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Abstract. Most of current pedestrian detectors have pursued high de-
tection rate without carefully considering sample distributions. In this
paper, we argue that the following characteristics must be considered; 1)
large intra-class variation of pedestrians (multi-modality), and 2) data
imbalance between positives and negatives. Pedestrian detection can be
regarded as one of finding needles in a haystack problems (rare class
detection). Inspired by a rare class detection technique, we propose a
two-phase classifier integrating an existing baseline detector and a hard
negative expert by separately conquering recall and precision. Main idea
behind the hard negative expert is to reduce sample space to be learned,
so that informative decision boundaries can be effectively learned. The
multi-modality problem is dealt with a simple variant of a LDA based
random forests as the hard negative expert. We optimally integrate two
models by learned integration rules. By virtue of the two-phase structure,
our method achieve competitive performance with only little additional
computation. Our approach achieves 38.44% mean miss-rate for the rea-
sonable setting of Caltech Pedestrian Benchmark.

1 Introduction

Pedestrian (or Human) detection has been an open research problem in com-
puter vision community for more than decades due to the complexities of human
variations and environment. The state-of-the-art approaches still show very high
mean miss rate which limits the practical usage [1]. In recent years, pedestrian
detection has impressively progressed in terms of feature representations [2–5],
learning model [6–15], efficiency [10,12,13].

A challenge mainly comes from the large intra-class variations of human like
pose and illumination changes. In addition, a lack of positive (human) samples
comparing to negative (non-human) causes high asymmetricity in classification
problem. These factors are on data characteristics. We are aware that there are
very limited works comprehensibly considering the characteristics.

We argue that by considering the characteristics, one can develop a new
effective model from a existing method. Based on our analysis of the data char-
acteristics for pedestrian detection, pedestrian detection can be regarded as a
finding needles in a haystack problem (rare class detection) [16,17], which is one
of generic concepts of data mining. Inspired by one of the rare class detection
approach [16], we propose a two-phase classifier for pedestrian detection. The
proposed two-phase classifier consists of a baseline detector and hard negative
expert. We exploit modern successful methods as the first-phase baseline method
to reduce sample space to be learned for the second-phase. By virtue of the two-
phase approach, we can improve the overall performance with little additional
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Fig. 1. Characteristics of pedestrian detection problem. For HOGgles representation,
refer to Vondrick et al . [20].

computation without re-computing features. Particularly for the expert model,
we extend Random Forest (RF) [18] model to more discriminative one based on
the criterion of Fisher’s Linear Discriminant Analysis (LDA) [19]. Its purpose is
to deal with multi-modality of data automatically and discriminatively, which
is not covered by the first-phase. We propose a conjunction rule to effectively
fuse the responses of the baseline and expert. As addendum, we present three
learning schemes for the expert model to improve discriminative power.

We validate our two-phase model on the challenging Caltech Pedestrian
Benchmark, and our method achieves the competitive performance against the
state-of-the-art methods, although we only use a single feature instead of other
rich representations. For reasonable subset, our method achieves at most 38.44%
mean miss rate over the baseline. This achievement is based on the following
analyses of pedestrian data.

Analysis of Pedestrian Detection Data We concentrate on two aspects
which make the pedestrian detection problem challenging: 1) multi-modality
among intra-class samples (i.e. intra-class variations), and 2) data imbalance
of positive/negative samples. To achieve more accurate detection, this kinds
of characteristics should be seriously considered and reflected to the designed
detector. The following analyses go for other single object detection problems
such as face detection.

The multi-modality of pedestrians is formed by high intra-class variations
due to pose deformation, view points, appearance, resolution, camera hardware,
illumination change, background clutters, skin color, and so forth (Some ex-
amples of modalities on HOG domain are shown in Fig. 1-(a)). Based on this
fact, we believe that positive samples would conform multi-modality rather than
uni-modality (see Fig. 1-(b)). It requires a complex learning model.

