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Abstract. In this paper, we propose a new framework for segmenting
feature-based multiple moving objects with subspace models in affine
views. Since the feature data is high-dimensional and complex in the
real video sequences, most traditional approaches for motion segmenta-
tion use the conventional PCA to obtain a low-dimensional representa-
tion, while our proposed framework applies the sparse PCA (SPCA) to
obtain a projected subspace, which is a low-dimensional global subspace
on a Stiefel manifold with sparse entries. Then, the local subspace separa-
tion is achieved via automatically selecting the sparse nearest neighbours.
By combining two sparse techniques, the proposed framework segments
different motions through a simple spectral clustering on an affinity ma-
trix built with the principal angles. To the best of our knowledge, our
framework is the first one to apply the sparse optimization for optimiz-
ing the global and local subspace simultaneously. We test our method
extensively and compare its performance to several state-of-art motion
segmentation methods with experiments on the Hopkins 155 dataset.
Our results are comparable with these results, and in many cases exceed
them both in terms of segmentation accuracy and computational speed.

1 Introduction

Motion segmentation aims to decompose a video sequence into different moving
objects that move throughout the sequence. In the recent years, the tracked
features based motion segmentation problem has motivated amount of people to
find a fast and high accuracy method. Particularly, different with the traditional
motion segmentation method based on the pixel-wise model such as [1,2], which
is focused on segmenting the foreground moving objects from their background
in an unannotated video, the segmentation of only the few number of tracked
features on each moving object can not only solve the occlusions in the video, but
also save computation time w.r.t. the pixel-wise methods. Motion segmentation
approaches which based on the tracked features of a moving body focus on
clustering the sparse or dense feature points into different regions and each region
represents a moving object in the sequence.

The goal of a general feature-based motion segmentation is to cluster the
union of different point trajectories with different labels and different labels
represent the different motions, as shown in Fig. 1. We address the feature tra-
jectories segmentation as a subspace clustering problem under the affine camera
model. Under the model of subspace, the trajectories which can be extracted
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during a preprocessing step, such as KLT[3], SIFT[4] or SURF[5], are embedded
in a union of local subspaces and each trajectory is represented with a local sub-
space. Then, the problem of segmenting different feature trajectories changes to
cluster the union of different local subspaces.

Fig. 1: Examples of our segmentation result on the real sequences cars9 and kananchi1 from the
Hopkins155 dataset. (The first row: from left to right are the results for frame 1, 40 and 50; the
second row: from left to right are the results for frame 1, 10 and 20.

Contributions Our main contribution is an efficient framework for motion seg-
mentation which based on subspace clustering with sparse optimization. We
combine two state-of-art sparse representations to optimize both the global and
local estimation. Sparse Principle Components Analysis(SPCA) is applied for
the global optimization, in the same time, we seek a sparse representation for
the closest neighbours for the local subspace separation with computing principal
angles. As illustrated in Fig. 1, our method can clearly label the moving objects
that tracked throughout a video. To the best of our knowledge, our framework
is the first one to apply the sparse optimization for optimizing the global and
local subspace simultaneously.

The following sections are organized as follows. The related works are dis-
cussed in Sec. 2. Section 3 introduces the subspace models for motion segmenta-
tion. Our proposed approach described in detail in Sec. 4. In Sec. 5, experimental
results are presented. Finally, this work is concluded and future work is discussed
in Sec. 6.

2 Related Work

There are a large amount of works on motion segmentation. In general, the meth-
ods for motion segmentation can be divided into two classes: affinity-based and
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subspace-based methods. The affinity-based approach [6] is based on computing
the affinity between a pair of trajectories. Our approach is concentrated on the
subspace methods, which focuses on segmentation of the different motions with
finding the membership from a union of subspaces. The subspace-based methods
can divided into: iterative methods, algebraic solution, compressive sensing and
subspace estimation. One of the iterative methods is RANSAC algorithm [7],
which can deal with outliers and noise. But the number of subspaces needed to
be known as prior knowledge, and they require a good initial estimation and pa-
rameter selection. The most popular method based on the algebraic solution is
the Generalized Principal Component Analysis (GPCA) [8]. While GPCA gives
a good performance for the subspaces with different dimensions, but GPCA is
not robust to the noise and outliers. Agglomerate Lossy Compression (ALC) [9]
is a method using the compressive sensing on subspace model. The ALC method
is robust to noise and outliers without knowing the subspace dimension and the
number of the subspace, but it is highly time-consuming. The other application
of compressive sensing on subspace models is based on the sparse representation.
One of the most popular methods is the Sparse Subspace Clustering (SSC) [10].
SSC has a goodt performance on the motion segmentation with a part of missing
data. But the computation time is quite large.

