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Abstract. Motion is the most informative cue for human action recog-
nition. Regions with high motion saliency indicate where actions occur
and contain visual information that is most relevant to actions. In this
paper, we propose a novel approach for human action recognition based
on oriented motion salient regions (OMSRs). Firstly, we apply a bank
of 3D Gabor filters and an opponent inhibition operator to detect OM-
SRs of videos, each of which corresponds to a specific motion direction.
Then, a new low-level feature, named as oriented motion salient descrip-
tor (OMSD), is proposed to describe the obtained OMSRs through the
statistics of the texture in the regions. Next, we utilize the obtained
OMSDs to explore the oriented characteristics of action classes and gen-
erate a set of class-specific oriented attributes (CSOAs) for each class.
These CSOAs provide a compact and discriminative middle-level rep-
resentation for human actions. Finally, an SVM classifier is utilized for
human action classification and a new compatibility function is devised
for measuring how well a given action matches to the CSOAs of a cer-
tain class. We test the proposed approach on four public datasets and
the experimental results validate the effectiveness of our approach.

1 Introduction

Traditional approaches for human action recognition are based on either local
or global features. The former [5, 2, 3] is usually extracted from a sparse set of
local salient regions and tends to lose useful global information about the action.
Contrastively, the latter [6, 7] treats the video as a whole. It contains all the in-
formation of the sequence but is sensitive to occlusion and background variation.
Regions with high motion saliency are of great significance because they indi-
cate where actions occur in videos and contain the most relevant information
about the actions. In this paper, we propose a novel approach for human action
recognition based on the oriented motion salient regions (OMSRs).

Much effort has been devoted to estimate motion using successive frames, but
detecting motion in specific directions is still a challenge. In this paper, we apply
a bank of 3D Gabor filters with multiple directions and an opponent inhibition
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Fig. 1. The flowchart of our proposed approach. (a) The detected OMSRs. (b) The
OMSDs extracted from OMSRs. (c) Learned CSOAs and the middle-level attriubte
vectors. (d) Action classification based on CSOAs.

operator to detect the motion salient region in a video sequence. Specifically, the
detected region is decomposed into a set of OMSRs, each of which corresponds
to a specific motion direction.

We extract a new low-level descriptor from each OMSR, which is named
as oriented motion salient descriptor (OMSD). The OMSDs are obtained by
the statistics of the texture information in OMSRs and when computing them,
a two-layer polar coordinate system is used to encode the spatial distribution
information of the OMSRs. Each OMSD is actually a semi-holistic feature for
human action representation because it contains all the information about an
action in a specific direction.

Taking advantage of OMSDs, a series of class-specific oriented attributes (C-
SOAs) are learnt for each action class. The CSOAs reflect the characteristics of
action classes in different motion directions. Mapping an action represented by
a set of low-level OMSDs into the space of CSOAs related to an class generates
a middle-level attribute feature, which has high discriminative power for human
action recognition. Finally, an SVM formulation is utilized for the action classi-
fication problem, where action classes are characterized by a set of class-specific
attributes.

The flowchart of our proposed approach is shown in Figure 1. The main
contributions of this paper are as follows:

– 3D Gabor filters, incorporating an opponent inhibition operator, are used to
detect the oriented motion salient regions which contain the most relevant
information about actions with respect to different motion directions.

– A new low-level descriptor OMSD, encoding both appearance and motion
information of OMSRs, is proposed to represent the extracted regions.

– A set of CSOAs are learned for recognizing human actions. The CSOAs
characterize action classes in different directions and provide an middle-level
representation for human actions.
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2 Related work

Features used for human action representation can be roughly categorized into
two groups: local features and holistic features. The local feature based approach-
es represent an action as a sparse set of extracted local spatiotemporal features.
Dollár et al. [2] experiment with both pixel gradients and optical flows to de-
scribe the extracted spacetime cuboids. Laptev et al. [3] apply histograms of
gradients (HoG) and histograms of optical flows (HoF) as local descriptors, cap-
turing both motion and structure information of local regions of interest points.
These features are extracted from the local regions around the interest points
and the information in other regions is usually ignored. Compared with these
local features, the proposed OMSDs focus on the whole motion salient regions
with respect to a specific direction, capturing more visual information which is
useful for human action recognition.

