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Abstract. Gait analysis is a feasible approach for human identification
in intelligent video surveillance. However, the effectiveness of the domi-
nant silhouette-based approaches are severely affected by dressing, bag,
hair style and the like. In this paper, we propose a useful 2-D struc-
tural feature, named skeleton-based feature, effective improvements for
human pose estimation in human walking environment and a recognition
framework based on GMM-HMM using incremental learning, which can
greatly improve the availability of gait traits in intelligent video surveil-
lance. Our skeleton-based feature uses a 15-DOFs, which is effective in
eliminating the interference of dressing, bag, hair style and the like, to
represent the torso. In addition, to imitate the natural way of human
walking, a Hidden Markov Model(HMM) representing the gait dynamics
of human walking incrementally evolves from an average human walk-
ing model that represents the average motion process of human walking.
Our work makes the gait recognition more robust to noise. Experiments
on widely adopted databases prove that our proposed method achieves
excellent performance.

1 Introduction

Gait, as a promising biometric characteristic, has attracted many researchers in
recent years. In intelligent surveillance, the advantage of accessibility at a dis-
tance makes gait a promising biometric characteristic for human recognition. The
silhouette has been regarded as the starting line of gait analysis because some
databases provide silhouette directly and many gait researchers [1–3] managed
to identify human by individual walking styles using silhouette-based method-
s. However, all the related methods are severely affected by dressing, bag, hair
style and the like. Consequently, if someone changes his/her dressing or hair
style, these methods perform badly. In this paper, we propose a new robust 2-D
structural feature, effective improvements for human pose estimation in human
walking environment and a recognition framework based on GMM-HMM us-
ing incremental learning. Furthermore, we assume that there is only one person
walking in videos. Or if there are several persons superimposing each other, we
cannot get skeleton-based feature, as a result, we cannot perform the identifica-
tion.
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In terms of feature, there have been some other efforts at gait analysis on
2-D structural feature. Guochang Huang [4] employed different blocks, which
represent the solid silhouettes, and fitted the blocks with ellipse. Then, they per-
fomed recognition after merging the ellipse parameters of different view angles.
Baofeng Guo [5] utilized the maximum mutual information (MMI) algorithm to
select gait features, aiming at abandoning the redundant information in high-
dimensional features and extracting the most important parts for identification.
They applied the MMI to gait features, such as the size and position of each part
of body and motion parameters like speed, then they performed recognition us-
ing Support Vector Machine (SVM). Their method achieved better performance
than correlation analysis and variance analysis. But, in summary, these 2-D
structural features are almost represented by shapes such as triangle, ellipse,
polygon among others. Obviously, these shapes will be different when someone
walks wearing thick clothes or carrying bags. Furthermore, these 2-D structural
features are almost attained by background subtraction which is clumsy and rig-
orous to the video surveillance environment. On the other hand, skeleton-based
feature is just human skeleton represented by 15-DOFs, which can reflect the
eigen gait characteristics more thoroughly.

With regard to identification framework, there are several time series mod-
eling methods such as Dynamic Time Wrap (DTW), Hidden Markov Model
(HMM) and Conditional Random Field (CRF). First of all, DTW has a deadly
limitation that it demands the same frequency between gallery set and probe
set. Secondly, normal CRF is so complicated and unsuitable for gait analysis.
Although the linear CRF is suitable, it is more sophisticated than HMM but
not better than HMM on effectiveness for gait analysis. Consequently, we choose
HMM. But, the normal HMM demands a mass of gait sequences as training
samples. However, there are not enough samples in many cases. To conquer this
problem, we get the individual HMMs evolving from an average HMM. In addi-
tion, the same person may walk at different time or different places under real
circumstance so that the gait samples cannot be available in one shot, so the
offline learning method is not suitable. On the contrary, incremental learning is
rather useful to this problem. As a result, we get our incremental GMM-HMM
evolving from an average GMM-HMM.

