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Abstract. We present Spatiotemporal Derivative Pattern (SDP), a de-
scriptor for dynamic textures. Using local continuous circular and spiral
neighborhoods within video segments, SDP encodes the derivatives of
the directional spatiotemporal patterns into a binary code. The main
strength of SDP is that it uses fewer frames per segment to extract
more distinctive features for efficient representation and accurate classi-
fication of the dynamic textures. The proposed SDP is tested on the
Honda/UCSD and the YouTube face databases for video based face
recognition and on the Dynamic Texture database for dynamic texture
classification. Comparisons with existing state-of-the-art methods show
that the proposed SDP achieves the overall best performance on all three
databases. To the best of our knowledge, our algorithm achieves the high-
est results reported to date on the challenging YouTube face database.

1 Introduction

Automatic visual motion analysis has attracted the interest of many researchers
[1, 2]. In nature, visual motions are classified into three categories [3]: motions,
activities, and dynamic textures. Motions are one-time occurring phenomena,
such as a door closing, that are not repetitive in either spatial or temporal do-
mains. Activities are events, such as running, that are temporally periodic while
spatially restricted. Dynamic textures present a statistical regularity having in-
determinate spatial and temporal extent [4]. In other words, image sequences
of moving scenes that exhibit certain stationary time properties are defined as
dynamic texture [5]. Dynamic textures such as smoke, fire, sea-waves, blowing
flags, and waterfalls are periodic in the temporal domain and repetitive in the
spatial domain. In some cases, dynamic textures such as smoke can be partially
transparent and the object’s spatiotemporal appearance may change over time.
In other cases, the shape and appearance of an object may be fixed but the
camera may exhibit motions such as zooming, rotation, or panning. Figure 1
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Fig. 1. Examples of the dynamic texture from the DynTex database [6]. Top:
shaking leaves as dynamic texture with fixed shape. Middle: rising steam as a
translucent dynamic texture. Bottom: the camera’s panning.

illustrates three examples of dynamic textures; shaking leaves, rising steam, and
moving camera.

Representation of dynamic textures has attracted the attention of computer
vision community because of its applications in surveillance systems, video re-
trieval, space-time texture synthesis, and image registration. Dynamic textures
are able to abstract a wide range of complicated appearances and motions into
a spatiotemporal model. Research has shown that the redundancy contained in
dynamic textures can improve an algorithm’s performance [7]. Considering the
above mentioned intrinsic properties of dynamic textures, more effective repre-
sentations can be obtained from image sequences. However, due to its unknown
and stochastic spatial and temporal properties, dynamic texture representation
is more challenging compared to static textures.

2 Related Work

Earlier dynamic texture approaches were based on still images. Their goal was to
select representative frames from a given sequence and applying traditional still-
image based algorithms on the selected frames. Principle Component Analysis
(PCA) [8], Linear Discriminant Analysis (LDA) [9], Local Binary Pattern (LBP)
[10], Locality Preserving Projections (LPP) [11], and Local Directional Number
pattern (LDN) [12] are examples of the still-image based methods that have been
used in dynamic texture recognition. The major drawback of these methods is
that they are not able to capture the temporal periodic properties of the image
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sequences. Moreover, when there are only a few frames per video in the training
set, the performance of the still-image based methods decreases dramatically and
popular still image methods such as LBP cannot extract discriminative features
for matching.

Existing methods in dynamic texture representation can be divided into two
categories: those which completely ignore the temporal relationships between
the frames and those which assume that adjacent frames are temporally con-
tiguous. The first category mainly consists of image set classification approaches
[13, 14] that only consider the spatial cues and treat the images as points on a
high dimensional manifold. In image set classification, each class is represented
by multiple images and the algorithm assigns a label to the query image set by
measuring the minimum distance to the gallery sets. Hu et al. [15] proposed the
Sparse Approximate Nearest Point (SANP) for image set classification. SANPs
are the nearest points of two image sets that can be sparsely approximated by
a subset of the corresponding image set. Wang et al. [16] proposed Covariance
Discriminative Learning (CDL) to represent image sets as a covariance matrix.
They treat the image set classification problem as the problem of point classifica-
tion on a Riemannian manifold spanned by symmetric positive-definite matrices.
Wang et al. [17] represented an image set by a nonlinear manifold and proposed
Manifold to Manifold Distance (MMD) to measure the similarity between man-
ifolds. A manifold learning technique which represented a manifold by a set of
locally linear subspaces was proposed to compute the MMD. They used MMD
to integrate the distances between each pair of subspaces. Coviello et al. [18]
introduced Bag-of-Systems (BoS) representation for motion description in the
dynamic texture. In their framework, the dynamic texture codewords represents
the typical motion patterns in spatiotemporal patches extracted from the video.
They proposed the BoS Tree which constructs a bottom-up hierarchy of code-
words that enables mapping of videos to the BoS codebook.

