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Abstract. The Kanade-Lucas-Tomasi tracker (KLT) is commonly used
for tracking feature points due to its excellent speed and reasonable
accuracy. It is a standard algorithm in applications such as video stabi-
lization, image mosaicing, egomotion estimation, structure from motion
and Simultaneous Localization and Mapping (SLAM). However, our un-
derstanding of errors in the output of KLT tracking is incomplete. In
this paper, we perform a theoretical error analysis of KLT tracking. We
first focus our analysis on the standard KLT tracker and then extend
it to the pyramidal KLT tracker and multiple frame tracking. We show
that a simple local covariance estimate is insufficient for error analysis
and a Gaussian Mixture Model is required to model the multiple local
minima in KLT tracking. We perform Monte Carlo simulations to verify
the accuracy of the uncertainty estimates.

1 Introduction

The Kanade-Lucas-Tomasi feature tracker (KLT), developed in [1], [2] and [3], is
the most commonly used approach to feature point tracking in image sequences.
KLT searches for the location of a given feature point in the next few images
by matching the local image patch intensity. Hierarchical search using image
pyramids improves the tracking range (Bouguet [4]). The KLT tracker’s excellent
speed and reasonable accuracy make it popular in many applications such as
video stabilization, egomotion estimation, image mosaicing, 3D reconstruction,
visual odometry, and Simultaneously Localization and Mapping (SLAM). There
exist many other extensions of the standard KLT algorithm that aim to increase
accuracy and efficiency of computations. Baker and Matthews [5] give an overview
of the extensions.

While the standard KLT algorithm and its extensions are successful in per-
forming feature tracking, they simply output the estimated displacement without
any indication of its accuracy. KLT displacement estimates are noisy due to
image intensity noise and corresponding errors in the original feature detection.
Complex local image structure is also a major source of error. An error model of
the KLT tracker will be useful in downstream applications that aggregate track-
ing results over many points and frames to produce their output. For example,
bundle adjustment for structure and motion estimation naturally uses feature
point location covariances. More accurate modelling of the likelihood function
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using these covariances results in more accurate structure and motion estimation
(Triggs [6]).

The objective of this paper is to characterize the output uncertainty of the
KLT tracker as a function of the uncertainty in its input feature location. (e.g.
uncertainty in corner detection.) We first analyse the standard single level KLT
tracker in an error propagation framework using least squares estimation theory.
We build upon the local covariance representation in Kanazawa and Kanatani [7]
and Nickels and Hutchinson [8] and generalize it. Error propagation analysis
allows us to extend uncertainty estimation to pyramidal KLT tracking as well as
multi-frame KLT tracking. Due to the existence of local minima in KLT tracking,
a local single Gaussian covariance representation is insufficient to model the error.
To address this issue, our error analysis approach represents the error using a
Gaussian Mixture Model (GMM). The GMM model quantifies the probability
that KLT tracking will get stuck in different local minima. This GMM error
model is the main novel contribution of this work. Further, we approximate the
GMM by a single covariance matrix that accounts for multiple local minima for
use in downstream applications such as bundle adjustment.

The rest of the paper is organized as follows. We start with a review of
related work in uncertainty estimation in computer vision in Section 2. Section 3
describes the KLT tracker briefly and Section 4 presents an uncertainty analysis
of the single level and pyramidal versions. We show experiments to validate our
results in Section 5. Section 6 concludes the paper.

2 Related Work

The structure from motion (SfM) and ego-motion estimation pipelines consists
of feature detection, feature tracking (for image sequences) or matching (for
unordered image collections), structure and motion initialization and finally
bundle adjustment. Since the final bundle adjustment stage is improved by error
estimates of its input, previous work has targeted error analysis on the earlier
stages. Some of these include location uncertainty estimation of Harris corner
detection (Orgunner and Gustafsson [9]) and SIFT point features (Zeisl et al [10]).
Approximate error estimation for feature detection also include Brooks et al [11]
and Kanazawa and Kanatani [7]. Nickels and Hutchinson [8] have also used
feature tracking error covariance for simple tracking and physical measurements.
These approaches only evaluate local covariance matrices and do not consider
the common scenarios of pyramidal and multi-frame tracking. We consider full
error propagation in the SfM pipeline, including input error from the feature
detector and output error to the downstream stages. Our theoretical analysis
also shows that local covariance matrices are insufficient uncertainty estimates
due to multiple local minima. A full Gaussian Mixture Model (GMM) error
representation is required.