Incremental learning has been widely applied to many video-based applica-
tions, especially face tracking. For example, David A. Ross [6] proposed an online
method based on incremental algorithm for Principal Component Analysis (P-
CA). They updated the eigen dynamics using incremental learning. Most work
mainly consider the variances of statistical features, since the motion dynamics
seems less useful for recognition in their applications, such as face tracking. How-
ever, dynamics modeling is the core of gait analysis. In this paper, we attempt
to incrementally learn the periodic gait dynamics, and exploit spatiotemporal
relationships for recognition. Similar to [7], gait dynamics is regarded as the out-
ward manifestation of stance transitions. Unlike some existing tracking methods
such as particle filters [8] that depend on the similarities of appearances between
frames, this work aims to recover and compare the periodic dynamics based on
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stance transitions. Furthermore, Maodi Hu [9] proposed an approach based on in-
cremental learning, which achieved a good performance. An incremental learning
method for HMM with Gaussian Mixture Model (GMM) representation (denot-
ed as iGMM-HMM afterwards) is proposed, which shows promising performance
in recognition experiments. The overall framework of the incremental learning
process is shown in Figure 1.

Fig. 1. Overall framework for incremental learning process

The remainder of this paper is organized as follows. Section 1.1 simply
presents skeleton-based feature, human pose estimation method and its results.
Section 2 is the technical details about human pose estimation method and
iGMM-HMM. At last, section 3 is the experiment results in CASIA-B gait
database.

(a) the normal human walking stance (b) the 15-DOFs we adopted

Fig. 2. the walking stance and the DOFs we adopted
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1.1 Skeleton-based feature

As we know, human motion can be represented using Degree of Freedom nodes
(DOFs) model. In this paper, we adopt the 15-DOFs, which is relatively easy to
detect and track and enough to represent skeleton-based feature(see Fig. 2).

To get the 15-DOFs for each walking stance, there are two main approaches,
which are human pose estimation and human pose tracking. Marcus A. Brubaker
[10, 11] proposed a useful approach about human pose tracking for human in
walking. But his method just tracks the lower body, which is insufficient to gait
recognition. Furthermore, because the current human pose tracking methods are
not good enough to achieve our goal and so complicated, we choose the first.

Vittorio Ferrari [12] proposed an approach for human pose estimation which
achieved a good performance. But its method needs to label human upper body
artificially. And then, he utilised another method [13] proposed by Navneet Dalal
to detect upper body. But the upper-body detection method performed badly in
low resolution images. Finally, Vittorio Ferrari [14] proposed a fully automated
method for human pose estimation in uncontrolled environment. So we choose
this method to be the base of our first part algorithm to get skeleton-based
feature. In addition, their method is performed in still images, so we have to
convert videos into images at first. Based on Ferrari’s method, we made some
improvements which can improve the upper-body detection accuracy and the
image parsing speed. The difference between our’s and Ferrari’s is shown in(see
Fig. 3).

(a) the human pose estimation result by
our method

(b) because Ferrari’s upper-body detec-
tion method cannot detect the upper
body, nothing is attained

Fig. 3. the difference between our’s and Ferrari’s

The human pose estimation results by our method are shown in(see Fig. 4).



2-D Structure-Based Gait Recognition 5

(a)

(b)

(c)

Fig. 4. The human pose estimation results step by step.(a) is the original images in
gait database CASIA-B. (b) is the human detection results. (c) is the human pose
estimation results.

2 Technical details

2.1 Skeleton-based feature

The main idea of the human pose estimation method proposed by Vittorio Ferrari
is to progressively reduce the search space for body parts, greatly improving the
chances that human pose estimation will succeed. In their approach, there are
three stages in total.

1. Human detection. They started by detecting human upper bodies in ev-
ery frame, using a sliding window detection based on Histograms of Oriented
Gradients [13], and associate detections over time.

