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Abstract. Cataracts are a clouding of the lens and the leading cause
of blindness worldwide. Assessing the presence and severity of cataracts
is essential for diagnosis and progression monitoring, as well as to facili-
tate clinical research and management of the disease. Existing automatic
methods for cataract grading utilize a predefined set of image features
that may provide an incomplete, redundant, or even noisy representa-
tion. In this work, we propose a system to automatically learn features
for grading the severity of nuclear cataracts from slit-lamp images. Local
filters learned from image patches are fed into a convolutional neural
network, followed by a set of recursive neural networks to further extract
higher-order features. With these features, support vector regression is
applied to determine the cataract grade. The proposed system is validat-
ed on a large population-based dataset of 5378 images, where it outper-
forms the state-of-the-art by yielding with respect to clinical grading a
mean absolute error (ε) of 0.322, a 68.6% exact integral agreement ratio
(R0), a 86.5% decimal grading error ≤ 0.5 (Re0.5), and a 99.1% decimal
grading error ≤ 1.0 (Re1.0).

1 Introduction

The lens of a human eye is optically transparent, consisting mostly of water
and protein. Due to its shape, clarity and refractive index, the lens is able to
focus light onto the retina, where the visual stimuli is transmitted through the
optic nerve to the brain. Any clouding or loss of clarity in the lens is called a
cataract, and the blockage of light results in impaired vision or even blindness [1].
Cataracts are the leading cause of visual impairment worldwide, accounting for
more than 50% of blindness in developing countries. As most cataracts are age-
related, the global trend of aging populations is expected to increase the preva-
lence of cataracts, with the number of blind people projected to reach 75 million
by 2020 [2]. Mass screening and timely treatment of cataracts in the elderly is
thus essential to improve quality of life and reduce health care costs.

The lens can be anatomically divided into three layers: an outer layer called
the capsule, a central compacted core called the nucleus, and the cortex which
surrounds the nucleus. Cataracts that occur in the nucleus are the most common
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Fig. 1. Standard photographs of the Wisconsin grading system. The severity of the
nuclear cataracts increases in the images from left to right, with greater brightness and
lower contrast between anatomical landmarks. In addition, the color of the nucleus and
posterior cortex exhibits more of a yellow tint due to brunescence.

type and will be the focus of this work. Since they appear as a homogeneous
increase of opacification and coloration of the nucleus, they can be clearly seen
in cross-sectional views of the lens in slit-lamp images [3].

For practical reasons, automatic methods for screening cataracts are need-
ed, since manual examination, either directly through a slit-lamp microscope
or indirectly through photographic comparisons to the Wisconsin grading pro-
tocol [4] (see Fig. 1), is time-consuming, expensive and subjective [5]. Though
visually distinguishing grade 1 from grade 3 or 4 may be easy, it is difficult to de-
termine precise grades on a continuous scale, which is critical for monitoring the
progression of cataracts. In fact, human intra-grader agreement is only 70-80%,
and inter-grader agreement is about 65% [4].

Existing techniques for automatic grading of nuclear cataracts utilize fea-
tures designed according to the grading protocol [6–9]. These feature sets have
the advantage of being low-dimensional; however, they may be incomplete, re-
dundant, or even contain irrelevant (noisy) elements. For example, some earlier
methods extract features from the whole lens [7, 8], though it was later shown
that the anterior cortex provides no information for nuclear cataract grading [9].
In [9], bag-of-features (BOF) descriptors are extracted from different parts of
the lens, and group sparsity regression (GSR) is used to select the features, pa-
rameters and models simultaneously. Although the BOF model automatically
learns a codebook and represents each image as a histogram of visual words, the
local feature descriptors must be defined in advance. Furthermore, as a global
representation of local features, the BOF model has limited ability to encode
geometric information.

Different from previous techniques, we propose in this work to automatically
learn features for nuclear cataract grading in slit-lamp images. Toward this end,
we adopt the deep learning framework of convolutional-recursive neural network-
s (CRNNs) [10], which are able to extract discriminative higher-order features
because of its hierarchical structure. With these features, we apply support vec-
tor regression (SVR) to obtain grading estimates. Experiments demonstrate that
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the learned features have greater discriminative power and the proposed system
attains higher overall performance than previous methods.

