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Abstract. In this paper, we propose a novel online multi-camera frame-
work for person identification based on gait recognition using Grassmann
Discriminant Analysis. We propose an online method wherein the gait
space of individuals are created as they are tracked. The gait space is
view invariant and the recognition process is carried out in a distributed
manner. We assume that only a fixed known set of people are allowed to
enter the area under observation. During the training phase, multi-view
data of each individual is collected from each camera in the network and
their global gait space is created and stored. During the test phase, as an
unknown individual is observed by the network of cameras, simultane-
ously or sequentially, his/her gait space is created. Grassmann manifold
theory is applied for classifying the individual. The gait space of an in-
dividual is a point on a Grassmann manifold and distance between two
gait spaces is the same as distance between two points on a Grassmann
manifold. Person identification is, therefore, carried out on-the-fly based
on the uniqueness of gait, using Grassmann discriminant analysis.

1 Introduction

In this paper, we propose a novel online distributed multi-camera person identi-
fication framework based on gait recognition. Gait recognition is a proven unique
biometric for person identification. One of its main advantages over other biomet-
rics such as iris recognition and fingerprint recognition, is that it is unobtrusive
and requires no attention or cooperation from the person to be identified. It is
also a preferable choice for surveillance applications over other biometrics be-
cause gait data can be captured from a far distance inconspicuously unlike face
recognition data. Gait as a biometric also has typical challenges. One of the main
challenges is to correctly identify a person using their gait signature as they are
viewed from various angles in a camera network. Gait recognition works best in
an environment where there are a fixed set of people that are allowed to enter
the area under observation, a fixed set of entry/exit points. Moreover, all cam-
eras together observe the complete area under observation at all times. In our
framework, during the training phase, a global gait space of each individual is
constructed incrementally, as these people move in the area under observation
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using Incremental Principal Component Analysis (IPCA) [1]. This gait space
is view invariant and is a point on the Grassmann manifold. During the iden-
tification phase, when a person enters the area under observation, his/her gait
space is constructed incrementally. A gait space is considered as an element of a
Grassmann manifold and Grassmann discriminant analysis [2] is used to identify
the person. Grassmannian framework gives us the benefit of working within the
non-linear structure of the data with the simplicity of the vector based computa-
tion. Moreover, because our framework is a distributed framework, each camera
builds the gait space of the individual based on its view and the gait spaces are
merged as the object moves from one camera to another in the network based on
message passing in the network. One of the advantages of our framework is that
it does not require the person to remain in the view of any one camera, requires
no cooperation or time of the individual, the person is identified as they move
around in the area. In case, the person is not identified within a fixed time from
the first moment of entry into the area, he or she is labeled as unknown and the
security official is notified about the person’s presence in the scene and his/her
whereabouts in the area. Our model is scalable in terms of both the number of
cameras in the network as well as the number of people that are allowed to enter
the area under observation.

2 Related Work

The process of gait recognition requires recording videos of people walking, ex-
tracting the silhouettes, then extracting gait features and finally classifying the
individuals based on these features. In general, for automatic gait recognition,
detection and extraction of silhouettes are performed using background subtrac-
tion [3]. After the silhouettes are extracted, based on the method to be employed
for gait recognition, features are extracted and selected. There are two main
approaches to gait recognition, namely, model-based approach and model-free
approach.

In the model-based approach [4–7], static and dynamic features are extracted
from the silhouettes. These features, in general, depict the position and pose of
various body parts with respect to each other as a person moves in the scene.
These features are extracted by tracking and modeling the body parts such
as legs, head, arms, etc. The main advantage of forming a gait signature in this
manner is that it is view as well as scale invariant. These invariants are necessary
in practical situations since the training sequence and test sequence need not be
taken from the same camera view. The drawback in this approach is that they
are highly sensitive to the quality of gait sequences and the silhouette extraction.
Moreover, these methods are in general offline methods since they require large
computations.

Model-free approach does not model the whole body or body-parts, but fo-
cuses on the shape of the silhouettes or the whole body motions. The advantages
of model-free approach are that it is less effected by the quality of silhouette ex-
tracted compared to model based approach, and have low cost of computation.
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However, in most cases, they are view and scale dependent. Methods such as [8]
use silhouettes directly as features that are aligned and scaled. Authors in [9]
propose and define motion-energy image and motion history image while [10] pro-
pose gait energy images for gait recognition. Hidden Markov Models (HMMs) [11]
are also used for gait recognition as these models are able to represent the differ-
ent phases of the gait cycle. Methods such as [12] based on K-Nearest neighbor
classification do not take into consideration the temporal information in gait
sequences. They work with a single key frame extracted from the gait sequence.