The global feature based approaches represent an action by treating the video
sequence as a whole. Bobick and Davids [6] introduce motion energy image (MEI)
and motion history image (MHI) to describe the spatial distribution of motion
energy in a given sequence. Wang et al. [7] construct average motion energy
(AME) and mean motion shape (MMS) based on the human body silhouettes
and shapes respectively, to characterize an action. Ikizler et al. [8] describe a
pose as a histogram of oriented rectangles and then sum up the histograms from
all frames to form a compact representation for the whole video sequence. These
holistic features capture sufficient visual information. However, they are highly
sensitive to shift and background variations. Our OMSDs, based on the oriented
motion salient regions, are more robust to these variations.

In addition, inspired by the formulation on object recognition [11, 13], a num-
ber of researchers show great interest in the attribute based representation for
human actions. Yao et al. [14] use attributes and parts for human action recogni-
tion in still images. Liu et al. [12] combine manually predefined attributes with
data-driven ones obtained by clustering local features, and use a latent SVM
to learn the importance of each part. There are two main differences between
our CSOAs and these sematic attributes. First, our CSOAs are all learnt auto-
matically without any manual annotation. Second, our CSOAs are class-specific
attributes and they are more discriminative for classifying actions from different
action classes.

Over the years, another group of methods perform human action recognition
by aggregating the responses of 3D directional filters and these methods is quite
related to our approach. Derpanis et al. [17, 22] propose to use 3D Gaussian third
derivative filters for human action recognition. In their work a marginalization
process is used to discount spatial orientation component. In our work, a more
simple 3D Gabor filter and a opponent inhibition operator are designed for
OMSR detection. On the other hand, we do not aggregate the motion energies of
different directions simply, but give a mid-level representation of actions through
exploiting the obtained CSOAs.
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3 Oriented Motion Salient Regions

In this section, we introduce how to detect OMSRs in videos. Adelson and
Bergen [10] have demonstrated that motion can be perceived as orientation in
space-time and spatiotemporally oriented filters can be used to detect it. In-
spired by this, we apply a bank of 3D Gabor filters [9] with multiple directions
and an opponent inhibition operator for motion analysis in videos.

A 3D Gabor filter is formed as a product of a Gaussian window and complex
sinusoid. It consists of two parts: the real part and the imaginary part. These
two parts are defined as

g3dr (x, y, t) = ĝ(x, y, t)cos[
2π

λ
(ηxx+ ηyy + ηtt)], (1)

and

g3di (x, y, t) = ĝ(x, y, t)sin[
2π

λ
(ηxx+ ηyy + ηtt)], (2)

respectively, where

ĝ(x, y, t) = exp[−(
x2 + y2 + t2

2σ2
)], (3)

σ controls the scale of the Gaussian, λ is the wavelength of the sinusoidal factor,
and (ηx, ηy, ηt), which satisfies η2x + η2y + η2t = 1, determines the direction of the
filter. The response of a 3D Gabor filter on a video sequence I is expressed as

R = (I ∗ g3dr )2 + (I ∗ g3di )2, (4)

where ∗ denotes the convolution operator. Through squaring and summing the
outputs of two part filters which are 90 degrees out of phase, the 3D Gabor filter
gives a phase-independent measurement of local motion strength.

To capture motions towards multiple directions, we design a filter bank which
contains nine 3D Gabor filters with different directions. Let {g3dk }8k=0 denote the
filters in the bank. These filters are sensitive to motions with any of directions:
flicker, up, down, left, right and four diagonals. Table 1 shows the filters and
their corresponding motions. By convoluting a video sequence with these 3D
Gabor filters, we obtain the responses {Rk}8k=0, which are actually a series of
oriented motion energy measurements on this sequence.