The methods in the second category attempt to represent the dynamic tex-
tures by capturing both spatial and temporal cues of the image sequence. We
can further divide these approaches into holistic and local methods. Liu et al.
[19] used an adaptive Hidden Markov Model (HMM) [20] to learn the statistics
and the temporal dynamics of the training video. Global temporal features of
the query video were represented over time and the recognition task is performed
by the likelihood score computed using the HMMs’ comparison. Rahman et al.
[1] proposed a motion-based temporal texture characterization technique using
first-order global motion co-occurrence features. Doretto et al. [21] extended the
Active Appearance Model (AAM) [22] to represent dynamic shapes, motions,
and appearances globally by conditionally linear models using the joint varia-
tions of shape and appearance of portions in the image sequence. Derpanis et
al. [23] investigated the impact of multi-scale orientation measurements on scene
classification. These measurements in visual space, x−y, and spacetime, x−y−t,
were recovered by a bank of spatiotemporal oriented energy filters.

Compared to global representations, local spatiotemporal representations can
capture temporal relationships more effectively [2]. Xu et al. [24] assumed dy-
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namic textures as the product of nonlinear stochastic dynamic systems. Based
on the assumption, they proposed a dynamic texture descriptor using an exten-
sion of dynamic fractal analysis called Dynamic Fractal Spectrum (DFS). DFS
captures the stochastic self-similarities in the local structure of the dynamic tex-
tures for classification. Zhao et al. [2] proposed two variants of the LBP features
namely Volume Local Binary Pattern (VLBP) and Local Binary Pattern from
Three Orthogonal Planes (LBP-TOP). VLBP is an extension of the LBP to dy-
namic textures by combining the appearance and the motion. VLBP is extracted
by considering a local volumetric neighborhood around each pixel. Comparing
the gray-level of the center pixel and the neighbors, VLBP generates a binary
representative code. Local Binary Pattern from Three Orthogonal Planes (LBP-
TOP) models the textures by concatenating the extracted LBPs on the three
orthogonal planes (x − y plane, x − t plane, and y − t plane) and considering
the co-occurrence statistics on the three planes. The main drawback of VLBP
and LBP-TOP is that they only represent the first-order derivative pattern of an
image sequence and cannot extract detailed information of the image sequence.
Moreover, they sample the image for coding on a discrete rectangular grid which
can have aliasing effects. However, high-order derivatives, such as second order
derivatives, capture more detailed spatial and temporal discriminant informa-
tion contained in the image sequence. Similarly, extracting derivative patterns
based on continuous circular neighborhoods are likely to generate more robust
features.

We present a novel dynamic texture descriptor called Spatiotemporal Deriva-
tive Pattern (SDP) that overcomes the above two limitations. SDP describes dy-
namic textures by characterizing image sequences by a feature vector computed
from the high-order spatiotemporal derivative patterns within local neighbor-
hoods. Neighborhoods are defined using continuous circular and spiral regions
to avoid the aliasing effects. Using the high-order spatiotemporal derivatives,
SDP captures more detailed information about the given image sequence. Com-
prehensive experiments are conducted on the Honda/UCSD [25], the YouTube
[26], and the DynTex [6] datasets. Comparisons with existing state-of-the-art
techniques show the effectiveness of the proposed method for dynamic texture
analysis. To the best of our knowledge, our proposed technique achieves the
highest recognition rate reported on the challenging YouTube database [26].
Our experiments demonstrate that the SDP needs fewer numbers of frames for
dynamic texture recognition compared to existing methods.