Multi-view gait recognition is gaining popularity mainly because single view
gait recognition methods are many-a-time view dependent. The viewing angle
at which the gait database is formed need not be the same as that used for ob-
taining test data. Multi-view gait recognition methods are either based on view
invariant features [14], [19] or based on multi-camera calibration that extract
3D structural information. However, calibration based systems require a fully
calibrated multi-camera set-up which may not always be available. Approaches
to multi-camera gait recognition such as [20], [22] are based on view transforma-
tion and do not require camera calibration. Although these methods allow large
changes in viewing angles by transforming the gallery and test data to the same
direction, they suffer from lack of information present in views separated by large
angles. Authors in [23] propose a novel gait recognition approach based on corre-
lating gait sequences from different views using Canonical Correlation Analysis
(CCA). The CCA model implicitly resolves the mapping relations between gait
features from different views and projects gait sequences from different views into
maximally correlated subspaces. The method in [17], forms the Eigen-gait space
of training samples and for a test sample it uses k-nearest neighbor classification
for classifying a test object.

In our method, we form a gait space of each individual based on the multiple
view data that is recorded. We assume that cameras are mounted at various
viewing angles and may observe the subjects either simultaneously or sequen-
tially. During the training phase, the gait space is created online as the subject
walks around in the camera network. The gait space is updated every time the
subject walks in the view of a new camera. This gait space is view invariant and
represents data from all angles in the input viewing space.

During the test phase, as a person walks through the area under observation,
his/her gait space is created. Then, Grassmann Discriminant Analysis is applied
to identify the person. If the person does not get identified from the first cam-
era, his/her gait space is augmented as it moves in the views of other cameras
and after a certain time interval GDA is again applied. However, we perform a
cascaded classification, where in the next classification step, we use only those
training classes with which the distance is less than a predefined threshold in
the previous step. The probe subspace gets updated as the person walks through
the network and the number of training subspaces considered for classification
reduces making the system fast and online.

Authors in [15], have proposed a gait recognition method called Sparse Grass-
mannian Locality Preserving Discriminant Analysis (SGLPDA), where they form
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a gait energy image of each person. A set of gait energy images are then modeled
as a collection of linear subspaces. They formulate the gait recognition problem
through the graph embedding framework in [16]. They apply sparse represen-
tation along with locality preserving Grassmann Discriminant Analysis to find
the inter-and intra-class variations and perform gait recognition. Our framework
is an online system where a single global gait space is formed for each individ-
ual while theirs is an offline system where more than one subspace exits for the
same individual. Moreover, our framework is completely distributed where each
camera forms its own gait space based on its view and the gait spaces for the
same person are merged to form the global gait space. GDA is applied for finding
the distance of the probe gait space from the training gait spaces to be able to
identify people who enter the area under observation. This identification is also
carried out in real-time, as the individual is moving around in the area under
observation and in a distributed manner.

3 Background

3.1 Grassmann Manifold

A Grassmann manifold denoted by, G(k, n) is a set of k-dimensional linear sub-
spaces in Rn. Each unique subspace is a point on the Grassmann manifold.
Therefore, in our framework the gait space of each individual is a point on a
Grassmann manifold. The distance between two gait spaces is well-defined and
is computed as distance between two points on the Grassmann manifold. The
basic premise is therefore, that if the test subject is one of the people allowed
to enter the building, the probe gait space should be close to one of the training
gait spaces.

In general, the distance between two subspaces is computed using the princi-
ple angles between the two subspaces. The distance between the two subspaces
on the Grassmann manifold is calculated as the distance between two points on
the manifold. Mathematically, a point on the Grassmann manifold, G(k, n) is
represented by an orthonormal matrix S ∈ Rn×k, where the columns of S span
the corresponding k-dimensional subspace in Rn, denoted by span(S).