Each 3D Gabor filter responds to motion with a specific direction indepen-
dently. However, the motion detection should be inherently opponent [10]. That
is motions with two opposite directions cannot occur at the same place and time
within the same frequency band. Accordingly, we apply an opponent inhibition
operator on the original responses {Rk}8k=0, which will decrease the influence
of opposite motion. The opponent inhibition operator is defined as the half-
wave-rectified difference between the oriented motion energies corresponding to
opposite motion directions

R̄0(xxx) = R0(xxx),

R̄i(xxx) = |Ri(xxx)− aRi+4(xxx)|+, 1 ≤ i ≤ 4, (5)

R̄j(xxx) = |Rj(xxx)− aRj−4(xxx)|+, 5 ≤ j ≤ 8,
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where xxx = (x, y, t) is a 3D position in the space-time, a controls the weight of
opposite motion and is set to 1 here, and | · |+ is defined as |z|+ = max(0, z).
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Table 1. The nine 3D Gabor filters with different directions and their corresponding

motions. For example, the 3D Gabor filter g3d1 with (ηx, ηy, ηz) = (
√
2

2
, 0,

√
2
2

) is sensitive
to motion towards left.

The motion salience E is measured by the summation of all the oriented
motion energies

E(xxx) =

8∑
k=0

R̄k(xxx). (6)

A threshold εs is used to detect region with high motion saliency and generate
a binary motion salient region (MSR)

S(xxx) =

{
1 if E(xxx) > εs,

0 otherwise.
(7)

The definition of MSR involves all the oriented motion energies. In order to
emphasize motion along a specific direction, we define the oriented motion salient
region (OMSR) as

Sk(xxx) =

{
1 if S(xxx) = 1 and R̄k(xxx) > εk,

0 otherwise.
(8)

where εk is a threshold and 0 ≤ k ≤ 8. The OMSRs {Sk}8k=0 decompose S, but
there may be overlaps between different OMSRs.

4 Oriented Motion Salient Descriptors

Having detected a set of OMSRs for a video sequence, we construct a low-level
OMSD to describe each OMSR. To compute an OMSD, we first extract the
texture information of each pixel in the OMSR. We then create a texture polar
histogram to describe the salient region in each frame and combine all the polar
histograms from the video sequence together to form the final OMSD.



6 Baoxin Wu, Shuang Yang, Chunfeng Yuan, Weiming Hu, Fangshi Wang

The texture information of the pixels in the OMSR is captured by a bank of
2D Gabor filters. A 2D Gabor filter consists of the real part and imaginary part,
which are defined as

g2dr (x, y) = exp(−x
′2 + γy′2

2σ2
)cos(

2π

λ
x′) (9)

and

g2dj (x, y) = exp(−x
′2 + γy′2

2σ2
)sin(

2π

λ
x′) (10)

respectively, where x′ = x cosθ + y sinθ, and y′ = −x sinθ + y cosθ, θ controls
the direction of the 2D Gabor filter, and γ is spatial respect ratio. An overall
response of a 2D Gabor filter is obtained by squaring and summing the outputs
of the two part filters. There are 5 scales: σ ∈ {5, 7, 9, 11, 13} and 6 directions:
θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} in the bank. There are in total 30 filters
in this bank. Through convoluting the video sequence with all the filters, a 30
dimensional response vector is obtained for each pixel.

For the tth frame, a polar coordinate system is applied to model the spatial
distribution of the salient regions in this frame. The origin of the polar coordinate
system is set as the geometric center lt of the salient region of MSR S in the
tth frame. We divide the polar coordinate system into N1 cells. For each cell, we
build a histogram of the 2D Gabor filter responses at different orientations and
scales. The histogram is computed as a summation of response vectors of pixels in
the region belonging to this cell. The final polar histogram for the whole salience
region in this frame is computed as a concatenation of the histograms from all
the cells. There are total 30∗N1 bins in the polar histogram. So, for this frame,
we obtain (htk, l

t), where htk denotes obtained polar histogram, and lt = (xt, yt)
is the geometric center. Figure 2 shows the process of the construction of the
texture polar histogram in a frame.
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Fig. 2. (a) The tth frame of a video sequence and its one OMSD Sk in this frame. (b)
A polar coordinate system. (c) The construction of the polar histogram in this frame.