3 Spatiotemporal Derivative Pattern (SDP)

Video-based dynamic texture recognition is a sequential process where every
incoming frame adds to the information provided by the previous frames [27].
However, the limitation of system memory is an important issue in dynamic
texture recognition. Therefore, representing the dynamic texture with the least
number of frames is desirable but challenging at the same time. This can be
done by considering only the M number of contiguous frames that optimally
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Fig. 2. Definition of segments in an image sequence from the DynTex database
[6].

represent the scene. SDP characterizes the image segments by encoding them
into binary patterns based on the spatiotemporal directional variations within
segments. A segment is a subset of the image sequence with a determined number
of frames. Figure 2 illustrates the definition of two 4-frame segments in a given
image sequence.

We partition the given image sequence into M -frame overlapping segments
(see Figure 2). Let f(x, y, t) be a texture point in the given image sequence,
where x and y are the spatial coordinates of the texture point, and t denotes the
time of the frame in which the texture point is located. The k-th frame of the
s-th segment, fs,k(x, y, t

s
k), is defined as

fs,k(x, y, t
s
k) = f(x, y, t0 + (s+ k − 2)l) (1)

s = 1, 2, · · · , (L−M + 1) & k = 1, · · · ,M

where L is the length of the image sequence and l is the time interval between
two successive frames.M and s denote the total number of frames in the segment
and the segment’s index number, respectively. tsk denotes the time of the k-th
frame in the s-th segment.

We define the first frame of each segment as the reference frame of the seg-
ment. The SDP algorithm considers the texture points of the s-th segment’s
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Fig. 3. Defining the spiral route and the neighboring circle in a two-frame seg-
ment. A neighboring (planar) circle is defined for every point in the spiral route.

reference frame, fs,1(x, y, t
s
1), as the reference point of a spatiotemporal ‘Spi-

ral Route’ with radius r. The spiral route starts from the reference point and
passes through all the segment’s frames, making a spiral path. A spiral route
with radius r has 8r points in each frame; the total number of spiral route’s
points in a M -frame segment is 8r × M . Figure 3 illustrates the spiral route’s
points (solid points) and the reference point in a two-frame segment. The spi-
ral route specifies a local spatiotemporal neighborhood for the reference point.
To compute the local spatiotemporal derivatives within segments, we consider
another circular neighborhood for each point of the spiral route with a similar
radius r. We call this circular neighborhood as the ’Neighboring Circle’. We con-
sider 8r neighboring points on a neighboring circle with radius r. Examples of
the neighboring circle are also illustrated in Figure 3. Since the effectiveness of
the circular neighborhood has been proven in 2D image description [28], we use
circular schemes in both the space and the time domains to represent dynamic
textures.

We move the neighboring circle on the spiral route and compute the deriva-
tives using the points along its circumference. Using the k-th frame of s-th seg-
ment, fs,k(x, y, t

s
k), the i-th texture point in the k-th frame of the spiral route,

fSR
s,k,i(xi, yi, t

s
k), is defined as

fSR
s,k,i(xi, yi, t

s
k) = fs,k(x+ r cos(θi), y + r sin(θi), t

s
k) (2)

i = 1, · · · , 8r & k = 1, · · · ,M

where tsk, is the time of the k-th frame in the s-th segment. r is the radius of the
spiral route and θi = 2π(i− 1)/8r is the angle of the i-th spiral route’s point
with respect to the x axis. xi and yi are the coordinates of the i-th texture point
of the spiral route.
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As already mentioned, each texture point of the spiral route is surrounded
by 8r neighbors on the neighboring circle. Denoting the k-th frame of the s-th
segment as fs,k(x, y, t

s
k), the j-th neighboring texture points of the i-th spiral

route’s point in the s-th segment, fNC
s,k,ji(xj , yj , t

s
k), is defined as

fNC
s,k,ji(xj , yj , t

s
k) = fs,k(xi + r cos(φji), yi + r sin(φji), t

s
k) (3)

i = 1, · · · , 8r & j = 1, · · · , 8r & k = 1, · · · ,M

where φji = 2π(j − 1)/8r is the angle of the j-th neighboring texture point of
the i-th spiral route’s point with respect to the x axis.