2. Foreground highlighting. At this stage, the search for body parts is limited
in the detected regions.

3. Human pose estimation. They obtained a first pose estimation based on
the image parsing technique of Ramanan [15]. The area to be parsed is restricted
to the regions attained by foreground highlighting.

In their approach, the first two stages use a weak human model. This weak
model only determines the approximate location and scale of the person, and
roughly where the torso and head should lie. The last stage switches to a stronger
model, a pictorial structure composed of body parts tied together in a tree-
structured conditional random field. Parts, li are oriented patches of fixed size,
and their positions are parameterized by location and orientation. The posterior
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of a configuration of parts L = li given an image I can be written as a log-linear
model

P (L|I) ∝ exp(
∑
(i,j)∈

E)ψ(li, lj) +
∑
i

ϕ(li)) (1)

The binary potential ψ(li, lj) corresponds to a spatial prior on the relative posi-
tions of parts and embeds the kinematic constraints (e.g. the upper arms must be
attached to the torso). The unary potential ϕ(li) corresponds to the local image
evidence for a part in a particular position (likelihood). Since the model struc-
ture E is a tree, inference is performed exactly and efficiently by sum-product
Belief Propagation.

Furthermore, there are some rules to utilise in the walking environment.
1. The upper arm must be above the lower arm, and the thigh must be above

the shank.
2. The left arm and right leg, right arm and left leg must be in the same

direction.
3. The left arm and right arm, left leg and right leg must be symmetric.
4. If the camera is fixed, the stance in the next frame must be near the

pervious stance.
Based on their approach, by taking the advantage of the four rules, we make

some effective improvements in the last stage.
First of all, according to the first three rules, we uses prior physiological

characteristics of human gait and effectively limits the search space, which ame-
liorates the efficiency.

Secondly, in terms of the fixed camera, we initialize the position in current
frame using the result of the previous one, and it only focuses on the person to
be studied and largely reduces the number of false candidate, thus improving
the performance.

Then, according to the human pose estimation results, we extracted skeleton-
based feature, including the lengthes and angles of every two connective joints(see
Fig. 2). The lengthes should be divided by the body height in the images. Since
this feature is totally structural, it is hardly influenced by dressing, bag and hair
style.

2.2 Incremental GMM-HMM

In gait analysis, stances are usually used to indicate the periodical latent states
over gait cycles. After years of researches, human gait is widely accepted to be an
identifiable periodic pattern with several stance phases. Consequently, a HMM
that models the representation within and between states is very suitable for
this application.

We will simply review the development of incremental learning for HMM
below. Besides the offline Expectation Maximization (EM) algorithm and the
batch learning Baum-Welch (BW) algorithm, the parameters of HMM can al-
so be estimated incrementally with improved convergence and reduced memory
requirements [16]. Krishnamurthy [17] derived online EM algorithm by using
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random approximations to maximize the Kullback-Leibler information. Stenger
[18] proposed the Incremental Baum-Welch (IBW) algorithm, in which each la-
tent state of their HMM includes a single Gaussian model. It is further derived
to a discrete model with a new backward procedure based on a one-step looka-
head by Florez-Larrahondo [16], which is known as the improved Incremental
Baum-Welch (IBW+) algorithm, which achieved a better performance. In the
purpose of learning gait dynamics for recognition, the models mentioned above
should be enhanced. First, the model including the IBW+ is discrete. On the
other hand, the model including the IBW involves only one Gaussian model for
each latent state. But the model we need is continuous and may includes several
Gaussian models for each state. Consequently, we apply the idea of IBW+ to
our iGMM-HMM and learn the updating approach for GMM from the IBW.