Our work is most related to Local Subspace Affinity (LSA) [11], which belongs
to the subspace estimation method. The overall procedure of LSA is that after
the data projection of the feature points that lie in a global low-dimensional
subspace. The estimation of the local subspaces can be obtained by computing its
nearest neighbours(NNs) and SVD. After the local subspaces have been achieved,
LSA builds the affinity matrix by using the principle angles between each local
subspace. In the end the subspace segmentation is accomplished by applying the
spectral clustering on the affinity matrix. The rank estimation for the global and
local subspace is achieved by a model selection(MS) method. The drawback of
LSA is that the number of nearest neighbours to estimate the local subspace
may lead to the overestimation problem. It means that the nearest neighbours
may not belong to the same subspace. This situation is more likely to happen
particular with the non-rigid or degenerated motions. The second limitation is
that the rank estimation by model selection is based on the parameter k which
has to be set depending on the noise and the number of motions. Thus the model
selection needs to know the amount of noise as the prior knowledge as well.

3 Subspace Models for Motion Segmentation

In this section, we first introduce the basic idea about using the subspace mod-
els for motion segmentation. Subsequently, under the affine camera model we
analyse the subspace methods for motion segmentation and show that under the
subspace models it is equivalent to clustering multiple low-dimensional linear
subspace in a high-dimensional space.
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3.1 Subspace clustering

In practice, in order to clustering the high-dimensional data from the real-world
video sequences, one needs to first look for a low-dimensional representation
of the high-dimensional data. After projection of the high-dimensional data, the
obtained low-dimensional subspace is embedded in a union of multiple subspaces.
If we consider the union of low-dimensional projection space as a global subspace,
the underlying multiple subspaces can be regarded as the local subspaces. One
of the main tasks of subspace clustering is to find out the number of different
local subspaces, the other is the separation of the multiple local subspaces which
means that one needs to cluster the data according to different subspace, the
data from the same subspace should be classified together. It means that the
task of cluster the feature data according to different motions changes to cluster
the data into different subspaces.

3.2 Multi-body motion segmentation with affine camera model

Recently, most popular algorithms for performing the motion segmentation are
assuming an affine camera model, which is useful to weak and paraperspective
camera models. In this paper, the affine camera model is also used for the moving
object in the video sequence. Affine camera model can transform the tracked
feature points on the moving object from 3-D coordinates to 2-D position, which
is formulated as [12]

xfp = Af

[
XF

1

]
, (1)

where the XF =

X
Y
Z

, represent the world coordinate, Af = [R2f×3|T2f×1 is

the 2×4 affine transformation matrix in the f frame, {xfp ∈ R2}f=1,...,F
p=1,...,P denote

the 2-D location of tracked feature trajectory at frame f .
A general input for the motion segmentation under the affine camera model

can be formulated as a data matrix containing all of the 2-D positions of tracked
features, so-called the trajectory matrix x11 . . . x1P

...
xF1 . . . xFP


2F×P

=

 A1

...
AF


2F×4

[
X1 . . . XP

1 . . . 1

]
4×N

, (2)

One can rewrite this as  x11 . . . x1P

...
xF1 . . . xFP

 = W2F×P , (3)

W2F×P = M2F×4S
T
N×4, (4)
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where we call the M as the motion matrix, whereas the S is the structure matrix.
The rank of the W trajectory matrix is no more than 4. As a result, the rank of
the general trajectory matrix for rigid motion is at most 4.