The global representation for OMSR Sk, is computed as a summation of all
the htk from the sequence, taking into acount the spatial distribution of the lt
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in each frame. Similarly, we apply another polar coordinate system to describe
the relative positions of all the geometric centers {l1, l2, ...} in all the frames.
The origin of the polar coordinate is set as the mean of {l1, l2, ...}. The polar
coordinate is used to divided the plane into N2 cells. We sum up the htk through
the sequence whose center point lt is in the ith cell to generate a global vector

Hk i =
∑
t

htk δ(i, cell(l
t)) (11)

where δ(·, ·) is a Dirac kernel and cell(lt) returns the index of the cell where lt is
located. The OMSD is expressed as the concatenation of Hk i from all the cells

Hk = [HT
k 1, H

T
k 2, ...,H

T
k N2

]T ,

with a dimension of 30∗N1 ∗N2. Figure 3 gives a illustration of how to combine
all the polar histograms from the video sequence into the OMSD.
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Fig. 3. The process of combining all the polar histograms {h1
k, h

2
k, ...} into OMSD Hk.

The obtained OMSD Hk can be viewed as a two-layered texture polar his-
togram. The texture information of pixels and spatial distribution information
of the OMSR are both included in this descriptor. In fact OMSDs fuse both ap-
pearance and motion information in a way quite different from other descriptors,
i.e., though encoding only texture information, each OMSD itself corresponds
to a specific motion direction. The OMSDs {Hk}8k=0 give an effective and infor-
mative representation for an action, based on the main motion directions in the
action.

5 Class-Specific Oriented Attributes

For an action, we have extracted a set of low-level OMSDs, which describe the
action with respect to different motion directions. A traditional way to deal
with these OMSDs is to concatenate them together to form a single complex de-
scriptor for action representation. Then the human action recognition problem
is transformed into a problem of learning a classification function to assign an
action class label to the complex action descriptor. However, actions are so com-
plex that the low-level action descriptors and the action labels cannot capture
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all the intrinsic characteristics of actions. We do not use these obtained OMSDs
directly for action classification, but instead use them to obtain the class-specific
oriented attributes (CSOAs) of each action class. A CSOA describe a specific
action class in a specific motion direction, and it is only shared by the actions
from this class. So the CSOAs can be used to infer action class labels.

A one-versus-all attribute classifier is trained for each CSOA. Given N train-
ing action examples fromM action classes, we denote them as {({Hi

k}8k=0, yi)}Ni=1,
where {Hi

k}8k=0 are the OMSDs for the ith action and yi ∈ {1, 2, ...,M} is the
action class label. Let Φk

y denote the attribute classifier for the yth action class
on the kth motion direction. The positive examples for this classifier are a set
of OMSD {Hi

k | yi = y} and the negative ones are {Hi
k | yi 6= y}. The applied

attribute classifier is a simple SVM classifier with a χ2-kernel to measure the
similarity between two OMSDs Hi

k and Hj
k

k(Hi
k, H

j
k) = exp{− 1

2σ2

∑
r

[(Hi
k)r − (Hj

k)r]2

[(Hi
k)r + (Hj

k)r]
}, (12)

where (Hi
k)r is the rth element of Hi

k and σ is the scale of the kernel function.
For the ith action with OMSDs {Hi

k}8k=0, the output of attribute classifier Φk
y is

denoted as Φk
y(Hi

k), which indicates the confidence of the ith action with respect
to the kth oriented attribute of the yth action class. Nine attribute classifiers
are learnt for each action class and there are 9 ∗M attribute classifiers in total.

The CSOAs are used for action representation because they are effective for
distinguishing between actions. For an action x with OMSDs {Hk}8k=0, mapping
it to the CSOA space of action class y will generate a compact attribute feature
vector with respect to class y. The elements of this vector are the outputs of
oriented attribute classifiers related to this action class

Ψ(x, y) = [Φ0
y(H0), Φ1

y(H1), ..., Φ8
y(H8)]. (13)

The attribute feature vector Ψ(x, y) is a middle-level representation for the ac-
tion. It connects the low-level feature OMSDs {Hk}8k=0 and the action class
label y together and indicates the confidence of action x belonging to class y
with respects to multiple motion directions.

6 Action Classification Based on CSOAs

We apply the learned CSOAs for human action classification. CSOAs character-
ize each action class with respect to the different directions of the actions. If an
action belongs to a certain action class, it should match the CSOAs related to
this class well. In this way, the action classification problem is solved by finding
the action class whose SCOAs match the given action best.