Two subspaces, span(S1) and span(S2), are two points on the Grassmann
manifold, S1 and S2 respectively. The distance between them is given by Equa-
tion 1.

d2proj(Y1, Y2) =
1

2
‖Y1Y ′1 − Y2Y ′2‖2F (1)

where, Y1 and Y2 are the matrix representations of the subspaces span(S1) and
span(S2). Y ′1 and Y ′2 are the transpose of matrices Y1 and Y2. This also shows
that the matrix representation of S1 and S2 is directly used for computing the
projection distances between the two gait spaces. The advantage of using the
projection distance is that it is an unbiased measure as it uses all the principle
angles. This is specially beneficial since we have no prior knowledge of the data
and all principle angles may be important.
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3.2 Grassmann Discriminant Analysis

The Grassmann discriminant analysis [2] framework is specially focused on the
problems where the data consist of linear subspaces instead of vectors. As men-
tioned in Section 3.1, a Grassmann manifold is a collection of all linear subspaces
of a Euclidean space such that the dimension of all the subspaces is the same.
More formally, G(k, n) is the collection of all linear k-dimensional subspaces of
Rn. An element of G(k, n) is an orthogonal n × k matrix X. Therefore, X is
a point on the Grassmann manifold. Formally, the distance between two points
on the Grassmann manifold is the length of the shortest geodesic connecting
the two points. However, principal angles between two subspaces provide a more
computationally efficient method of defining distances between two points on
this manifold.

Let S1 and S2 be two points on the Grassmann manifold, then the distance
between the two points is computed as the projection distance given by Equa-
tion 1. Then, the projection kernel given by Equation 2

kP (S1, S2) = ||S′1S2||F (2)

is a Grassmann kernel [2]. The Grassmann discriminant analysis algorithm uses
the projection kernel in Equation 2 to perform Kernel LDA using Grassmann
kernel.

The GDA algorithm assumes that the subspace bases Si are already com-
puted. The authors in [2] assume that the subspace bases are computed from
the sets in the data using SVD. However, we use the bases computed during the
gait space construction phase discussed in Section 5. During the training phase,
the algorithm finds distances between subspaces Si and Sj using the projection
kernel given by Equation 2 for all subspaces Si and Sj in the training set. These
distances are stored as a matrix Ktrain. The next step is to solve for the Rayleigh
quotient α using Eigen-decomposition and calculate the (C-1)-dimensional coef-
ficients, Ftrain = αKtrain, where C are the class labels.

During the testing phase, first the distance between the test subspaces and all
the training subspaces are calculated. Then, the (C-1)-dimensional coefficients,
Ftest are calculated. Finally, 1-NN classification from the Euclidean distance
between Ftrain and Ftest is carried out for classifying the test cases. In Section 6,
we describe how we adapt GDA for gait recognition in a camera network.

4 Overview of the Framework

We assume that the area under observation is observed by multiple cameras,
such that at a time one or more cameras may be observing the person under
consideration. We also assume that only a certain set of people are allowed to
enter and exit the area under observation.

During the training phase, as these people walk in the area under observa-
tion, their gait space is constructed incrementally in each camera of the camera
network as discussed in Section 5. We apply background subtraction [3] and
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Incremental Principal Component Analysis(IPCA [1]) to create the gait space
on-the-fly for each object. IPCA also gives the advantage of adding new infor-
mation to the already existing gait space in case new cameras are added to the
system. We assume that the gallery data is present in each of the cameras and
that the network has a known topology. We define neighbors of a camera Ci as
those cameras that can simultaneously view the individual under consideration
or view the person as it moves out of the view of Ci. When a person is about to
get out of a camera’s view, it passes the person’s gait space and other relevant
information to its neighbors. Then, the new camera augments the person’s gait
space incrementally using its own view. In case the new camera gets information
from more than one camera about the same person, it merges the gait bases to
form a single gait space of the person using the method discussed in Section 5.1
and then augments it. In such a manner, a global gait space of an individual is
formed while the person is tracked across all the cameras in the network. This
global gait space is used for classification using Grassmann discriminant analysis.

During the test phase, as the object enters the area under observation, it is
tracked and its gait space is formed on-the-fly. Then, Grassmann Discriminant
Analysis is applied to identify the person based on the gait signatures created
during the training phase. The details are given in Section 3.2. We define a
confidence measure for identification of the person. However, in case the person
does not get recognized from one view, as his/her gait space is augmented by
various views, the identification process is carried out periodically. However, for
each next identification step, only those training classes are used with which
the distance is less than a pre-defined threshold in the previous step. This cas-
caded recognition makes the identification process fast. Any object that is not
recognized with a certain confidence level even after the person has been in the
network for a certain time period is flagged as an unknown person.