SDP considers the spatiotemporal directional texture transitions within seg-
ments for description. Here, we have two directions: θ and φ. Using the texture
points of the spiral route and the neighboring circles, the first-order spatiotem-
poral directional derivatives along θ direction, ∂fs,1,a(x, y, t

s
1)/∂θ , and along φ

direction, ∂fs,k,bc(x, y, t
s
k)/∂φ , are defined as

∂fs,1,a(x, y, t
s
1)/∂θ = fs,1(x, y, t

s
1)− fSR

s,1,a(xa, ya, t
s
1) (4)

a = 1, · · · , 4r
∂fs,k,bc(x, y, t

s
k)/∂φ = fNC

s,k,bc(xb, yb, t
s
k)− fSR

s,k,c(xc, yc, t
s
k) (5)

c = 1, · · · , 8r & b = 1, · · · , 4r

where fs,1(x, y, t
s
1) denotes the texture point of the s-th segment’s reference

point and fSR
s,1,a(xa, ya, t

s
1) is the a-th spiral route’s texture point in the reference

frame. In order to compute the directional derivatives, we only consider the
first 4r points (a = 1, · · · , 4r) on the spiral route in the reference frame and
the first 4r points (b = 1, · · · , 4r) on each neighboring circle. The remaining
neighboring points are considered in the derivative calculation by changing the
spatial coordinates of the reference point.

We compute the second-order spatiotemporal directional derivatives from the
first-order derivatives. The second-order spatiotemporal directional derivatives
along θ direction, ∂2fs,1,a(x, y, t

s
1)/∂θ

2 , and along φ direction,
∂2fs,k,bc(x, y, t

s
k)/∂φ

2 , are computed as

∂2fs,1,a(x, y, t
s
1)/∂θ

2 = ∂fs,1(x, y, t
s
1)/∂θ − ∂fSR

s,1,a(xa, ya, t
s
1)/∂θ (6)

a = 1, · · · , 4r
∂2fs,k,bc(x, y, t

s
k)/∂φ

2 = ∂fNC
s,k,bc(xb, yb, t

s
k)/∂φ − ∂fSR

s,k,c(xc, yc, t
s
k)/∂φ (7)

c = 1, · · · , 8r & b = 1, · · · , 4r

where ∂fs,1(x, y, t
s
1)/∂θ , ∂fSR

s,1,a(xa, ya, t
s
1)/∂θ , and ∂fNC

s,k,bc(xb, yb, t
s
k)/∂φ are

the first-order directional derivative along θ direction in the reference point, the
first-order directional derivative of the a-th spiral route’s texture point along
θ direction in the reference frame, and the first-order directional derivative of
the b-th neighbor of the c-th spiral route’s texture points along φ direction,
respectively, computed as

∂fs,1(x, y, t
s
1)/∂θ = fs,1(x, y, t

s
1)− fs,1(x+ r cos(θ), y + r sin(θ), ts1) (8)
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∂fSR
s,k,a(xa, ya, t

s
k)/∂θ = fSR

s,k,a(xa, ya, t
s
k)− (9)

fs,k(xa + r cos(θ), ya + r sin(θ), tsk)
∂fNC

s,k,bc(xb, yb, t
s
k)/∂φ = fNC

s,k,bc(xb, yb, t
s
k)− (10)

fs,k(xb + r cos(φ), yb + r sin(φ), tsk)

Generally, the nth-order spatiotemporal directional derivatives are computed
from the (n− 1)

th
-order spatiotemporal directional derivatives along θ and φ

direction using the following recursive equations:

∂nfs,1,a(x, y, t
s
1)/∂θ

n = ∂n−1fs,1(x, y, t
s
1)/∂θ

n−1 − ∂n−1fSR
s,1,a(xa, ya, t

s
1)/∂θ

n−1

a = 1, · · · , 4r (11)
∂nfs,k,bc(x, y, t

s
k)/∂φ

n = ∂n−1fNC
s,k,bc(xb, yb, t

s
k)/∂φ

n−1

− ∂n−1fSR
s,k,c(xc, yc, t

s
k)/∂φ

n−1 (12)

c = 1, · · · , 8r & b = 1, · · · , 4r

where ∂n−1fs,1(x, y, t
s
1)/∂θ

n−1 and ∂n−1fSR
s,1,a(xa, ya, t

s
1)/∂θ

n−1 are the (n− 1)
th
-

order directional derivative along θ direction in the reference point and the
(n− 1)