Recently, Pfeiffer, Gehrig and Schneider [12] have shown that using confidence
information can improve stereo computation. We hope that our work will lead
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to similar improvements in ego-motion estimation / SLAM and Structure from
Motion.

3 The KLT Feature Tracker

We will first give an overview of the KLT tracking algorithm. We will start its
error analysis with the basic algorithm in the noise free case and progressively
do a more realistic error analysis including image noise and finally conclude with
pyramidal and multi-frame tracking.

The KLT tracker starts with a set of sparse image features in the current
frame I and attempts to find their locations in the next frame J by matching
an image patch around a feature to the corresponding image patch in the next
frame. The brightness constancy assumption implies that the patch intensities will
not change substantially in the next image. Using a patch allows distinguishing
between neighboring points of similar intensity. A window function w(x), usually
a Gaussian function, is used to emphasize the pixels near the feature point more
than those far away. This accounts for the fact that points closer to the feature
point are more likely to have similar motion than those that are farther away.
The window is scaled so that

∑
W w(x) = |W | (the number of pixels in W ). Some

implementations such as Bouguet [4] use a simpler square window with uniform
weights. Matching proceeds by calculating the error function

ε(d) =
∑

W (x0)

[J(x + d)− I(x)]2w
(

x− x0

σw

)
(1)

over the support W (x0) of the window function centered around the feature point
x0. Minimizing this weighted (or generalized) nonlinear least squares (weighted
NLS) expression yields the estimate for the displacement d for the feature point
located at x0 in the image I.

This error function is minimized with a Newton-Raphson style algorithm that
iteratively linearizes the next image intensity function J using Taylor series about
the current feature location estimate. Shi and Tomasi [3] proposed allowing affine
deformations of the image patch to check feature tracks extending for more than
5-10 frames, while the simpler displacement model suffices for tracking between
consecutive frames. Some implementations such as in the OpenCV library prefer
to use the full affine model even when tracking between consecutive frames,
though that can cause some slowdown in tracking. We do not analyse the affine
extension here.

Standard KLT is unable to track features successfully for large inter frame
motion. Bouguet [4] solves this problem by using a pyramidal implementation. A
Gaussian image pyramid is created and for each feature, the search starts from
the coarsest level. The minimum found at a level is propagated to the next finer
level as an initialization. The final feature location is found at the finest (base)
level. We will extend our analysis to pyramidal KLT as well.
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3.1 Unmodeled Sources of Error

KLT search accounts for sources of error such as image noise and viewpoint
change (using affine transformation). Since KLT is a local search, it can get
stuck in local minima and miss the actual (global) minimum. Pyramidal KLT
greatly helps to reduce this error. Some extensions even allow for lighting and
contrast changes. These extensions are more complex to analyse and here we will
limit ourselves to image noise and displacements. There are also other sources of
error that are not modelled at all. These include specular highlights, defocus and
motion blur. Further, if the feature point is at a depth discontinuity, a viewpoint
change can completely alter the appearance of its local image patch causing KLT
tracking to be erroneous. Similarly, if the point being tracked is on a moving
object, the results will cause errors in downstream applications even if KLT
tracking succeeds. The last two issues highlight the need for robust estimation in
downstream applications. All these unmodeled errors will limit the accuracy of
our error estimates.

4 Uncertainty Estimation

KLT tracking is a weighted least squares estimation (WLS). Assume that both
images have i.i.d. Gaussian noise with zero mean and σ2 variance in pixel
intensities. We assume that the image J is a shifted version of I, with independent
variably distributed (i.v.d) Gaussian noise added.