The data imbalance of pedestrian detection comes from natural statistics.
Only pedestrians are considered as positive class and all the others are regarded
as negative. In a image pyramid for multi-scale detection, there are only few
pedestrians among millions of sliding windows even in crowd scene as illustrated
in Fig. 1-(c). We naturally get a tremendous number of negative samples incom-
parable to the positives. The imbalance can affect the overall performance of the
designed detector through both learning and detection steps. The imbalance on
the learning step could cause bias of decision boundary to be negative-oriented,
or could induce less informative decision boundaries because some random deci-
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49.38% DPM (Baseline)
48.45% MultiResC
48.22% DBN−Mut
43.42% MultiResC+2Ped
43.32% DPM−LDARF+PR (Ours)

42.04% MTDPM (Baseline)
39.32% JointDeep
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Fig. 2. Illustrations of motivation. (a) We propose a two-phase model which starts from
the detection results of existing one and straighten miss-classified samples to achieve
low miss-rate and low false-alarms. (b) Existing methods already achieve low miss-rate
at high false positives per image, but they did not achieve low false-alarms still.

sion boundary might be misread as work well; e.g . For the ensemble model, the
imbalance can induce high sub-optimality on the selection of simple weak classi-
fiers of AdaBoost or randomized forests, because they misread their capacity due
to easily achieved high recall. Also, most of detection algorithms have a trade-off
between false positive and false negative rates. The imbalance on detection step
disturbs finding a good trade-off. For this class imbalance problem, a special
treatment may be necessary as rare class detection problems did in [16].

2 Related Works

As pedestrian detection is one of attention-getting topics in computer vision, it
has long history and many related works. In this section, we focus on the relevant
works to our method. One can refer the thorough review on pedestrian detection
approaches to [1, 21].

Many works notice that a main challenge of pedestrian detection comes from
multi-modality (intra-class variations) of data. Some researches develop robust
and distinctive feature representation such as HOG [2], CSS [4], LBP [3], integral
channels [5], and temporal feature [22] which invariant to some modalities like
illumination changes or color variances.

On the top of rich feature representation, many learning models are also
applied to improve accuracy. Most of works try to deal with some specific vari-
ations of pedestrians by advanced learning models. Popular Deformable Part
Model (DPM) [7] combines a static root detector and part detectors by latent
SVM approach.

It allows flexibility to handle deformation and partial occlusions by latent
variables. Also other works [3,14,15] have been proposed to handle deformation
and occlusions. Ouyang et al . [23] learn a background diversity for a limited case,
two pedestrians being together. Recently, Park et al . [24] and Yan et al . [6] argue

1
In case of MTDPM [6], we use executable code provided by the authors without context model
and get 42.04% log-average miss rate.
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Fig. 3. The proposed two-phase framework. [Blue line] In training step, the base-
line detector and rejection scheme help gathering positive and hard negative samples
for learning the expert discriminatively. [Yellow line] In detection step, the baseline
discards many data as soft negative. This rejection in the baseline makes the expert
check only a small subset of samples. So, a limited amount of additional computation
is required to improve performance.

that low and high resolution pedestrians share commonness, but different char-
acteristics should be considered. All these methods provide improved accuracy
and higher robustness, but each method focuses on one or two specific intra-class
variations. Particularly, the existing linear models are not enough to deal with
many kinds of intra-class variations due to its limited parameterizations; e.g .
The latent variable in DPM is the only parameter to deal with pose variations.

To allow flexibility, ensemble based classifiers are presented for pedestrian
detection. Many of them show fast and efficient approach with satisfactory per-
formance. Among the ensemble models, Boosting [8–13] and RF [14, 15] based
classifiers are popularly applied for pedestrian detection. They learn non-linear
decision boundaries with many weak-classifiers, which share a single nature. Our
expert model is developed as an extension of RF. For more relationships with
other RFs, we will further discuss in Sec. 3.2. Although these approaches al-
low to learn multi-modality of data, it would not be enough to handle many
different kinds of multi-modality (e.g . In DPM, latent variables are only param-
eters to handle deformable parts. The ensemble models dump the flexibility on
uni-nature weak classifiers). Our method utilizes two heterogeneous models, and
encourages to capture complementary information during learning time.