4 Proposed Framework

Our proposed framework extends the framework of LSA [11] in both the global
and the local parts, as shown in Fig. 2. Transformation of the trajectory matrix
with the Sparse Principal Component Analysis (SPCA) is used for the global sub-
space estimation. For the local subspace estimation, instead of the fixed number
of local nearest neighbours policy, we adopt a sparse manifold optimization from
[13] to automatically extract each local low-dimensional subspaces. In Sec. 4.1,
the SPCA is presented. The sparse manifold optimization technique for local
subspace estimation is presented in Sec. 4.2.

Fig. 2: Proposed framework overview.

4.1 Global Subspace Transformation

As described in Sec. 3.2, the dimensional of a general input trajectory data
matrix for subspaces methods for motion segmentation is 2F , where F denotes
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the number of the frames. However, the maximum rank of the subspace for one
rigid motion is 4. Therefore most of the rank of the trajectory data is redundant.
This has motivated a lot of algorithms to discover a low-dimensional projection
for the high-dimensional trajectory data matrix.

Assume that the trajectory matrix WP
2F ∈ R2F as Eq. 2 is given as in-

put, from Sec. 3.2 the rank of the general motion segmentation for one rigid
motion is bounded by 4. This constraints has enforced a customary dimension-
ality reduction procedure for trajectory matrix WP

2F . Most of the other sub-
space methods choose to reduce the dimension of WP

2F to m = 4n, where n
is the number of motions. Following classical PCA we can use the singular
value decomposition(SVD) to the matrix W , which decompose the W as follows:
U2F×2FD2F×PV

T
P×P = WP

2F . A global data transformation is then obtained by
considering only the first m columns of V . In the case of SPCA we need to have
a sparse construction in the matrix V , for illustration we can choose a l0-penalty
for block sparse PCA through a generalized power method proposed by [14]. Af-
ter solving a sparse optimization problem on the high-dimensional motion data,
we can obtain a new representation matrix denoted by Z∗ of WP

2F on the Stiefel
manifold SPm. Each column of Z∗ is a sparse vector z∗i , i = 1, · · · ,m represents
the transformed data.

In order to enforce the sparse entries on the principal components, [15] firstly
proposed the direct formulation with Lasso to produce sparse principal compo-
nents. Given the data matrix WP

2F and Σ = WTW is the covariance matrix of
W , the classical PCA can be formed as follows,

z∗ = max
zT z�1

zTΣz, (5)

The solutions z∗ are the principal components of the data matrix W . In [15],
they consider a direct reformulation to penalize the the nonzero entries of the
solutions z,

z∗ = max
z∈Bn

zTΣz − γ‖z‖0, (6)

with the sparsity-controlling parameter γ > 0, when γ = 0, the Eq. 6 is relative
to the classical PCA problem. Bn refers to a unit Euclidean ball in Rn. Whereas,
the author of [14] consider a fixed data k ∈ Bn which ensure that (xTi k)2−γ > 0,
where the vector {xi ∈WP

2F , i = 1, ..., P}, and the Eq. 6 is changed to,

z∗ = max
k∈Bp

max
z∈Bn

(kTWz)2 − γ‖z‖0, (7)

In order to obtain a accurate projected m-dimensional subspace with orthogonal
vectors, we can use the block sparse PCA on a Stiefel manifold SPm, because
the sparse principal components z∗ of SPCA are not forced to be orthogonal
and cannot be used to the following local subspace separation. To enforce the
orthogonal principal components, the author of [14] choose the block form for
PCA and solve a block SPCA based on the l0-Penalty. Following the Eq. 6, when
the γ = 0, we come to the classical PCA situation,

z∗ = max
z∈Bn

zTΣz, (8)
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Then the author of [14] extended the Eq. 8 to the block form with a trace function
as the following reformulation,