J(x+d) = I(x)+e(x) with e(x) ∼ N (0, 2σ2diag(w(x−xo)−1)) for x ∈W (x0)
(2)

For a Gaussian window, the assumed Gaussian noise covariance increases rapidly
as we move away from the center of the patch and indicates reduced confidence
in the used motion model. The covariance is 2σ2 at x = x0, since it corresponds
to the difference of the i.i.d. Gaussian noise from the two images. Farther away
pixels are not very likely to have the same displacement as our feature point
and their displacement is assumed to be almost uniformly distributed (infinite
variance). The simpler box model assumes i.i.d Gaussian noise inside the window
and no constraints on the displacements outside it.

4.1 Single Level KLT

We now analyze the error of the KLT tracking. Due to the noise in the first
image, the initial location of the feature point xt−1 is uncertain. Figure 1 shows
the resulting error function ε(d), where the red ellipse indicates the variance of
the initial location of the feature point.

We first analyze the error for the case where there is no image noise. The KLT
tracker essentially performs a local minimization on the error function starting
from the feature point location in the current frame. Thus, it will converge to the
local minimum xt = b̂ corresponding to the basin of attraction of the starting
point. In Figure 1, the starting point is in B1 and hence it will converge to b̂ = b1.
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Fig. 1. KLT error surface ε(d). Uncertain detection in previous frame is repre-
sented by the red ellipse. Basins of attraction (Bi) on error surface are delineated
by the thick black contours and their minima are shown in blue (bi). The basin
of the initial feature determines the convergence point.

We can now state the probability of KLT converging to different basin minima
as the probability of the starting point being in that basin. This also allows us
to calculate the mean and variance. With

pi := Pr(b̂ = bi) = Pr(xt−1 ∈ Bi) (3)

mean x̄t =
∑

i

pibi (4)

covariance Σ =
∑

i

pi(x̄t − bi)(x̄t − bi)T (5)

Assuming that the global minimum (b̂) corresponds to the actual feature point
location, we then compute the bias

bias = x̄t − b̂ (6)

We now analyze the uncertainty for the case with image noise. Let us assume
that i.i.d. Gaussian noise with zero mean and variance σ2 is added to each pixel
intensity of the images I and J. This is equivalent to adding Gaussian noise with
variance 2σ2 to the (shifted) difference image. We will analyze this problem with
multiple local minima by partitioning the parameter space into the basins of
attraction of the local minima. We then have a different NLS problem for each
sub-domain.

Pi : min
Bi

ε(d) (7)
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The advantage is that each problem is well posed with a unique global minimum
and can be analyzed by standard NLS techniques. Finally, the starting point
xt−1 is randomly selected, with probability pi given by Equation 3, with which
these NLS problems will be solved.

We will start the analysis with results on NLS for the ith problem (Seber and
Wald [13, Sections 2.1.4, 2.8.8]) The displacement parameter d is now constrained
to lie in Bi. Let Hi be the Hessian matrix of the error function evaluated at the
(now global) minimum bi. If we decompose the error function ε(d) into a sum of
its terms εj(d,x) as

ε(d) =
∑

j

w

(
xj − x0

σw

)
ε2j with εj := J(xj + d)− I(xj) (8)

We have

Hi = F(bi)T diag(w(x))F(bi), (9)

where F(d) := [Fj(d)] with Fj(d) := ∂εj(d)
∂d is the image gradient. (10)

Here diag(w(x)) is a diagonal matrix with w(x) as the diagonal. If there are
n pixels (n regressors) in the image patch to be compared, F(b) is an n × 2
gradient matrix. Fj is a row of F and contains the gradient of the current
image with respect to the shift for each pixel in the patch. Weighted least
squares estimation theory tells us that the estimate b̂i is asymptotically normally
distributed according to

Pr(b̂i) ∼ N (bi, 2σ2H−1
i ). (11)