About the symbol notation, we use iGMM-HMM to represent the incremental
GMM-HMM we proposed and oGMM-HMM to represent the normal GMM-
HMM gained by the offline BW algorithm. The feature vector extracted from
tth frame is indicated as Ot. There are some parameters in incremental learning.
The Θ is used for the model representation, which is composed of the transition
probability matrix A between latent states and the observable representations
B. Each single stance within a gait cycle is represented by a latent state in
HMM, and the probability density function (pdf) of each latent state is modeled
by a GMM. Considering a HMM consisting of Q latent states with M Gaussian
mixture components, A = {αij}1≤i≤Q,1≤j≤Q denotes the transition probability
from latent state i to latent state j, and B = {ϕik, µik, σik}1≤i≤Q,1≤k≤M denotes
the mixing coefficient, mean vector, and covariance matrix of component k in
latent state i.

αT (i) = P (O1, . . . , OT , qT = i|Θ) is the forward cumulative probability of
being in state i,

αT (i) =

{
(
∑Q

j=1 αT−1(j)aji)bT (i) T > 1,

bT (i) T = 1,
(2)

and βT (i) = P (OT , OT+1, qT = i|Θ) is the backward one proposed in IBW+
[16],

βT (i) =

M∑
j=1

aijbT+1(j). (3)

Since the real βT (i) is based on an exponential decay function computed via the
backward procedure, for large T this approximation seems to be appropriate. In
any case, it provides a better approximation than ∀T∀iβT (i) = 1.0.

This backward procedure of IBW+ algorithm reduces the training complex-
ity of β in backward procedure of BW algorithm in discrete model from O(n2T )
to O(n2). Although it does not improve the global time complexity, the exper-
imental results in [16] show that IBW+ converges faster than BW and IBW.
Note that it requires a one-step look ahead in the sequence of observations.

bT (i) = P (qT = i|OT , Θ) is the pdf of OT at state i, which indicates the
fitness of a single frame for an averaged walking stance. Because of the usage of
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IBW+, both bT (i) and bT+1(i) are updated in the T th iteration.

bT (i) =
M∑
k=1

ϕikN (OT ;µik, σik), (4)

bT+1(i) =
M∑
k=1

ϕikN (OT+1;µik, σik). (5)

cT (i, k) is the probability of OT being in component k at state i,

cT (i, k) =
ϕikN (OT ;µik, σik)

bT (i)
, (6)

γT (i) = P (qT = i|O1, . . . , OT+1, Θ) is the probability of being in state i,

γT (i) =
αT (i)βT (i)∑Q
i=1 αT (i)βT (i)

, (7)

ξT−1(i, j) = P (qT−1 = i, qT = j|O1, . . . , OT+1, Θ) is the probability of T − 1th

frame being in state i and Tth frame being in state j,

ξT−1(i, j) =

{ αT−1(i)aijbT (j)βT (j)∑Q
i=1

∑M
j=1 αT−1(i)aijbT (j)βT (j)

T > 1,

0 T = 1.
(8)

The estimation of ξT−1(i, j) is improved by the approximation of βT [16].
We use the parameters of an average GMM-HMM (denoted as avgGMM-HMM
afterwards) to serve as the model representation Θ of the iGMM-HMM in the
0th iteration. Given the T th and T + 1th frames, bT (i), bT+1(i), cT (i, k), αT (i),
βT (i), γT (i), and ξT−1(i, j) can be calculated in order, based on Θ in the T −1th

iteration.

Below we will introduce our incremental updating algorithm. At first, sup-
posing there are N frames in the training group of avgGMM-HMM, we num-
ber them as x−N+1, . . . , x0 to differentiate them from the frames in incremental
learning. Given the values of model parameters estimated in the previous frames,
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the equations suitable for T th updating are shown in Equation (9) to (12).

aTij =
aT−1
ij (

∑T−2
t=−N+1 γt(i)) + ξT−1(i, j)∑T−1

t=−N+1 γt(i)
, (9)

ϕ
T

ik =

∑T
t=−N+1 γt(i)ct(i, k)∑T

t=−N+1 γt(i)
, (10)

µT
ik =

µT−1
ik (

∑T−1
t=−N+1 γt(i)ct(i, k))∑T−1

t=−N+1 γt(i)ct(i, k) + γT (i)cT (i, k)