We are aware that many methods pass over some traditional data mining
rules. Among the contexts of data mining, we found that finding needles in a
haystack problem [16,17] is very relevant to pedestrian detection problem, which
detects rarely occurring phenomena in the data. They define a class that has very
rare occurrence due to its nature as ‘rare class’. The rare class detection problem
is especially challenging. High recall can be easily achieved due to class imbalance
in the rare class case. Conventional learning models try to achieve high recall
and high precision simultaneously. They are prone to find low precision decision
boundary, because it easily achieves high recall. This induces performance degra-
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dation. They point out that conventional sequential techniques are inadequate
for the rare class problem. Joshi et al . [16] propose the two-phase rule induc-
tion. In the two-phase induction, recall and precision are separately optimized,
rather than simultaneously optimizing two measures as most of learning models
did. Their experimental result indicate that the two-phase model outperforms
AdaBoost for rare class, and consistently produces competitive performance for
generic cases. More general concept of two-phase induction model can be found
in [16,17]. Our method is built on the top of these philosophy.

3 Two-phase Classifier Model under PNrule

One of effective approaches for the rare class problem is to separately conquer
high recall first and high precision next, which is called as PNrule [16]. Inspired
by PNrule, we propose a two-phase classifier model which minimizes miss rate
first, then optimizes our detector to minimize false positives. In the first phase,
a detector classifies pedestrians allowing many false positives. Then, the second
phase classifier (called as expert) straightens the miss-classifications to achieve
high precision. This procedure is illustrated in Fig. 2-(a). By this way, we can
achieve low miss-rate at low false positives per image (FPPI) by PNrule.

The proposed two-phase classifier model can be viewed as a variant of cas-
cade classifier structures. The conventional approaches learn weak learners which
have same properties. Rather than cascading uniform weak learners, exploiting
heterogeneous classifiers is more helpful for achieving different objectives (in our
case, recall and precision). Even when the same training set is given, heteroge-
neous classifier models bring out different characteristics in decision boundary
or classification results, as well as commonness (intersection regions on feature
space among different classifiers). We expect that combining heterogeneous clas-
sifiers learns complementary information even from same data, when we carefully
choose the classifiers by their properties and data’s characteristics.

Our proposed two-phase detector consists of a baseline and a hard negative
expert detector as illustrated in Fig. 3. The baseline initially rejects soft negatives
which are easily classified with high confidence, and measures how likely positive.
Then, the remaining negatives (hard negatives) and positives are passed to the
next phase expert. The expert classifies into hard negative or positive on the
reduced sample space. By combining results from the baseline and expert, the
mis-classifications by the baseline are straighten. If the baseline classifies non-
pedestrian as high score, the final results are corrected to have low value. This
procedure works like Re-ranking approach [25]. Even though the baseline allows
many false positives, the number of samples that have to be checked at the
expert detector are surprisingly reduced. Thus, our method only require a limited
amount of additional computation, while enhancing overall accuracy.

3.1 First Phase: Baseline Detector

Baseline detector filters out soft negatives, and leaves hard negatives and posi-
tives. The main objective of the baseline detector in the two-phase classifier is
to minimize miss rate of pedestrians (high recall), while minimizing the num-
ber of hard negatives is a subject class designated by the baseline as positive.
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The minimized number of hard negatives by the baseline can help to reduce the
feature space to be learned by the expert. Since the hard negatives guide the
learning decision boundaries of the expert, a well designed baseline detector is
preferred to grasp informative hard negatives.

We found that many existing detectors already achieve low miss-rate at high
FPPI as shown in Fig. 2-(b). At the first phase, one of the existing algorithms
can be used for the baseline. Among publicly available methods, we test linear
detectors, HOGSVM [2], DPM [7], and MT-DPM [6], as our baseline detector.
Our expert adopts an ensemble model, so that linear detector which has different
characteristics would be a reasonable choice. These could be a guideline for
selecting baseline, but not strict restriction. Users can select the baseline by
their own criteria. We observe that improvements are achieved for all of our
experiments among the several baselines. We set the rejection threshold of the
baseline lower than usual settings suggested by the authors to allow high recall.

3.2 Second Phase: Hard-negative Expert Detector

We build a expert classifier which classifies hard negatives and positives at the
second phase. We can improve the performance by applying the second phase
detector once again to the detection results of the first phase. Rather than using
two models independently with training by the same sample set, we train the
expert with the baseline’s results, where hard negatives are designated. It learns
complementary information from the reduced learning space, where the union of
positives and hard negatives. Also, since the baseline eliminates soft negatives,
the data imbalance on both detection and learning steps are partially relaxed.