Deep learning has been used in medical image processing for registration, seg-
mentation and classification [11–16]. For our problem, we adopt the CRNN deep
learning framework because of its ability to extract high-order semantic informa-
tion from images of a realistic size (e.g., images of 1536 × 2048 resolution in our
case). Although there exist many deep learning methods for learning features,
most of them can handle only small images or local patches in practice [11–15],
due to the considerable number of parameters that need to be learned for larger
images. In the medical imaging domain, it is difficult if not infeasible to obtain
a sufficiently large amount of data to effectively learn so many parameters (e.g.,
over one million parameters for supervised deep learning networks which typi-
cally consist of about seven layers). By contrast, the design of CRNNs allows
for unsupervised learning within a hierarchical structure, which enables scal-
ing up to realistic image sizes without requiring substantial training data [17,
10]. In this paper, we leverage the unsupervised learning method of the CRNN
framework to learn features automatically. This work represents the first appli-
cation of deep learning for diagnosing large medical images, and it is shown to
achieve better overall performance than the existing cataract grading techniques.
With respect to clinical grading, our method yields a mean absolute error (ε)
of 0.322, a 68.6% exact integral agreement ratio (R0), a 86.5% decimal grading
error ≤ 0.5 (Re0.5), and a 99.1% decimal grading error ≤ 1.0 (Re1.0) on a large
population-based dataset of 5378 images.

2 Method

In this section, we first introduce the CRNN deep learning framework and then
the proposed automatic system which consists of three components: region of in-
terest (ROI) and structure detection, feature learning and image representation,
and grading.

2.1 Convolutional-Recursive Neural Networks

The unsupervised Convolutional-Recursive Neural Network (CRNN) method
was proposed by Socher et al. [10]. It consists of three steps: pre-training C-
NN filters from randomly selected patches, generating local representations of
each image by feeding the filters into a convolutional neural network (CNN)
layer, and learning hierarchical feature representations using multiple recursive
neural networks (RNNs) with random weights.

Pre-training CNN Filters The CNN filters are learned from randomly select-
ed image patches that have been normalized and whitened. There exist several
methods for learning the filters, such as sparse auto-encoder, sparse restricted
Boltzmann machine, k-means clustering, and Gaussian mixtures. Among them,
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k-means clustering has been shown to achieve the best performance [18]. K-
means clustering aims to minimize the sum of squared Euclidean distances be-
tween patches, represented as a vector x, and their nearest cluster centers mk.
The standard 1-of-K, hard-assignment coding scheme is as follows:

fk(x) =

{
1 if k = argminj ||mj − x||
0 otherwise.

(1)

The learned K filters, {fk, k = 1, 2...K}, will be used in the convolutional layer
of the CNN.

Convolutional Neural Network A convolutional neural network consists of a
convolution layer and a pooling layer. In the convolution layer, the set of learned
filters, fk, is convolved with the entire image to yield K corresponding feature
maps. In the pooling layer, each feature map is sub-sampled by average or max
pooling, which makes the resulting features invariant to translation and small
deformations.

Recursive Neural Networks Recursive neural networks learn hierarchical
feature representations by applying the same neural network recursively in a
tree structure. The output of each neural network in an RNN is a parent vector
computed from a set of child vectors, where the children at the bottom of the
tree represent features generated by the CNN. Through this hierarchy, features
of local image regions are merged into a higher-order, image-level feature repre-
sentation. The RNN model can be trained through back-propagation [17]. In [10],
Socher et al. demonstrated that a fixed tree structure can achieve good perfor-
mance with the CNN as its preceding layer. Furthermore, multiple RNNs with
random weights produce high quality features. As the learning is unsupervised,
it is feasible to explore a large set of RNNs efficiently. It is particularly suitable
for medical image processing applications where large amounts of labeled data
are difficult or expensive to acquire.

2.2 Automatic Feature Learning to Grade Nuclear Cataracts

In applying the CRNN feature learning method to nuclear cataract grading, the
lens structure is first detected and anatomical sections of the lens are segmented.
Then CRNNs are applied to each section to learn a representation for that part
of the lens. Finally, SVR is applied to the concatenated features to estimate the
cataract grade. This procedure is illustrated in Fig. 2.