Now let us consider the original problem with the full domain. The starting
point selects the ith problem for solution with probability pi, which results in an
estimate that is asymptotically normally distributed according to Equation 11.
Consequently, the final estimate b̂ = xt is distributed according to a Gaussian
Mixture Model and we have

Pr(xt) =
∑

i

pig(bi, 2σ2H−1
i ) (12)

covariance Σ =
∑

i

pi(bibT
i + 2σ2H−1

i )− x̄tx̄T
t (13)

Mean and bias are given by Equation 4 and Equation 6. The function g(µ,Σ) is
the Gaussian probability density function with mean µ and covariance matrix
Σ. We now have the basic theoretical framework for error analysis of the KLT
tracker.

Estimating image noise: We can use weighted least squares theory to estimate
the Gaussian noise variance σ present in the image from the error residue at the
global minimum as

2σ̂2 = ε(b̂), (14)
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given that the weights are scaled such that
∑

W w(x) = 1. We will use this value
of σ in Equation 12 and Equation 13. Unfortunately, this noise estimate is very
sensitive to model fidelity — if the image transformation cannot be accurately
represented as a shift in the window around the feature point, this is likely to be
a gross overestimate. Hence assuming that the entire frame has the same noise,
we calculate this as the minimum over all points tracked in a frame.

4.2 Pyramidal KLT and Multi-frame Tracking

Fig. 2. Error Propagation in Pyramidal KLT Tracking.

The Pyramidal KLT tracker [4] constructs a Gaussian pyramid of each image
in the sequence by low pass filtering and downsampling. The next coarser level of
the pyramid is constructed by filtering with a Gaussian of standard deviation 1
(usually approximated by the low pass filter [1 4 6 4 1]/16) and downsampling by
2. Features are first tracked at the coarsest level. The tracks are then propagated
to the next finer level and tracking is repeated using the coarse level initialization.
The finest level (original image) tracking results are used as the final tracking
results. The tracking process is shown in Figure 2. Pyramidal KLT offers improved
tracking of features with large displacements. Since smoothing and downsampling
reduce local minima, the coarse level tracking is more successful. Smoothing also
reduces image noise, and consequently the tracking error. The lower levels further
refine the displacement. We can propagate errors from the coarsest level L to the
finest level 0 (original images) of the pyramid. Since each new level halves the
image noise, the noise standard deviation at a level k is σ(k) = 2−kσ.

We will use the residue at the finest scale to estimate σ, i.e. 2σ̂2 = ε(0)(b̂),
since the translation model is most faithful at this scale. The error distribution
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at level k is then

Pr(x(k)
t ) =

∑
i

p
(k)
i g(b(k)

i , 21−2kσ2H(k)
i

−1
), with (15)

p
(k)
i := Pr(b̂(k+1) ∈ B(k)

i ) (16)

p
(k)
i is the probability that the next coarser level (k + 1) KLT converges to a

point b̂(k+1) that lies inside the level k error function basin B
(k)
i . The matrix

H
(k)
i is the Hessian matrix at level k for basin i. Equation 15 can be iterated to

propagate the error distribution from the coarsest level k to the finest level 0.
The final error is distributed according to a Gaussian mixture model and we can
compute the net bias and covariance using Equation 6 and Equation 13.

A very similar error propagation analysis can be done for KLT tracking across
multiple frames.

5 Evaluation

We conduct simulations to evaluate the performance of the uncertainty estimation
method for the KLT tracker. To evaluate consistency, we conduct Monte Carlo
simulations on the KLT and use the Average Normalized Estimation Error
Squared (ANEES) as the evaluation metric. The ANEES is a standard metric to
evaluate the consistency of an estimator [14], and it is defined by

ANEES = 1
nN

N∑
i=1

εi, (17)

where n is dimension of the parameter vector, N is the total number of Monte
Carlo runs, and εi is the NEES in the ith Monte Carlo run, which is given by

εi = (θ̄i − θ̂i)>P−1(θ̄i − θ̂i), (18)

where θ̄i is the true parameter vector, θ̂i is the estimated parameter vector
returned by the ith Monte Carlo run, and P is the estimator-provided error
covariance, which is computed by Equation 13. The ANEES value of a consistent
estimator should be close to 1. Since ANEES is an average ratio, it is best
observed on a log scale.