We try to handle multi-modality of features in the expert model, so we exploit
a RF model [18]2 which can better handle multi-modality than linear models.
Nevertheless, discriminating the non-pedestrians from the hard negatives is still
challenging, because it was failed in the baseline once. There are recent variants
of discriminative RF [15, 27–29]. A fundamental difference is how to learn a
linear decision boundaries of each node to obtain more discriminative power
( [29]: Ridge regression, [15,28]: SVM, [27]: LDA). According to [18], the standard
weak learners in [15,27–29] select few dimensions of data vectors randomly before
finding split function to construct forests with less-correlation between trees. The
feature selection function φ(·) maps a high dimension vector to a low dimension
vector, and can be represented in a matrix form as: Y = φ(X) = W ·X, where
Y ∈ RM×1,X ∈ RN×1, W ∈ {W |{0, 1}M×N ,W · 1 = 1 ∈ 1N×1} is a binary
selection matrix, and M � N . Maŕın et al . [15] extend it to the random sub-
group feature selection for encouraging part configuration. Our hypothesis is
that feature selection may reduce the probability to find good discriminative
boundaries, because high dimension feature is more preferable to find a linear
separable space than low dimension one in general. Thus, we instead generalize
the feature selection in a soft manner, which can automatically select informative
features and W to be RM×N .

2
Since RF model is a general concept of AdaBoost, it has more flexibility for complex decision
boundary than AdaBoost [26].
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We build our expert model with LDA criterion, because it has an analytical
closed-form solution, while SVM based methods cannot avoid expensive numer-
ical optimization. However, the LDA based RF [27] deterministically decides
splitting criteria for each node under the strict assumption that each class has
exactly same covariance, but the assumption is not satisfied the estimated split
function is no longer optimal. By proposing an alternative threshold estimation,
we relax the problem. We will explain it later.

Given the hard negative and positive samples, our method learns important
and discriminative regions of the pedestrian template based on LDA for each
node. By the general definition of Criminisi et al . [18], the split function of the
j-th node is defined as h(s;ψj , τj) = 1[ψ>j · s < τj ], where s denotes a data
sample, 1[·] ∈ {0, 1} denotes the indicator function, ψ denotes a transformation
that maps the data to a separable space, and τ is a threshold for classification.
For a sample s, if h(s;ψj , τj) = 0, s is passed to left (or right), and otherwise
vise versa. We obtain the parameter ψj from LDA. For each node, we use a
maximally separable axis ψj computed by the following equation.

ψj = Σ−1
W,j(µj,y=P − µj,y=N ), (1)

where µj,y={P,N} represents the mean vector of the positive and negative data
of the node j respectively, and ΣW,j represents the within-class scatter matrices
of the node j for 2-class case [30].

Also we can easily obtain an optimal decision threshold by τj = 1
2ψ
>
j (µy=P+

µy=N ) with the assumption that two groups have the same covariance matrices.
However, the same covariance assumption would be too strict. We propose an
alternative threshold computation as the following equation:

τj(α) = ψ>j (α · µy=P + (1− α) · µy=N ), α ∈ [0, 1]. (2)

Instead of finding τ , we apply brute-force search on the sampled α ∈ [0, 1]
maximizing the following information gain:

I(S, Θ) = H(S)−
∑

i∈{L,R}

|Si|
|S|

H(Si), (3)

where Θ is the set of parameters defining the split function ψj and τj , H(S)
is Shannon’s entropy defined as −

∑
c∈C p(c)log(p(c)), and C is possible class

sets (in our case, positive P and negative N ). When each covariance of positive
and negative at a node is different, the optimal decision threshold are likely
to be between the two means µy={P,N} by Bayes decision rule [30]. This α
parameterization gives the bounded sample range, while the range of τ should
be estimated from data.

In implementation, we reuse already extracted features by the baseline for
all the forests to avoid re-computation. We now discuss the remaining issues of
the proposed LDARF.

Discussion of the proposed LDARF LDA is optimal in the sense of Bayes
error under the assumptions that multivariate normality and equal covariances
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Fig. 4. Distributions of Caltech data in four sampled nodes of our proposed LDA based
RF. Data samples of each node are projected on LDA axis of the node. (Top) Positive
distributions. (Bottom) Negative distributions. Each column indicates the distribu-
tions of the same node. This shows that the data approximately conforms Gaussian
distribution in each local partition.

are satisfied by class data [31]. While we relax the equal covariance assumption
by introducing α parameter, we still assume Gaussian distribution of samples.