Using IPCA and GDA makes the system robust to addition and deletion of
cameras and therefore, makes the system scalable. Deletion of camera does not
affect the gallery since extra information does not mislead the system. Moreover,
on addition of a camera, IPCA is used to update the gallery. Since IPCA is
also used to form the probe’s gait space, data of the new camera can be easily
incorporated if the probe subject enters its view. Another important feature of
our system is that recognition occurs online as the subject is tracked in the views
of the various cameras in the network.

5 Forming the Gait Space

We form the gait space using incremental PCA [1] for creating the gait spaces
as the person is tracked in each camera. In [17], background subtraction [3] is
done to extract the moving object and track it in each frame. The extracted
silhouette is then aligned and scaled to obtain a uniform height. This is done
for taking into account the errors in background subtraction and height changes
when the object moves away from the camera or towards the camera. Then,
using a sequence of silhouettes the self-similarity plot (SP) of the person are
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detected. Then, the Units of Self-Similarity (USS), that is, a set of normalized
feature vectors that are extracted using these self-similarity plots.

We modify this method to create the gait space incrementally. As the person
is tracked, and the foreground silhouette extracted, the corresponding silhou-
ette is scaled to a uniform height. Then, the self-similarity plot is obtained by
Equation 3 between consecutive frames.

S(t1, t2) = min
|dx,dy|<r

∑
(x,y)∈Bt1

|Ot1(x+ dx, y + dy)−Ot2(x, y)| (3)

where, 1 ≤ t1, t2 ≤ N , Bt1 is the bounding box of the silhouette in frame t1, r
is a small search radius and Ot1 , Ot2 , . . . , OtN are the scaled silhouettes. Since
a person’s gait is periodic and continuous, the similarity plot is tiled into rect-
angular blocks, known as Units of Self-Similarity (USS). These USS consists of
self-similarity over two periods of gait for each person. Each USS is the gait fea-
ture vector corresponding to N frames. We construct the USS’s and apply IPCA
on these feature vectors to incrementally find the d most significant eigenvectors
that contain maximum information about the person’s gait from one view. This
creates the gait space of the person from one view. Each camera that observes
the person creates its gait space in a similar manner. When the object is about
to get out of a camera’s view, the camera sends the gait space along with the
identity of the person to all its neighboring cameras.

If the neighboring camera receives more than one gait space for a particular
person, it merges the gait spaces as discussed in Section 5.1. Otherwise, the
new camera creates its own gait space for the person and merges with the gait
space(s) it received for creating a global gait space. In this manner, a global gait
space is created for each individual in the training set.

5.1 Merging Two Gait Basis

Our method for merging two gait spaces is based on the method for merging
two subspaces as proposed in [18]. Let the two sets of observations be An×N
and Bn×M . Then, their corresponding Eigenspace models are denoted by Ω =
(a, Snp, Λpp, N) and Ψ = (b, Tnq, ∆qq,M), respectively. The goal is to merge the
two spaces and to compute the combined Eigenspace Φ = (c, Unr, Πrr, P ) for the
combined observation Cn(N+M) = [AnNBnM ] using only Ω and Ψ . Then, using
the Gram-Schmidt orthonormalization [21], we first construct the orthonormal
basis set γns that spans both Ω and Ψ and x− y. The basis Γns differs from the
required basis Uns by a rotation Rss as given in Equation 4

Uns = ΓnsRss (4)

We then derive another Eigenproblem using the basis Γns whose solution gives
the eigenvalues Πss that are required for the merged model. The correspond-
ing eigenvectors Rss form the rotation matrix that is required in Equation 4.
Using Rss, we compute the eigenvectors Uns as given by Equation 4. The r non-
negligible eigenvalues and their corresponding eigenvectors form Unr. Thus, the
merged Eigenspace is computed in this manner.
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6 Person Identification through Gait Recognition

Each person walks with a gait that cannot be replicated by another person,
making gait a unique biometric. In our framework, during the training phase,
the gait space of all the people allowed in the area under observation is formed
and stored in each of the cameras.

Person identification is performed online as the person moves in the area
under observation. When a person comes into the view of a camera, it starts
getting tracked and its gait space is formed incrementally as described in Sec-
tion 5. As a person walks in the area observed by multiple cameras, we assume
that the subject is viewed by multiple cameras simultaneously or sequentially.
For each of the individuals that are allowed to be present in the area under
observation, their gait space is created in the training phase using IPCA. As
mentioned before, IPCA gives us the flexibility of adding new cameras without
having to re-compute the complete gait space of an individual. For Grassmann
discriminant analysis, we form the matrix Ktrain = kP (Xi, Xj) for all training
subspaces Xi and Xj . We then compute the Rayleigh quotient and Ftrain as
described in Section 3.2.