5.1 Simulations Using a Sequence of Shifted Images

In this section, we evaluate the performance of the proposed KLT uncertainty
estimation method using a sequence of shifted images. We create a test image
sequence by shifting an image I by known values. Points features (such as Harris
corners or minimum eigenvalue features) are detected in I and tracked through
the image sequence by the KLT tracker. The theoretical error is computed by
calculating the KLT error surface and its local minima. The watershed transform
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Fig. 3. Street scene image used for KLT error evaluation and the 25 tracked
feature points.

(Meyer and Beucher [15]) is used to calculate the basins of attraction of the
minima near the initial point. Since the watershed transform does not assign
boundary pixels to basins, this computation is done at a higher resolution to
prevent ambiguities at the basin borders. For pyramidal KLT, the computation
is done by upsampling the higher level image back to the finest scale to maintain
accuracy of the minima locations. The error propagation starts with the feature
point detection error and is then propagated through pyramidal KLT levels as
well as different image frames as long as experimental KLT tracking converges.

Next, Monte Carlo simulations are performed by adding Gaussian noise to each
image before tracking. We calculate ANEES by aggregating the experimental KLT
results from 25 Monte Carlo iterations and using the theoretical error covariance
given by Equation 17. We discard the KLT tracks that do not converge due to
numerical issues.

We detect 25 minimum eigenvalue feature points in a test image, as shown in
Figure 3. Our first experiment evaluates the error estimates for a pair of frames
for both single level and pyramidal KLT trackers. The graphs in Figure 4 plot the
ANEES value versus different added noise levels for the tracked feature points.
The ANEES values are close to 1 for most points even as noise levels increase.
The deviation from 1 reflects the limitation of the Hessian approximation for
error estimation in non-linear least squares.

The next experiment evaluates the estimates over a sequence of 5 frames
(numbered 0–4) for both single level and pyramidal KLT tracking. These ANEES
plots are shown in Figure 5 for the single level KLT and in Figure 6 for the 2
level pyramidal KLT.
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Fig. 4. ANEES values for single level (top) and 2 level pyramidal (bottom)
KLT tracker with increasing noise levels. A log plot is used since ANEES is the
average of ratios, so equal upwards and downwards deviations from the ANEES=1
line correspond to equal estimation errors. Each trajectory corresponds to the
tracking of a single point. The decreasing number of points for larger noise levels
corresponds to the fact that tracking fails more often for high noise. Image pixel
values are in the range [0,1].
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Fig. 5. ANEES for multi-frame single level KLT tracking at two different noise
levels. All points out of 25 for which the KLT converged are shown. Image pixel
values are in the range [0,1].
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Fig. 6. ANEES for multi-frame pyramidal KLT tracking at two different noise
levels. All points out of 25 for which the KLT converged are shown. Image pixel
values are in the range [0,1].
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6 Conclusion and Future Work

We have presented a novel comprehensive error analysis of the KLT tracker. We
show that the error of the single level, pyramidal as well as the multi-frame KLT
tracker is given by a Gaussian Mixture Model. The components of the mixture
model correspond to the local minima that can trap the KLT tracker. Our Monte
Carlo simulations show that our uncertainty estimates are accurate for these
common use cases.

Our next steps will be to show improvements in real world applications by
using the KLT error estimates. This will require improving the speed with which
the error estimates are calculated. Since computing watershed transforms for
each tracked point can make real time tracking difficult, further work is necessary
before the error estimates can be used in practical systems. We would also like
to extend the error analysis to allow affine image patch deformations during
tracking. Another research direction is exploring new ways to modify the KLT
error function to reduce the prevalence of local minima, without compromising
its speed.
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