Z∗ = max
K∈SP

m

max
Z∈Sn

m

Trace(diag(KTWZN)2)−
m∑
j=1

γj‖zj‖0, (9)

where the m related to the needed transformed dimensional, m ≤ rank(W ), m-
dimensional vector γ = [γ1, ..., γm]T is positive. The solutions Z∗ of Eq. 9 which
span the dominant m-dimensional invariant subspace of the matrix W on a size
fixed Stiefel manifold SPm. The matrix N = Diag(µ1, µ2, . . . , µm) with distinct
positive diagonal elements enforces the Eq. 9 to have isolated maximizers. It
has been proved in the work of [14] that distinct elements on the diagonal of N
enforce the loading vectors of the principal components of sparse PCA that are
more orthogonal. Subsequently, Eq. 9 is completely decoupled in the columns of
Z∗ as follows,

Z∗ = max
K∈SP

m

m∑
j=1

max
zj∈Sn

(µjk
T
j Wzj)

2 − γj‖zj‖0, (10)

Eq. 10 can be reformulated as a convex object function on the Stiefel manifold
SPm,

Z∗ = max
K∈SP

m

m∑
j=1

n∑
i=1

[µjx
T
i kj)

2 − γj ]+ (11)

where the parameters should be given under the condition,

(µja
T
i x
∗
j )

2 > γj (12)

As we want a global projection of trajectory matrix WP
2F that is preserved

with the sparse loading entries as the matrix Z∗ ∈ SPm , we use the block SPCA
via l0-Penalty to obtain a sparse low-dimensional representation. In the work of
[14] they have already perform an efficient solution to solve the convex objective
function in Eq. 11. In the end we can achieve am-dimensional sparse matrix Z∗ ∈
SPm as the projected m-dimensional global subspace. It is equivalent to perform
the segmentation of the multiple embedded affine low-dimensional subspaces
(local subspaces) on the new global manifold.

4.2 Local Subspace Estimation

A sparse optimization technique sparse manifold clustering and embedding (SMCE) [13]
can simultaneously estimate the neighbours of each data point from the same
manifold and clustering the multiple embedded manifolds. In this work, we adopt
the essential idea from SMCE for estimating the neighbours of the local subspace
generated by each trajectory from the same low-dimensional local subspace.

SMCE assume that given a data point xi ∈ RD draw from a manifold Ml

with dimension dl, there exists the relative set of points Ni = {xj}j 6=i in Ml that
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contains only a few number of non-zero elements comes from the same affine
subspace that passes near xi. We call the neighbor set Ni sparse neighbours.
This assumption can be defined as Eq. 13, which illustrates the optimization of
sparse neighbours: among all of the points {xj}j 6=i, the ones that are neighbours
of xi in the same manifold span a dl-dimensional affine subspace that passes
through xi,

‖[x1 − xi, ..., xN − xi]|2 ≤ ε and 1T ci = 1 (13)

This assumption can be solved by a simple weighted sparse optimization program
under the affine constraint,

min‖Qici‖1
s.t ‖Xici‖2 6 σ, 1T ci = 1

(14)

where the Qi has the diagonal elements
‖xfj−xfi‖2∑
t 6=i‖xft−xfi‖2 ∈ (0, 1] and we can call

it a proximity inducing matrix that encourage finding the close neighbours. And
Xi denote the normalized new vectors, which is

Xi = [
xf1 − xfi
‖xf1 − xfi‖2

. . .
xfP − xfi
‖xfP − xfi‖2

] ∈ R2F×P−1 (15)

The results cTi = [ci1, . . . , ciP ] have only a few non-zero entries which ideally
indicate the sparse neighbours of data point xi from the same subspace.

In our proposed framework, after a global transformation using SPCA and

normalizing the projected data, we obtain a sparse global subspaceŴP
m on the

Stiefel manifold. Following the assumption of SMCE, most points and their
sparse neighbours should lie on the same underlying low-dimensional subspace.
We can adopt this assumption for searching the sparse representation of the clos-
est neighbourhood of each data point in a global projected subspace. Opposite
to the previous works such as LSA [11], who uses the fixed k-nearest neigh-
bours technique, we choose to automatically estimate the sparse neighbours in
an adequately large space.