Lens Structure Detection To detect the lens structure, we employ the method
in [7], which uses an active shape model learned from a training set with man-
ually annotated landmark points. We then extract the central part of the lens
around the visual axis as done in [9], but remove the anterior cortex section
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Fig. 2. Overview of deep learning based nuclear cataract grading. Regions of interest
(ROIs) within detected lens structures are convolved with learned local filters, and then
pooled for extracting higher-order features from recursive neural networks (RNNs).
With the resulting feature vectors, final grading results are obtained using support
vector regression (SVR).

since it contains no information for nuclear cataract grading according to both
the grading protocol [4] and the state-of-the-art grading technique [9]. There-
fore, our region of interest contains only the posterior cortex and nucleus. After
extracting the ROI, the posterior cortex section is resized to ns × ns and the
nucleus is resized to ns × (ns × 2) as done in [9]. The resized nucleus is further
divided into three half-overlapping sections: the anterior nucleus, central nucle-
us and posterior nucleus. Features are learned and extracted from each of the
ns×ns sections. By aligning these sections to specific anatomical structures that
are geometrically similar among individuals, discriminative features can be more
effectively extracted even with a relatively small amount of data.

Feature Learning The features are learned for each section independently.
First, we randomly extract local patches from a specific section of the training
images for each grading category. Each patch has a spatial dimension of np×np
and three color channels (R, G and B). Then, k-means clustering is used to
generate the local filters from the randomly selected samples. Fig. 2 shows the
filters learned for the posterior cortex section and the anterior nucleus section,
which capture standard edge and color features.

The local filters are used in the convolutional layer of the CNN, followed by
rectification, local contrast normalization, and average pooling. The invariance of
the obtained feature to translation and small deformations helps to compensate
for inaccuracies in structure detection, bringing greater robustness to the system.
Each section of size ns × ns × 3 is convolved with the K square filters of size
np×np×3. This results in K feature maps of size (ns−np+1)×(ns−np+1). In
the pooling layer, each feature map is processed by average pooling over na×na
regions with a stride size of nl. The size of the final pooled feature map for each
section is nc = ((ns − np + 1) − na)/nl + 1. The CNN layer thus produces a
K × nc × nc dimensional 3D feature map, with each feature vector ci ∈ RK .

To extract higher-order features from the low-level feature map C ∈ RK×nc×nc ,
multiple random RNNs are applied. For each RNN, the basic element is a 3D
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random matrix W ∈ RK×b2×K , where b is the block size which determines a set
of local windows to merge into a parent vector p ∈ RK . The neural network is
as follows:

p = g

W
 c1...
cb2


 , (2)

where g is a nonlinear function such as tanh and ci ∈ RK are the feature vectors
obtained in the CNN layer. Eq. 2 is recursively applied to the whole feature
map without overlapping blocks to obtain a new layer R1. Then Eq. 2 is applied
again with the same weights W to the vectors in R1, resulting in a second RNN
layer R2. The same procedure is repeated until only one parent vector is left. As
the weight W is randomly generated without any supervised learning, multiple
RNNs are needed to extract the higher-order features. Finally, each section is
represented by the N ×K-dimensional vectors obtained through the N RNNs.
We concatenate the feature vectors from all four of the sections to represent the
image. The learned features are fed into an RBF ε-SVR [19] to obtain the final
grading result.

3 Experiments

In this section, we first evaluate the proposed method by comparing it with
the state-of-the-art nuclear cataract grading technique [9] using the dataset em-
ployed in their paper, ACHIKO-NC. Then, we compare the proposed learned
features with the handcrafted features presented in [7] using the same learning
method. The ACHIKO-NC dataset is comprised of 5378 images with decimal
grading scores that range from 0.1 to 5.0. The scores are determined by profes-
sional graders based on the Wisconsin protocol [4], with higher decimal scores
indicating greater severity of the cataract. The protocol takes the ceiling of each
decimal grading score as the integral grading score, i.e., a cataract with a decimal
grading score of 1.2 has an integral grading score of 2. ACHIKO-NC contains
94 images of integral grade 1, 1874 images of integral grade 2, 2476 images of
integral grade 3, 897 images of integral grade 4, and 37 images of integral grade
5. Since the unbalanced data distribution of ACHIKO-NC may skew a learned
prediction model towards middle-grade estimates, we set the training sample
size of each grade to 20 as done in [9].