th
-order directional derivative of the a-th spiral route’s texture point

along θ direction in the reference frame, respectively. ∂n−1fNC
s,k,bc(xb, yb, t

s
k)/∂φ

n−1

denotes the (n− 1)
th
-order spatiotemporal directional derivative of the b-th

neighbor of the c-th spiral route’s texture points along φ direction.
We encode the computed derivatives into binary bits using the unit step

function, thereby forming a binary bit pattern analogous to LBP features. Es-
sentially, we are only encoding the direction of derivative which is more robust
to changes compared to the derivative value itself. By concatenating the coded
spatiotemporal directional derivatives, we define the nth-order Derivative Pat-
tern (DP) along αb = 2π(b− 1)/8r direction for the s-th segment of the given

image sequence, DP
(n)
s,αb(f(x, y, t)), as

DP (n)
s,αb

(f(x, y, t)) = {u(∂
nfs,1,b(x, y, t

s
1)

∂αn
b

× ∂nfs,k,bc(x, y, t
s
k)

∂αn
b

) (13)

|c = 1, · · · , 8r ; k = 1, · · · ,M}
b = 1, · · · , 4r

where u(·) is the unit step function which encodes the transitions’ direction.
Using the nth-order derivative pattern along αb direction, we compute the

nth-order Spatiotemporal Derivative Pattern (SDP) within the s-th segment
along αb direction as

SDP (n)
s,αb

(f(x, y, t)) =
1

28r×M

8r×M∑
q=1

2(8r×M)−q ×DP (n)
s,αb,q

(f(x, y, t)) (14)

b = 1, · · · , 4r

where DP
(n)
s,αb,q(f(x, y, t)) is the q-th component of the nth-order derivative pat-

tern along αb direction computed using Equation (13).
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Fig. 4. Example of obtaining the first-order SDP along 0◦ direction in a two-
frame segment. Left: the texture points on the spiral route and a sample neigh-
boring circle. Right: derivative pattern calculation in 2D plane.

An example of computing the first-order SDP along α1 = 0◦ direction in a
two-frame segment is illustrated in Figure 4. For better illustration, the neigh-
boring circles are omitted in the right and just the points on each neighboring
circle along the 0◦ direction are shown. The shaded circles denote the gray level
of the points on the neighboring circle along the 0◦ direction. The first-order
spatiotemporal directional derivatives are calculated using Equations (4) and

(5). Then, a 16-bit binary code DP
(1)
s,0◦(f(x, y, t)) = 0111111000000111 is gen-

erated by concatenating the two 8-bit derivative patterns from the two frames
in the segment. Using Equation (14), the first-order SDP along 0◦ direction,

SDP
(1)
s,0◦(f(x, y, t)), is determined as 0.4923.

According to the described algorithm, SDP generates a feature vector for
each segment of the image sequence along αb (b = 1, · · · , 4r) directions. Figure
5 illustrates the extracted SDPs along 0◦ direction for a 10-frame segment from
the Honda/UCSD face database [25]. As can be seen, more details are extracted
from the image sequence as the order of the derivatives increases. By increasing
the radius r, the number of texture points on the spiral route and the neighboring
circle increases and the derivatives are taken in a larger local area. Hence, the
accuracy of the descriptor decreases and less detailed information is extracted
from the given image sequence.

SDP extracts high-order local features for each segment’s texture points. We
model the distribution of the SDP by the spatial histogram [29] because of its
robustness against variations [28]. For this purpose, the SDP along αb (b =
1, · · · , 4r) directions is partitioned into P non-overlapping equal-sized square
regions represented by R1, · · · , RP and the spatial histograms of the regions are
concatenated using Equation (15).

HSDPs,αb
= {HSDPs,αb

(Rp)|p = 1, · · · , P} (15)

b = 1, · · · , 4r
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Fig. 5. Visualization of SDPs along 0◦ direction for a 10-frame segment from
Honda/UCSD face database. Top: the given segment. Bottom: SDPs with dif-
ferent orders and radii.

where HSDPs,αb
denotes the spatial histogram of the SDP of the s-th segment

along αb direction, and HSDPs,αb
(Rp) is the spatial histogram of the p-th region

in the SDP of the s-th segment along αb direction. After calculating the spatial
histograms along all directions, we concatenate the computed histograms to
extract a histogram vector for the whole segment as

HSDPs(f(x, y, t)) = {HSDPs,αb
|b = 1, · · · , 4r} (16)

where HSDPs(f(x, y, t)) denotes the histogram vector of the s-th segment in
the given image sequence.