A proper choice of the size for fixed k-nearest neighbours is sometimes criti-
cal and has important influence for the results of segmentation. Especially, when
there are intersections between different local subspaces, the nearest neighbours
can also belong to two different subspaces which could lead to the misclassifica-
tion. As shown in Fig. 3, if we set the sample xi as the observed point, Fig. 3(a) is
the result of k-nearest neighbour searching. There are two triangles which should
belong to the other subspace are found as the nearest neighbours of the circles,
which will lead to a misclassification in the final clustering. Whereas Fig. 3(b) il-
lustrates the sparse neighbour searching. It is clearly that if we search the nearby
neighbours of each data point in the global subspace instead of looking for only
the k-nearest neighbours, the estimation of the local subspace will be more ac-
curate with avoiding the intersection of two different underlying subspace.

In order to conform the subspace geometric property constraint of each point,
we choose the distance measure between two different subspaces with principal
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(a) (b)

Fig. 3: The selection of neighbours of k-nearest neighbours and sparse neighbours in high dimen-
sional space. The circles and triangles represent two different subspace local samples. (a)k-nearest
neighbours: the green color denote the searched nearest neighbours of observed data xi;(b)sparse
neighbours: the green color denote the searched sparse neighbours of observed data xi.

Algorithm 1 Local Subspace Estimation

Input: Projected Normalized Data Matrix W̃m×P = [x′1, x
′
2, ..., x

′
P ]m×P

Output: Set of estimated local subspaces S1, S2, ..., SP

1: for all i, j = 1, ..., P do
2: Pr(θ)j = acos(x′Ti x

′
j)

3: end for
4: Pr(Θ) = [Pr(θ)1, P r(θ)2, ..., P r(θ)P ]P×P

Compute inducing proximity matrix Qi = diag(
θi∑
t 6=i θt

) ∈ RP−1×P−1, i =

1, 2, ..., P
5: for i = 1, ..., P do
6: solve sparse optimization with parameter λ1, λ2

CT
i = [ci1, ..., ciP ]T ← min 1

2
‖Pr(θ)ici‖22 + λ1‖Qici‖1 − λ21T ci

7: end for
8: for i,j=1,2,...,p do
9: cTi = [ci1, ..., ciP ]T

10: li ← nonzero(cTi )
11: end for
12: sparse data matrix C̃ = [CT

1 , C
T
2 , ..., C

T
P ]P×P

estimated sparse neighbours set L = {li, i = 1, ..., P}
13: for i = 1, 2, ..., P do
14: local subspace Si = W̃m×P (:, CT

i (1 : li, i))
15: end for
16: Estimated local subspaces set S1, S2, ..., SP
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angles. The principal angles between two subspaces Si and Sj can be defined
recursively with 0 ≤ θ1 ≤, · · · ,≤ θl ≤ (π/2),

l = min(dim(Si),dim(Sj))

cos(θk) = max
u∈Sj ,v∈Si

uT v = uTk vk, k = 1, · · · , l

s.t.‖u‖ = ‖v‖ = 1, uTuq = 0, vT vq = 0, q = 1, · · · , k − 1

(16)

we can use the distance measure of two subspaces Si and Sj with the affinity of
principal angles of Si and Sj ,

A(i, j) = e−
∑

q=1,··· ,l sin
2(θq) (17)

Thus we modify the SMCE with principal angles 0 ≤ θ1 ≤, · · · ,≤ θl ≤ (π/2),

Xi = θi (18)

where the cos(θi) = maxu∈Sj ,v∈Si
uT v = uTk vk, k = 1, · · · , l, Sj is the subspace

generated by the data point xj and Si is generated by xi, j 6= i.
Subsequently we can modify the optimization program in Eq. 14 and define

the weight proximity inducing weight matrix and solving the Eq. 14 by the
argumented the Lagrange multipliers [16], which is

min
1

2
‖θici‖22 + λ‖Qici‖

s.t. 1T ci = 1,
(19)

whereQi = diag(
θi∑
t6=i θt

) ∈ RN−1×N−1, θi = acos(maxu∈Sj ,v∈Si
uT v) = acos(uTi vi),

θt = acos(maxu∈St,v∈Si
uT v) = acos(uTt vt), t 6= j. The procedures of the local

subspace estimation are summarized in Algorithm 1.
With solving the problem in Eq.19, the number of the sparse neighbours is

obtained from the sparse solutions Ci, which indicates the neighbours of point xi
from the same subspace. The estimation of the local subspace can be achieved by
simply extracting the neighbours for each data point. Subsequently, we can use
the affinity measure to compute the similarity between each pair of estimated
local subspaces and build the symmetric affinity matrix. There are amount of
measure techniques for different subspaces like subspace euclidean distances or
principal angles. In the end we can easily perform a simple spectral clustering
on the built affinity matrix.