Given an action, we can obtain a class-specific attribute vector with the for-
m of equation (13) by mapping its low-level OMSDs to the CSOA space of a
specific action class. Intuitively, the class-specific attribute vector itself suggests
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whether an given action belongs to the specific action class, i.e., if all the entries
of the vector have great values, it belongs to this class and vice versa. Howev-
er, in practice only one or several oriented attributes are of great significance
for actions. For example, in videos of “running left”, the detected OMSRs are
mainly focusing on the directions of left, left-up, left-down and flicker. It means
that only the oriented attributes of the above mentioned directions have great
discriminative power for recognizing the action “running left” while attributes
of other directions have little relevance.

In such case, we define a compatibility function f to measure how well the
given action x matches the CSOAs of action class y. We assume that f is a linear
combination of the attribute feature vector

f(x, y) = ωT
y Ψ(x, y), (14)

where ωy is the parameter vector of f associated with class y. It emphasizes the
importance of the oriented attributes of a specific class. The function f plays a
role as a action classifier and the predicted label y∗ for the action x is derived
by maximizing f over all y ∈ Y

y∗ = arg max
y∈Y

f(x, y). (15)

The compatibility function f can be learned in an SVM formulation. Given
N training examples {(xi, yi)}Ni=1 where xi is an input video sequence and yi∈
Y = {1, 2, ...,M} is the corresponding action label, the parameter vector wy is
learned by solving a convex quadratic optimization problem which is expressed
as

min
ωy

γ

2
‖ ωy ‖2 +

∑
yi=y

ξ1,i +
∑
yj 6=y

ξ2,j +
∑

yi=y,yj 6=y

ξ3,ij (16)

s.t. ∀yi = y, ωT
y Ψ(xi, yi) ≥ 1− ξ1,i, ξ1,i ≥ 0, (17)

∀yj 6= y, ωT
y Ψ(xj , yi) ≤ −1 + ξ2,j , ξ2,j ≥ 0, (18)

∀yi = y, yj 6= y, ωT
y Ψ(xi, yj) ≤ −1 + ξ3,ij , ξ3,ij ≥ 0, (19)

where ξ1,i,ξ2,j ,and ξ3,ij are the slack variables and γ is a constant that controls
the trade-off between training error minimization and margin maximization.

We analyze the above constrains for a better understanding of the learning
formulation. For class y, constraint (17) requires that in the training stage, only
the attribute vectors generated by mapping the input videos of class y to the
CSOAs of class y are used as positive examples while constrains (18) and (19)
indicates that when mapping the videos of class y into the CSOAs of other class-
es or mapping the videos of other classes into CSOAs of class y, the generated
attribute vectors are regarded as negative examples. The whole process of learn-
ing the function f is quite similar to a multiclass SVM formulation. However,
the input attribute vectors for each action class are different because they are
determined not only by the low-level features, but also by the action class labels.
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7 Experimental Results

We perform a set of experiments to evaluate the performance of our proposed
approach on four publicly available datasets: the KTH [15], UCF sports [16],
UCF films [16] and Hollywood2 [1]. Some frames extracted from the four datasets
are shown in Figure 4.

We conduct two groups of experiments on these datasets. In the first group,
we evaluate the performance of our proposed low-level features OMSDs. The ex-
tracted OMSDs are directly used for human action representation and an SVM
classifier is trained for action classification. In the second group, we evaluate
the performance of our CSOAs based approach. After extracting the low-level
features OMSDs, we obtain the CSOAs related to each action class and a com-
patibility classifier is applied for action classification. In addition, we also com-
pare the performance of our CSOAs based approach with some state-of-the-art
approaches.

Fig. 4. Some frames are extracted from the four datasets. The rows from top to down
are the frames from the KTH dataset, UCF sports dataset, UCF films dataset, and
Hollywood2 dataset respectively.

7.1 Datsets and Evaluation Protocol

The KTH dataset contains six types of human actions (walking, jogging, run-
ning, boxing, hand waving and hand clapping) performed several times by 25
subjects in four different scenarios. There are in total 599 sequences on this
dataset. We perform leave-one-person-out cross validation to make the perfor-
mance evaluation. In each run, 24 actors’ video sequences are used for training
and the remaining actor’s videos for test.