3.1 Evaluation Criteria

In this work, we use the same four evaluation criteria as in [9] to measure grading
accuracy, namely the exact integral agreement ratio (R0), the percentage of
decimal grading errors ≤ 0.5 (Re0.5), the percentage of decimal grading errors
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≤ 1.0 (Re1.0), and the mean absolute error (ε), which are defined as

R0 =
|dGgte = dGpre|0

N
, Re0.5 =

∣∣|Ggt −Gpr| ≤ 0.5
∣∣
0

N
,

Re1.0 =

∣∣|Ggt −Gpr| ≤ 1.0
∣∣
0

N
, ε =

∑
|Ggt −Gpr|

N
,

(3)

where Ggt denotes the ground-truth clinical grade, Gpr denotes the predicted
grade, d·e is the ceiling function, | · | denotes the absolute value, | · |0 is a function
that counts the number of non-zero values, and N is the number of testing images
(N = |Ggt|0 = |Gpr|0).

The first metric (R0) is based on grading protocol and has large quantization
error, while the third metric (Re1.0) also provides a relatively weak measure. On
the other hand, the second (Re0.5) and fourth (ε) metrics are more significant,
since they measure performance at a finer scale and provide a better reflection
of a method’s utility in monitoring the progression of this disease. Re0.5 has the
most narrow tolerance among the four evaluation criteria, which makes it the
most significant in evaluating the accuracy of grading.

3.2 Comparisons

We compare our method to the state-of-the-art technique, GSR [9], using the
same dataset, experimental setting and reporting methods that they used. We
also evaluate our method in relation to the method proposed in [7], which uses
handcrafted features and RBF ε-SVR. Testing is conducted over twenty rounds.
For each round, twenty images of each grade are selected randomly as the training
data, and the remaining 5278 images are used for testing, which follows the
training/testing sample ratio in [9, 7]. In training, optimal parameters for SVR
and GSR were selected for each method by cross-validation. For the proposed
method, ns = 148, np = 9, na = 10, nl = 5, K = 128, N = 64, and b = 3, which
results in a feature dimension for the four sections of N×K×4 = 64×128×4 =
32768. The results are listed in Table 1 in terms of mean value and standard
deviation of R0, Re0.5, Re1.0 and ε over the twenty rounds. The evaluations
of Re0.5, Re1.0 and ε were found to be statistically significant, with associated
p-values of [0.0920, 2.0383e-10, 3.5271e-14, 9.8171e-11] for the four metrics.

As mentioned previously, the Re0.5 and ε metrics measure performance at
a finer scale, and thus offer a better indication of a method’s utility in disease
progression monitoring. For these important metrics, our method achieves an im-
provement of 3.7% in Re0.5 and 8.3% in ε on the large population-based database
(5378 images). These represent meaningful improvements in light of the impact
of accurate diagnoses on cataract patients.

From the results, we also have the following observations. First, since our
method and [7] both use RBF ε-SVR for regression, the better performance of
our method indicates that our learned features obtained via the CRNN deep
learning framework provide a better representation than the handcrafted fea-
tures of [7]. Second, although GSR is able to reduce the noise and increase the
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Table 1. Performance comparisons for nuclear cataract grading methods

Method R0 Re0.5 Re1.0 ε

Proposed 0.686±0.009 0.865±0.010 0.991±0.001 0.322±0.009

BOF + GSR [9] 0.682±0.004 0.834±0.005 0.985±0.001 0.351±0.004

RBF ε-SVR [7] 0.658±0.014 0.824±0.016 0.981±0.004 0.354±0.014

our improvement over [9] 0.6% 3.7% 0.6% 8.3%

accuracy of structured BOF group features, its performance is still limited by
the representation power of the BOF group features. The proposed learned fea-
tures characterize the image well and furthermore encode high-level semantic
information, which leads our method to better performance.

3.3 Computation Time

The proposed approach provides objective assessments at speeds comparable to
state-of-the-art methods, making it useful for assisting and improving clinical
management of the disease in the context of large-population screening. On a
four-core 2.4GHz PC with 24GB RAM, the total training time using 100 images
is about 1899 seconds, and it takes 17 seconds for prediction of one image. By
comparison, the techniques of [9] and [7] run on the same computing platform
at a speed of 20.45 seconds and 25.00 seconds per image, respectively.