4.3 Complete Procedure

Let W2F×P = [x1, x2, ..., xP ], where each xi = [x1i, ..., xFi]
T represent a tracked

feature trajectory throughout F frames. All of the trajectories are {xi ∈ RD}
drawn from n different subspaces with dimensions {dj ∈ RD, j = 1, ..., n}. In
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general, our proposed subspace-based motion segmentation method can be writ-
ten with the 3 main steps for clustering the feature data from a union of multiple
affine subspaces: (1) Transform the input trajectories into a sparse global sub-
space with Sparse PCA; (2) Estimate the local subspace with the number of
sparse neighbours and the principal angles; (3)Build the similarity matrix with
principal angles and clustering the matrix with k-means. The final output is the
labelled moving objects. The overall motion segmentation algorithm is summa-
rized in Algorithm 2.

Algorithm 2 Motion segmentation using sparse optimization

Input: Data Matrix W2F×P = [x1, x2, ..., xP ]2F×P , number of motions n
Output: A Set of Labels [1, 2, ..., n]

Step 1. Global Projection:m = 4n,W ′m×P ⇐W2F×P

Sparsity-controlling parameter γ = [γ1, γ2, ..., γm]T ≥ 0, N = [µ1, ..., νm] ≥ 0
1: for all i = 1, ..., P do
2: x′i ← SPCA(xi, γ,N)
3: end for
4: W ′m×P = [x′1, x

′
2, ..., x

′
P ]m×P

5: Normalization W̃m×P = normalize(W ′m×P )

Step 2. Local Subspace Estimation:
6: for all i, j = 1, ..., P do
7: run Alg.1 to estimate the local subspacesS = {S1, S2, ..., SP } for each projected

trajectory x′i
8: end for

Step 3. Perform Spectral Clustering
9: for i, j = 1, 2, ..., P do

10: A(i, j) = Pr(Bi, Bj)
11: end for
12: Perform spectral clustering on A to obtain a set of n Labels

5 Experimental Results

In this section we evaluate our method on a standard real-world video sequence
benchmark, the Hopkins 155 dataset [17]. We have compared with other state-
of-art motion segmentation approaches. We have assumed for all the methods
that the number of the motions has already given.

We test all the algorithms on the full original Hopkins 155 dataset [17] with
no missing trajectories. The database from the Hopkins 155 composed of 120
sequences with 2 motions and 35 sequences with 3 motions. There are 3 dif-
ferent kinds of motions in the Hopkins 155 dataset: traffic, checkerboard and
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articulated. As a pre-processing step, the feature points that tracked through
all over the sequences have already been obtained. Moreover, all of the errors in
tracking were already corrected for each sequence. Hence, this experiment exists
no missing entries in the feature trajectories. Most people use the Hopkins 155
dataset for testing the performance of accuracy and computation times.

Fig. 4: Comparison of Our approach with ground truth (the last row) and the other approaches the
first row :LSA [11]; Second row :MSMC [6], Third row :Our Method on the frames 1, 8, 15 and 20 of
the cars02-07 sequence from the Hopkins 155 dataset [17].

We have tested SSC [10], LSA [11], RANSAC [7], GPCA [8], MSMC [6],
LLMC [18] and our method on the checkboard, traffic and articulated sequences,
because of MSMC based on the affinity we have not compare it to the others in
the checkboard sequences. The parameter k in LSA has been set to 10−6 and the
number of nearest neighbours is fixed with 6. The threshold for subspace fitting
needed for RANSAC method has chosen to be 0.00002. The sparsity controls pa-
rameter λ for SMCE [13] in our method is set to be 20. For all of the methods,
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Table 1: Mean and median of the missclassification (%) on the Hopkins155 database with 2 motions.