We partition a given image sequence into M -frame query segments using
Equation (1). For each query segment, the matching is performed by consid-
ering the minimum Euclidean distance between the histogram of the segment
computed using Equation (16) and the histogram of M -frame model segments
in the gallery. The model in the gallery with the minimum distance is considered
as the correct match.

4 Experimental Results

We evaluate the performance of the proposed method using the Honda/UCSD
[25], the YouTube [26], and the DynTex [6] databases. The Honda/UCSD and
the YouTube databases are designed for video-based face recognition while the
DynTex dataset is used for dynamic texture recognition task.
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4.1 Parameters Determination

The spiral route and the neighboring circles’ radius, r, and the SDP’s order are
two free parameters which are determined experimentally using Honda/UCSD
database. Once their optimal values are determined, we use the same values for
all experiments.

The Honda/UCSD video database is widely used for evaluating face tracking
and recognition algorithms. It contains 59 video sequences of 20 different sub-
jects. The video sequences are recorded in an indoor environment for at least
15 seconds at 15 frames per second. The resolution of each video sequence is
640 × 480 in AVI format. All the video sequences contain both in-plane and
in-depth head rotations. In this paper, we use the standard training/test config-
uration provided in [25]; 20 sequences (one per subject) are used as the gallery
and the remaining 39 sequences are used as the probes. All gallery and probe
sequences are partitioned into M -frame overlapping segments using Equation
(1). To have a better comparison with the benchmarks, all the faces in the video
segments are detected, cropped, and resized to 40×40 frames using the algorithm
proposed in [15].

The average rank-1 recognition rate of the proposed algorithm is computed
using SDPs with different radius of the spiral route and the neighboring circles,
r, versus the SDP’s order (see Figure 6). In this experiment, we computed the
average rank-1 recognition rate of SDP for different segment’s length (i.e. 5,
10, 50, and 100 frames and full length of image sequence). As can be seen,
the recognition rate is significantly improved when the order of local pattern is
increased from the first-order SDP to the second-order SDP for all radii. Then,
the performance drops when the SDP’s order increases. On the other hand, as
the radius of the spiral route and the neighboring circles increase the accuracy
of the SDP drops. This means that SDP captures more detailed information in
small local regions. The results prove the effectiveness of the second-order SDP
in extracting more distinctive features from the given video segment. Moreover,
the best value of the radius of the spiral route and the neighboring circles’ radius
is r = 1. Therefore, we used the second-order SDP with radius r = 1 in all the
remaining experiments.

4.2 Results on the Honda/UCSD Database

The rank-1 recognition rate of SDP using query segments with different length on
the Honda/UCSD face databases is compared to the state-of-the-art approaches
in Table 1. As can be seen, SDP achieves 21.7%, 10.9%, 4.0%, and 3.1% im-
provement over Volume Local Binary Pattern (VLBP) [2], VLBP + AdaBoost
[30], Extended Volume Local Binary Pattern (EVLBP + AdaBoost) [30], and
Manifold-Manifold Distance (MMD) [17], respectively. Notice that Sparse Ap-
proximated Nearest Point (SANP) [15] and Kernel Approximated Nearest Point
(KSANP) [15] achieved 100% recognition rate but using the full length image
sequences (varying between 275 and 1168 for each sequence). On the other hand,
SDP achieved 100% recognition rate using only 70 frames per each query seg-
ment.
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Fig. 6. Average rank-1 recognition rate versus SDP’s order and the radius.

Table 1. Comparison of rank-1 recognition rates (%) on the Honda/UCSD
dataset [25].

Method Number of frames Recognition rate (%)
per segment

*VLBP [2] N/A 78.30

*VLBP+AdaBoost [30] N/A 89.10

*EVLBP+AdaBoost [30] N/A 96.00

MMD [17] 300− 400 96.90

SANP [15] Full Length (275− 1168) 100

KSANP [15] Full Length (275− 1168) 100

SDP 10 95.32

SDP 50 97.51

SDP 70 100

*The results are from [30].