The UCF sports dataset contains ten sports actions: diving, golf swinging,
kicking, lifting, horse riding, running, skateboarding, swinging bench, swinging
from side angle and walking. It consists of 150 video sequences taken from actual
sporting activities from a variety of sources with a wide range of viewpoints
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and scene backgrounds. Leave-one-out cross validation is used to evaluate our
approach. One video sequence is used for test and the remaining sequences are
used for training.

The UCF feature films dataset provides a representative pool of nature sam-
ples of two action classes including kissing and hitting/slapping. It contains 92
samples of kissing and 112 samples of hitting/slapping which are extracted from
a range of classic movies. The actions are captured in a wide range of scenes
under different viewpoints with different camera movement patterns. The test
for this dataset uses leave-one-out cross validation.

The Hollywood2 dataset contains 12 action classes collected from 69 different
Hollywood movies. There are in total 1707 video sequences on this dataset, which
are divided into a train set of 823 sequences and a test set of 884 sequences. We
follow the standard evaluation protocol on this benchmark, i.e., computing the
average precision (AP) for each class and using the mean of APs (mAP) for
performance evaluation.

7.2 Evaluation of Low-Level OMSDs

We test our low-level feature OMSDs on both the KTH dataset and UCF sports
dataset. Given a video sequence containing an action x, we detect the OMSRs
and compute the corresponding OMSDs {Hk}8k=0. In our experiments, we first
evaluate the performance of each OMSD. The whole video sequence is repre-
sented by only a single OMSD Hk. A simple SVM classifier with χ2-kernel is
applied for human action classification. Then we utilize a feature-level fusion
approach in which all the OMSDs {Hk}8k=0 are concatenated together to form
a large feature vector

H = (HT
0 , H

T
1 , ...,H

T
8 )T (20)

for action representation. Similarly, this large feature vector is supplied as in-
put to a SVM with χ2-kernel for action classification. The performance of each
OMSD and the concatenation of OMSDs on both datasets are shown in Table
2. In Table 2, ‘OMSD-k’ means that video sequences are represented by the kth
OMSD Hk, and ‘Average of OMSDs’ is computed as the mean of accuracies of
the 9 OMSDs.

Three points can be drawn from Table 2. First using only a single low-level
feature OMSD obtains relative good results, varying from 91.0% to 95.6% on
the KTH dataset and from 80.7% to 85.7% on the UCF sports dataset. This
demonstrates the effectiveness of the proposed OMSDs. Since the construction
of a OMSD is based on a specific OMSR detected in a video sequence, it captures
only a small part of the visual information of an action. However, the average
accuracy of the OMSD still reaches 92.8% on the KTH dataset and 82.4% on
the UCF sports dataset.

Second, the large featureH obtained by concatenating all the OMSDs achieves
the best results on both datasets, reaching 96.5% for the KTH dataset and 88.0%
for the UCF sports dataset. This is about 3.7% and 5.6% higher than the average
accuracy of single OMSD on the KTH and UCF sports datasets respectively. We
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Table 2. Comparison the performance of each low-level feature OMSD and the con-
catenation of OMSDs on the KTH and UCF sports datasets.

Low-Level Features KTH UCF sports

OMSD-0 95.6% 85.3%
OMSD-1 91.0% 82.6%
OMSD-2 91.2% 83.3%
OMSD-3 94.0% 81.3%
OMSD-4 93.5% 80.7%
OMSD-5 93.3% 80.7%
OMSD-6 92.1% 84.0%
OMSD-7 91.6% 82.6%
OMSD-8 92.6% 81.3%

Average of OMSDs 92.8% 82.4%

Concatenation of OMSDs 96.5% 88.0%

can see that the simple concatenation of all the OMSDs can improve the perfor-
mance of human action recognition by a large amount.

Third, when using a single OMSD for action representation, the ‘OMSD-0’
outperforms other ‘OMSD-k’s, reaching accuracies of 95.6% and 85.3% respec-
tively on the two datasets. In our experiments, the ‘OMSD-0’ corresponded to
the 3D Gabor filter with (ηx, ηy, ηt) = (0, 0, 1). Except for the Gaussian scales,
this 3D Gabor filter is equivalent to Dollár’s linear separable filters designed for
spatiotemporal interest points detection. This 3D Gabor filter generates a large
response where motion occurs, regardless of the motion direction.