During the test phase, when an object is detected to have entered the area
under observation, its gait space constructed using the method outlined in Sec-
tion 5. After a certain time interval, the distance between this test subspace and
the training subspaces of all the people allowed in the area is computed, and
the (C-1)-dimensional coefficients, Ftest are computed. The Euclidean distance
between each Ftrain and Ftest is computed as d(Ftest, Ftrain(i)). We define a
confidence measure, given by Equation 5, as a distance decay function based on
the distance between Ftrain and Ftest.

CM(i) = e−(d(Ftest,Ftrain(i)) (5)

The dimension of the gait space of the probe individual changes as the per-
son moves in the area under observation and gets recorded by various cameras
in the system. We assume a match with the ith individual, if the confidence
measure is above a threshold. However, we perform recognition in a cascaded
manner wherein, as the person moves in the area under observation, recognition
is performed at fixed time intervals. All the training classes are used in the first
attempt, after that in every interval only those training classes are used with
which the confidence measure of match is above a per-defined threshold, telim.
In this manner, as the test data increases the dimension of the gait space formed
on-the-fly also increases and the chances of a correct match increases. An indi-
vidual is said to be correctly recognized if the confidence measure of a match is
above another pre-defined threshold tmatch.

An important point to be taken into consideration is that the distance on the
Grassmann manifold is measured between two subspaces of the same dimension
only. However, the dimension of the training gait spaces is much larger than the
test gait space. Therefore, we consider only the first n basis vectors of all the
training gait spaces where, n is the dimension of the test gait space in that time
interval.
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7 Experimental Results

We used the CASIA gait dataset B [13] for our experiments. The dataset consists
of 124 subjects. This dataset is a multi-view gait dataset as it was captured from
11 viewing angles. The viewing angles are 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦,
144◦, 162◦ and 180◦. Moreover, 6 gait sequences are captured for each individual
under each viewing angle. Therefore, there are a total of 11×124×6 or 8184 gait
sequences. For each person, we form the gait space using two gait sequence for
each angle. We started with 0◦ to form the gait space and then, incrementally
create the gait space using two gait sequences for all the views.

For the identification phase, we use a gait sequence of each person that was
not used for training. We start with the 0◦ view and create the gait space of the
test subject. We check for identification using the GDA algorithm and then, add
data from each of the viewing angles and re-checking the identification using the
algorithm in 6. We find that the identification rate improves as the number of
views are increased as shown in Figure 1. We calculate the Ambiguity resolution
measure as given by Equation 6

Ambiguity resolution =
no. of objects correctly classified

total no. of objects
(6)

Fig. 1. The graph shows that as the number of views are increased, the recognition rate
increases. It can be seen that initially there is a steep rise in the number of subjects
correctly classified as the number of views increase, however, after a certain number of
views have been considered the graph saturates. The x-axis shows the number of views
considered and the y-axis represents the ambiguity resolution calculated by Equation 6.
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We also use the Cumulative Match Characteristic(CMC) to present our re-
sults for the GDA based gait recognition. We find that for each person the
identification rate increases as the number of views taken in the creating the
test gait space is increased. This can be seen by the different curves in Figure 2.
In general, we see that for all the 124 subjects, not all 11 views are required for
the identification. In most cases, 5 views were the maximum that was required
for recognition while in a few cases 7 views were required for the person to be
correctly classified.

Fig. 2. The graph shows that as the number of views are increased, the recognition
rate also increases. k = 11 are the number of views taken into consideration for forming
the gait space during the training phase. n indicates the number of views taken into
consideration during the identification phase.

8 Conclusion

In this paper, we have proposed a novel online, distributed framework for person
identification in a camera network. Our framework is based on gait recognition
using Grassmann discriminant analysis. During the training phase, a known set
of people move in the area under observation and a gait space for each individual
is created, by merging the gait spaces from all the cameras viewing the person.
During the test phase, as an individual moves in the area under observation,
his/her gait space is created on-the-fly and Grassmann discriminant analysis is
applied for classifying the individual. Therefore, as a person moves in the area
under observation, our system is capable of identifying him/her. In case, the
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person does not get identified after a certain time interval, we label the person
as an unknown person.
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