+
γT (i)cT (i, k)Ot∑T−1

t=−N+1 γt(i)ct(i, k) + γT (i)cT (i, k)
,

(11)

σT
ik =(σT−1

ik + (µT−1
ik − µT

ik)(µ
T−1
ik − µT

ik)
H)

·
∑T−1

t=−N+1 γt(i)ct(i, k)∑T−1
t=−N+1 γt(i)ct(i, k) + γT (i)cT (i, k)

+
γT (i)cT (i, k)(OT − µT

ik)(OxT − µT
ik)

H∑T−1
t=−N+1 γt(i)ct(i, k) + γT (i)cT (i, k)

,

(12)

Compared to previous studies on incremental HMM [16, 18], such as IBW
and IBW+, the proposed updating rules make it possible to model the state
representations of the HMM by several Gaussian models.

3 Our experiment

Recognition approaches based on HMM is straight-forward. Let Θid denote the
HMM trained by the gallery set of subject id. Given the data-case probe, the
recognition process can be simply solved by Maximal A Posterior (MAP) rule,

argmaxidP (probe|Θid). (13)

where P (probe|Θid) is the probability of the observation sequence probe given
Θid.

3.1 The database introduction

The database we used is CASIA-B gait database. There are 124 persons in
total, 11 view angles for each person, three types for each view angles. The view
angles are 0, 18, 36, 54, 72, 90, 108, 126, 144, 162 and 180 degree respectively.
The types are nm, bg and cl, respectively standing for dressing normally, wearing
thick clothes and carrying bag. There are only two gait sequences for bg and cl
and six for nm.
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Before we choose to use the iGMM-HMM, we attempted to build oGMM-
HMM for each person, each angle and each type. In a small probe set including
622 gait sequences, we experimented and concluded that the oGMM-HMM for
each type performs better than that for each angle and each type. The experi-
mental results are shown in Table 1. The person oGMM-HMM, angle oGMM-
HMM and type oGMM-HMM stand for the oGMM-HMM for each person, angle
and type respectively.

Table 1. Rank 1 recognition performance with view angle unknown(%).

Approaches person oGMM-HMM angle oGMM-HMM type oGMM-HMM

Accuracy 74.65% 76.85% 80.06%

Consequently, building GMM-HMM for each type is the best. However, there
are only two gait sequences for bg and cl and six for nm in CISIA-B gait database.
And also we have to extract at least one gait sequence for each type as probe set,
so that the training samples are too small to make the GMM-HMM convergent.
As a result, the initial parameter settings are far away from the true values, then
the errors will slow down the convergence process [18]. Therefore, we trained an
average GMM-HMM using some gait samples, whose parameters are estimated
using the offline EM algorithm and the BW algorithm. Then, with incremental
adjustments of the iGMM-HMM parameters, the fitness and validity of specific
individuals increase simultaneously.

3.2 The contrastive methods we used

In our experiment, except for our proposed method, we also take three other
methods as contrastive methods.

Skeleton-based feature plus sub-sequence DTW. The traditional dynam-
ic time warping (DTW) algorithm is to compute the distance from the probe
sequence to the gallery sequence. But in many cases, we need the minimum
distance from the sub-sequences of the probe sequence to the sub-sequences of
the gallery sequence, so that we shouldn’t compute the distance from the probe
sequence to the gallery sequence. In our experiment, for simplicity, we make
sure that the probe sequence is shorter than the gallery sequence. Consequent-
ly, we just need to compute the minimum distance from the probe sequence to
the sub-sequences of the gallery sequence. So, we call this method sub-sequence
DTW(denoted as subDTW afterwards). The recognition results are based on
the distance between the gallery set and the probe one.

argminidd(probe, galleryid) (14)
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d(S1, S2) represents the Euclidean distance between two sequences denoted
by S1 (in the gallery set) and S2 (in the probe set). Let T1 and T2 denote the
lengths of S1 and S2 respectively.

d(S1, S2) = minT1−T2+1
s=1 ||

s+T2∑
t1=s

S1(t1)−
T2∑

t2=1

S2(t2)||. (15)

Skeleton-based feature plus offline GMM-HMM. The traditional oGMM-
HMM for each type using Skeleton-based feature may not converge because of
the small amount of samples. In this method, we initialize the prior probability
and the initial transition probability from latent states to observable states with
uniform distribution. In addition, the initial transition possibility from latent
states to latent states is stochastic.