7.3 Evaluation of Middle-Level CSOAs

In this subsection, we evaluate the performance of our CSOAs based approach
for human action recognition on the four datasets mentioned above. We extract
the low-level OMSDs for each video sequence and utilize these OMSDs to train
the CSOA classifiers for each action class. Then mapping actions into the CSOA
space of each action class, a set of middle-level attribute features are constructed,
which combine the low-level OMSDs and action class labels together. A compat-
ibility function is learned to measure how well the low-level features match the
CSOAs of action classes.

Table 3 presents a comparison of our proposed CSOA based approach with
other approaches on the KTH and UCF sports datasets. Our CSOA based ap-
proach outperforms the other methods, achieving 97.2% and 91.3% on these two
datasets respectively, which demonstrates the effectiveness of our CSOAs based
approach. It is notable that the performance of our CSOA based approach is
0.7% higher than that of the low-level concatenation of OMSDs on the KTH
dataset and 3.3% on the UCF sport dataset. This shows that firstly the CSOAs
learnt from low-level OMSDs carry great discriminative power and improve the
performance of human action recognition and secondly only the concatenation
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Table 3. Comparison of our CSOA based approach with state-of-the-art approaches
on the KTH and UCF sports datasets.

Algorithm KTH UCF sports

Derpanis et al. [17] 93.2% 81.5%
Wang et al. [4] 92.1% 85.6%

Kovashka et al. [18] 94.5% 87.3%
Le et al. [19] 93.9% 86.5%

Wang et al. [20] 94.2% 88.2%
Liu et al. [25] 94.8% -

Wanget al. [23] 93.3% -
Shi et al. [24] 93.0% -

Concatenation of OMSDs 96.5% 88.0%

Our CSOAs 97.2% 91.3%

Table 4. Confusion table of our CSOA based approach on the KTH dataset.

Box Handclap Handwave Jog Run Walk

Box 1.00
Handclap 0.01 0.98 0.01
Handwave 0.01 0.99

Jog 0.95 0.03 0.02
Run 0.08 0.92
Walk 0.01 0.99

Table 5. Confusion table of our CSOA based approach on the UCF sprots dataset.

Dive Golf Kick Lift Ride Run Skate Swing1 Swing2 Walk

Dive 1.00
Golf 0.95 0.05
Kick 1
Lift 1
Ride 0.08 0.83 0.08
Run 0.08 0.15 0.69 0.08
Skate 0.16 0.08 0.75

Swing1 0.05 0.95
Swing2 1.00
Walk 0.09 0.91

Table 6. The results of our approach on the UCF film dataset.

Algorithms Kiss Slap Average

Rodriguez et al. [16] 66.4% 67.2% 66.8%
Yeffet et al. [21] 77.3% 84.2% 80.75%

Concatenation of OMSDs 92.2% 93.2% 92.7%

Our CSOAs 95.6% 96.5% 96.1%
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Table 7. The results of our approach on the Hollywood2 dataset.

Algorithms mAP

Wang et al. [4] 47.7%
Le et al. [19] 53.3%
Wang et al. [20] 58.3%

Concatenation of OMSDs 52.6%

Our CSOAs 58.6%

of low-level OMSDs achieves a good performance on the KTH dataset, because
the actions on the KTH dataset are simple actions performed against static and
un-cluttered backgrounds. The confusion matrixes of the proposed CSOA based
approach on the KTH and UCF sports datasets are shown in Table 4 and Table
5 respectively.

Table 6 and Table 7 show the performance of our approach on both UCF films
and Hollywood2 datasets. Our CSOAs based approach achieves 96.1% and 58.6%
respectively on both datasets which is comparable to the listed approaches. It
demonstrates the effectiveness of our CSOAs based approach on the realistic
datasets. Meanwhile, the CSOAs based approach is 3.4% and 6.0% respectively
higher than the simple concatenation of all low-level OMSDs. It indicates the
CSOA based approach outperforms the low-level OMSDs based approach.