3.4 Analysis and Discussion

The features learned in the CRNN framework depend on the sections from which
they are extracted in a lens image. We empirically studied the effect of differ-
ent lens sectioning on our method by extracting features under the following
settings: 2-sections (posterior cortex and full nucleus), 3-sections (posterior cor-
tex, full nucleus, and anterior cortex), 4-sections (the current implementation
with posterior cortex, posterior nucleus, central nucleus, and anterior nucleus),
and 5-sections (same as 4-sections plus anterior cortex). We also examined the
BOF + GSR method [9] under its original 3-section setting and with 5-sections.
The results, listed in Table 2, show that for our CRNNs, including the ante-
rior cortex always leads to lower performance, as seen by comparing 3-section
CRNNs to 2-section CRNNs, and 5-section CRNNs to 4-section CRNNs, with
either regression method. These results support the findings in [9] that the ante-
rior cortex introduces noise into the classification. However, an examination of
group weights when using CRNN features with GSR shows that GSR does not
eliminate the CRNN features extracted from the anterior cortex, which suggests
that GSR may not fully remove noisy elements from a feature set. The analysis of
Table 2 additionally indicates that a finer partition of the nucleus leads to more
discriminative CRNN and BOF features (comparing 4-sections vs. 2-sections,
and 5-sections vs. 3-sections). In fact, it is seen that 5-section BOF outperforms
the original 3-section BOF in [9].
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For both CRNN and BOF features, k-means clustering is employed to learn
local filters or a codebook. Besides being able to capture more global geometric
and semantic information, CRNN differs from BOF in the representation of color,
as BOF applies k-means to local patches in each color channel separately, while
CRNN applies it to full color patches in a way that the learned filters characterize
both standard edge features and color features. The ability to model correlated
color information provides CRNN features with greater discriminative power.

Table 2. Analysis of different lens sectioning

Method Feature R0 Re0.5 Re1.0 ε

RBF 2-section CRNNs 0.645±0.013 0.819±0.014 0.985±0.003 0.358±0.012
ε-SVR 3-section CRNNs 0.631±0.013 0.801±0.016 0.981±0.003 0.372±0.012

4-section CRNNs 0.686±0.009 0.865±0.010 0.991±0.001 0.322±0.009
5-section CRNNs 0.677±0.008 0.857±0.010 0.990±0.002 0.329±0.008
3-section BOF [9] 0.615±0.013 0.799±0.012 0.980±0.002 0.375±0.011
5-section BOF 0.654±0.018 0.820±0.019 0.976±0.007 0.360±0.017

GSR 2-section CRNNs 0.654±0.021 0.823±0.027 0.985±0.005 0.355±0.022
3-section CRNNs 0.643±0.024 0.808±0.030 0.982±0.005 0.366±0.024
4-section CRNNs 0.679±0.011 0.850±0.015 0.989±0.002 0.335±0.012
5-section CRNNs 0.672±0.009 0.843±0.013 0.987±0.002 0.341±0.011
3-section BOF [9] 0.682±0.004 0.834±0.005 0.985±0.001 0.351±0.004
5-section BOF 0.687±0.009 0.838±0.011 0.987±0.002 0.345±0.008

4 Conclusion and Future Work

We have proposed a new method for nuclear cataract grading based on automatic
feature learning. Difficulty in finding the right features has been a limiting factor
in research on automatic cataract grading, and this work brings a new approach
that directly addresses this issue in a systematic and general manner, in contrast
to resorting to heuristic handpicked features. Through deep learning, discrimi-
native features that characterize high-level semantic information are effectively
extracted. In tests on the ACHIKO-NC dataset comprised of 5378 images, our
system achieves a 68.6% exact agreement ratio (R0) against clinical integral
grading, a 86.5% decimal grading error ≤ 0.5 (Re0.5), a 99.1% decimal grading
error ≤ 1.0 (Re1.0), and 0.322 mean absolute error, which represents significant
improvements over the state-of-the-art method.

This approach has the potential to be applied to other eye diseases. For
example, different handcrafted features are used in optic cup/disc segmentation
to assess the progression of glaucoma and to detect drusen for assessment of age-
related macular degeneration (AMD). Features extracted through this type of
deep learning approach may potentially lead to improved performance in these
cases.
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