or shape deviation specific to this topic.
Benefitted from the better shape prior from the topic-aware strategy and the
non-linear deep networks, our TDA method is robust to large shape variations,
such as the head pose and facial expression. As evaluated on three challenging
datasets, our method achieves the state-of-the-art performance, demonstrating
the effectiveness of TDA. Moreover, our TDA can perform in real-time.
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