8 Conclusion

In this paper, we have proposed a novel approach for human action recognition
based on the oriented motion salient regions. First, a 3D Gabor filter bank,
incorporated with an opponent inhibition operator, has been applied to detect
the OMSRs and a set of OMSDs have been extracted from these detected regions.
Then, the obtained OMSDs have been used to explore the oriented characteristics
of each action class, obtaining a series of CSOAs for each class. Taking advantage
of these CSOAs, we have obtained a compact and discriminative middle-level
feature to represent human actions. Finally, a compatibility function has been
devised for action classification. We have tested our proposed approach on several
public datasets. The experimental results have demonstrated that the proposed
approach are effective in human action recognition.

Acknowledgement. This work is partly supported by the 973 basic research
program of China (Grant No. 2014CB349303), the National 863 High-Tech R&D
Program of China (Grant No. 2012AA012504), the Natural Science Foundation
of Beijing (Grant No. 4121003), the Project Supported by Guangdong Nat-
ural Science Foundation (Grant No. S2012020011081) and NSFC (Grant No.
61100099, 61303086).



Human Action Recognition Based on Oriented Motion Salient Regions 15

References

1. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR (2009) 2929–
2936

2. Dollár, P., Rabaud, V., Cottrell, Ga., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: VSPTES (2005) 65–72

3. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human ac-
tions from movies. In: CVPR (2008) 1–8

4. Wang, H., Ullah, M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-
temporal features for action recognition. In:BMVC (2009)

5. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application
to action recognition. In: ICMM (2007) 357–360

6. Bobick, A.F. and Davis, J.W.: The recognition of human movement using temporal
templates. PAMI 23 (2001) 257–267

7. Wang, L., Suter, D.: Informative shape representations for human action recognition.
In: ICPR Volume 2 (2006) 1266–1269

8. Ikizler, N., Duygulu, P.: Histogram of oriented rectangles: A new pose descriptor
for human action recognition. IVC 27 (2009) 1515–1526

9. Reed, Todd, R.: Motion analysis using the 3-d gabor transform. SSC 1 (1996) 506–
509

10. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of
motion. J. Opt. Soc. Am. A 2 (1985) 284–299

11. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their at-
tributes. In: CVPR (2009) 1778–1785

12. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In:
CVPR (2011) 3337–3344

13. Wang, Y., Mori, G.: A discriminative latent model of object classes and attributes.
In: ECCV (2010) 155–168

14. Yao, B., Jiang, X., Khosla, A., Lin, A., L., Guibas, L., Fei-Fei, L.:, Human action
recognition by learning bases of action attributes and parts. In: ICCV (2011) 1331–
1338

15. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM ap-
proach. In: ICPR 3 (2004) 32–36

16. Rodriguez, M., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum
average correlation height filter for action recognition. In: CVPR (2008) 1–8

17. Derpanis, K., Sizintsev, M., Cannons, K., Wildes, R: Action Spotting and Recog-
nition Based on a Spatiotemporal Orientation Analysis. PAMI 35 (2012) 527–540

18. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time
neighborhood features for human action recognition. In: CVPR (2010) 2046–205

19. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y: Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis. In:
CVPR (2011) 3361–3368

20. Wang, H., Klaser, A., Schmid, C., Liu, C.: Action recognition by dense trajectories.
In: CVPR (2011) 3169–3176

21. Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: ICCV
(2009) 492–497

22. Derpanis, K., Lecce, M., Daniilidis, K., Wildes, R.P.: Dynamic scene understand-
ing: The role of orientation features in space and time in scene classification. In:
CVPR (2012) 1306–1313



16 Baoxin Wu, Shuang Yang, Chunfeng Yuan, Weiming Hu, Fangshi Wang

23. Wang, L., Qiao, Y., Tang, X.: Motionlets: Mid-Level 3D Parts for Human Motion
Recognition. In: CVPR (2013)

24. Shi, F., Petriu, E., Laganiere, R.: Sampling strategies for real-time action recogni-
tion. In: CVPR (2013) 2595–2602

25. Liu, L., Shao, L., Zhen, X., Li, X.: Learning Discriminative Key Poses for Action
Recognition. Cybernetics (2013)