4.3 YouTube Database

The YouTube database [26] contains 3,425 videos of 1,595 individuals. All the
videos are from the YouTube website containing the subjects of the Labeled
Faces in the Wild LFW database [31]. The videos have a frame rate of 24
frames/second, and an average of 2.15 videos are available for each subject. The
shortest video duration is 48 frames, while the longest one is 6,070 frames, and
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Table 2. Comparison of average recognition rates ± standard deviations (%)
and Equal Error Rates (%) on the YouTube database [26].

Method Number of frames Average recognition EER (%)
per segment rate ± deviation (%)

*CSLBP [32] N/A 63.10± 1.1 37.40

*FPLBP [33] N/A 65.60± 1.8 35.60

*LBP [10] N/A 65.70± 1.7 35.20

SDP 10 90.00 ± 1.5 12.24

SDP 20 90.24 ± 1.5 12.17

SDP Full length (48-6070) 91.42 ± 1.2 10.31

*The results are from [26].

the average length of a video sequence is 181.3 frames. The faces are detected,
cropped, and resized using the procedure in [26].

In order to make a direct comparison with the results reported in [26], the
same experimental strategy used in [26] is adopted in our experiments. We con-
duct ten-fold experiments by splitting the data randomly similar to [26]. The av-
erage rank-1 recognition rate, the standard deviation, and the Equal Error Rate
(EER) of the SDP and the benchmark approaches on YouTube database are
summarized in Table 2. The results demonstrate that the proposed method con-
sistently achieves the highest recognition rate and the smallest EER compared
to the benchmarks. SDP improves the average recognition accuracy by 28.32%,
25.82%, and 25.72% over Center-Symmetric Local Binary Pattern (CSLBP) [32],
Four-Path Local Binary Pattern (FPLBP) [33], and Local Binary Pattern (LBP)
[10]. It also improves the EER by 24.89% compared to the smallest EER of the
benchmarks. To the best of our knowledge, these are the highest recognition
rates achieved on the challenging YouTube database.

4.4 DynTex Database

DynTex (Dynamic Texture) [6] is a standard database for dynamic texture re-
search containing high-quality dynamic texture videos. It contains over 650 dy-
namic texture shots in different conditions. Dynamic texture sequences were
recorded in PAL format at 25 frames per second with a frame resolution of
720× 576. DynTex’s standard video length is 250 frames.

Table 3 compares the rank-1 recognition rate of the SDP for different query
segment’s lengths with the dynamic texture benchmark approaches. SDP achieves
0.9% error rate which is equivalent to 21.05% reduction in error rate compared
to the nearest competitor BoS Tree [18] (1.14%).
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Table 3. Comparison of rank-1 recognition rates (%) on the dynamic texture
database [6].

Method Number of frames Recognition rate (%)
per segment

VLBP [2] N/A 95.71

LBP-TOP [2] N/A 97.14

DFS [24] N/A 97.63

BoS Tree [18] N/A 98.86

SDP 10 97.94

SDP 100 98.23

SDP Full length (250) 99.10

5 Conclusion
In this paper, we proposed a novel dynamic texture descriptor namely Spatiotem-
poral Derivative Pattern (SDP). SDP captures the spatiotemporal variations of
a video segment using the spatiotemporal directional high-order derivatives. The
SDP algorithm encodes the video segments into directional patterns based on
the spatiotemporal directional derivatives computed within segments. The spa-
tiotemporal directional derivatives are computed using continuous circular and
spiral paths to avoid the aliasing effects. A binary code is obtained by com-
paring the gray-level transitions of the segment’s points. The most important
characteristic of the SDP is using fewer training sample frames compared to the
benchmark methods.

The proposed SDP was tested on three standard datasets: the Honda/UCSD
and the YouTube databases for video-based face recognition and the DynTex
database for dynamic texture classification. In all experiments, the algorithm
was compared with state-of-the-art benchmarks. It is a very encouraging finding
that the SDP performs consistently superior to all benchmarks under the video-
based face recognition and the dynamic texture classification tasks. Especially,
our results demonstrate that the proposed method consistently achieves the best
performances for the challenging YouTube database. This research reveals that
the Spatiotemporal Derivative Pattern provides a new solution for the dynamic
texture description.
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