Method GPCA ALC SSC MSMC LLMC LSA Our Method

Articulated 11 sequences

Mean 2.88 10,70 0.62 2.38 5.23 4.10 0.55
Median 0.00 0.95 0.00 0.00 1.30 0.00 0.00

Traffic: 31 sequences

Mean 1.41 1.59 0.02 0.06 3.65 5.43 0.59
Median 0.00 1.17 0.00 0.00 0.33 1.48 0.00

Checkerboard 78 sequences

Mean 6.09 1.55 1.12 NaN 4.65 2.57 1.42
Median 1.03 0.29 0.00 NaN 0.11 0.27 0.27

All 120 sequences

Mean 4.59 2.40 0.82 NaN 4.44 3.45 1.11
Median 0.38 0.43 0.00 NaN 0.24 0.59 0.00

Table 2: Mean and median of the missclassification (%) on the Hopkins155 database with 3 motions.

Method GPCA ALC SSC MSMC LLMC LSA Our Method

Articulated 2 sequences

Mean 16.85 21.08 1.91 1.42 9.38 7.25 5.32
Median 16.85 21.08 1.91 1.42 9.38 7.25 5.32

Traffic: 7 sequences

Mean 19.83 7.75 0.58 0.16 7.79 25.07 4.74
Median 19.55 0.49 0.00 0.00 5.47 23.79 4.04

Checkerboard 26 sequences

Mean 31.95 5.20 2.97 NaN 12.01 5.80 3.05
Median 32.93 0.67 0.27 NaN 9.22 1.77 0.77

All 35 sequences

Mean 28.66 6.69 2.45 NaN 11.02 9.73 3.49
Median 28.66 0.67 0.20 NaN 6.81 2.33 1.11

Table 3: Mean and median of the missclassification (%) on the whole Hopkins155 database with
both 2 and 3 motions.

Method GPCA ALC SSC LLMC LSA Our Method

All 155 sequences

Mean 10.34 3.56 1.24 5.93 4.94 1.65
Median 2.54 0.50 0.00 0.63 0.90 0.32
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the data has been projected into the 4n global subspace according to the number
of motions. We have computed the average and median misclassification error
for comparison, as shown in Tables 1, 2, and 3. These numbers show that our
segmentation results are comparable with other state-of-art motion segmenta-
tion results, and in many cases exceed them in terms of segmentation accuracy.
Figure 4 shows the qualitative segmentation examples from the Hopkins 155
dataset. We can infer that our method segments the foreground moving object
successfully in comparing with the ground truth and other algorithms.

We also present the run-time of our method, SSC [10], and ALC [9] in Table 4.
Comparing with the SSC [10], the performance of our method is better than SSC
particularly on the articulated sequence of 2 motions. With only a little loss of
accuracy on the other sequence, we save the computation time w.r.t. the SSC
[10].

Table 4: Run-Time (%) for the whole Hopkins155 database with both 2 and 3 motions.

Method ALC SSC Our Method

Run-time [s] 88831 14500 14021

6 Conclusions

We have proposed a feature-based framework for the problem of segmenting
different types of the moving objects from a video sequence with combining
two sparse subspace optimization methods SPCA [19] and SMCE [13]. The
SPCA performs a data projection from a high-dimensional subspace to a low-
dimensional global manifold with sparse entries, which ensures the interpretabil-
ity and accuracy. Simultaneously, we adopt the idea of SMCE that search the
sparse closest neighborhood set for each local embedded subspace generated by
each trajectory, which efficiently solve the intersection or overestimation problem
in LSA framework [11]. The experiments demonstrate that the low misclassifi-
cation error of our approach on the Hopkins 155 dataset [17], outperforming
most of the popular approaches. The limitation of our work is that the number
of motions is considered as a prior knowledge. In the future work, our goal is
to perform the estimation of the number of motions in the framework as well.
Furthermore, we will derive a robust optimization method that can deal with
the corrupted trajectory and missing data.
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