Gait energy image (GEI) plus PCA plus nearest-neighbor classifi-
er. This method uses the classical feature GEI. Then, after PCA process, the
nearest-neighbour classifier can achieve a very good performance. This method
is denoted as GEI-PCA-NN afterwards.

3.3 Experimental results

In our experiment, we choose 40 persons randomly, including 20 women and 20
men respectively, to train the avgGMM-HMM(only the iGMM-HMM uses this).
Then we split the left gait sequences into probe set and gallery set. The probe
set includes one gait sequence for each type and the left is the gallery set. The
results are shown in Table 2.

In terms of the parameters setting, there are two controllable parameters
which are the number Q of latent states and the number M of Gaussian mix-
ture components for each latent state. The experiments prove that iGMM-HMM
performs better when Q is between 6 to 8 and M is between 3 to 4.

Obviously, the iGMM-HMM is better than the oGMM-HMM and subDTW
with the same skeleton-based feature we proposed. Furthermore, although iGMM-
HMM plus skeleton-based feature performs a little worse than GEI-PCA-NN
in nm-nm, bg-bg and cl-cl, the results with cumulative match score(CMS)(see
Fig. 5) prove that iGMM-HMM catches up with GEI-PCA-NN quickly. Anyway,
the recognition accuracy of iGMM-HMM is still high in nm-nm, bg-bg, cl-cl. In
addition, iGMM-HMM performs a little bit worse in bg-cl, which is mainly be-
cause the human pose estimation results are relatively worse in bg and cl than
nm. But in the majority of cross-type recognitions such as nm-bg, nm-cl, bg-nm
and so on, iGMM-HMM is obviously better than GEI-PCA-NN, moreover, the
superiority keeps the same with CMS. In a word, our skeleton-based feature is a
better feature than GEI in cross-type recognition. However, the cross-type recog-
nition accuracy is still a little low, especially in bg-cl, cl-nm and cl-bg, whose
reason is that there are still some errors in the human pose estimation method.
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Table 2. Rank 1 recognition performance with view angle unknown in type to type(%)

Approaches subDTW oGMM-HMM iGMM-HMM GEI-PCA-NN

nm-nm 95.89 93.71 98.53 98.83
nm-bg 47.80 49.27 70.97 53.67
nm-cl 30.79 28.74 43.99 26.10
bg-nm 39.31 38.71 53.96 36.66
bg-bg 88.27 84.59 91.79 95.60
bg-cl 16.13 17.72 17.89 20.23
cl-nm 22.58 20.31 23.17 17.60
cl-bg 16.67 16.42 20.23 12.90
cl-cl 83.87 81.33 86.80 97.07
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Fig. 5. Comparison between iGMM-HMM and GEI-PCA-NN in CMS
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4 Conclusions and future work

In this paper, a novel 2-D structural feature, effective improvements for human
pose estimation in human walking environment and an incremental identifica-
tion framework for gait dynamics are proposed. The experiments prove that our
skeleton-based feature can eliminate the interference of dressing, bag, hair style
and the like effectively. However, only structural feature is not enough to human
identification problem in gait analysis. As a result, our future work should be fus-
ing the skeleton-based feature with some other features to cover this shortage. In
addition, in spite of the improvement we do in human pose estimation, the human
pose estimation results are still not that much good because of some detection
errors. But, as the human pose estimation or human pose tracking improves,
our approach must achieve better performance. Whatsoever, the iGMM-HMM
is really a good framework for spatiotemporal problems.
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