It is true that the assumed model may not be supported by the given data.
The general PDF can be approximated by a non-parametric PDF estimation,
but Devijver and Kittler et al . [32] claim that the errors on nonparametric PDF
estimate may significantly exceed those of simple parametric models, such as
Gaussian, when the sample size is limited. Also, parametric models could be bet-
ter in terms of both accuracy and simplicity under the situation. When learning
RF, the data is partitioned as growing trees, so that the sample size of a node
is exponentially decreased. Thus, Gaussian approximation would valid by the
statement of [32]. Fig. 4 show the distribution of the dimension reduced features
of Caltech data at intermediate nodes. It shows validity of our local Gaussian
assumption of each node.

Moreover, the Gaussian assumption is beneficial when determining split func-
tions. In the standard RF [18], Eq. (3) is utilized to measure the goodness of the
split function, but Shannon’s entropy is defined on discrete distribution which
is constructed resultantly when a split function is given. Rather than, suppose
that samples follows a parametric model like Gaussian distribution in a small
partition. A parametric model has generative property on continuous space and
locally spans its feature space, so it is helpful for learning a generalized boundary.

3.3 Integrating the Baseline and Expert

As depicted in Fig. 3, a single final score should be resulted from two scores of
the baseline and expert. A well-designed combining rule could straighten miss-
classified data from the baseline due to complementary characteristics of two
detectors. However, hand-crafted combination rules may not be desirable, so we
learn a score integration function with the two scores and labels. For simplicity,
we model the score integration function with a linear model as r(x) = f>x,
where f is a weight vector to be learned, and x is a elementary score vector
of which entries come from the baseline and expert scores. To encode several
basis rules, we construct the vector x of each sample as x = [sb|se|sb · se|s2

b |s2
e],

where sb and se are the scores obtained by the baseline and expert respectively.
This construction can be regarded as kernelization that maps low-dimensional
features into a higher dimensional non-linear space.
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Fig. 5. Illustrations of learning schemes. (a) Soft bagging scheme keeping all the posi-
tives to make less-correlated decision trees. (b) Updating the distribution of leaf nodes
with whole training set. (c) The estimated reasonable scale map for Caltech dataset.

Our goal is to learn the score function that satisfy the relative score order
r(xp) > r(xn) for all the positive samples xp and the negative samples xn. More
explicitly, the pairwise order constraint can be represented as:

f>xp > f>xn ⇒ f>(xp − xn) > 0, ∀p, n. (4)

Finding f satisfying all the constraints could not be possible due to the
presence of outliers or insufficient sorts of the basic rules. Instead of the hard
constraint, we encourage the constraints in a soft manner with maximizing mar-
gin similar to SVM classification. Then, with adding a regularization term for
f , the learning problem leads the following optimization problem as:

arg min
f
‖f‖p +

C

|P | · |N |
∑
i∈P

∑
j∈N

max
(
0, 1− f>(xi − xj)

)2
. (5)

where P,N are the positive and negative sample sets of the training set.
This formulation shares the similar spirit of the learning to rank technique [33].
Eq. (5) encourage the order constraints by the squared hinge loss, and can be
regarded as a lp regularized SVM. The optimization is effectively solved by the
off-the-shelf lp regularized SVM solvers3 in the l1 and l2 cases. For p ≥ 1, Eq. (5)
is convex formulation, so we can obtain a global optimum solution.

We found the optimal parameter f for both l1 and l2 cases, and empirically
observed that the l1 formulation produces slightly better results. Since l1 is
known to have a sparse selection property, it can be possible that only few
informative entries of f have non-zeros, while discarding unhelpful basic rules in
x. Thus, we use l1-norm for all our experiments. Again, we would like to notice
that, although we simply model r(·) with a linear function, x is constructed by
kernelizing the baseline and expert scores, so nonlinear integration rules can be
considered directly.

4 Learning Schemes for the Expert Model

Additionally, we describe three more simple learning schemes for expert under
our analysis in Sec. 1. The described approaches are simple, but improve the
performance of our detector.

3
We use the G-SVM package used in [34].
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Bagging with Preserving Positive Distribution We apply the conven-
tional bagging scheme only for the negative samples with keeping all the pos-
itives. It reduces the gap between the number of positive and negative, while
positive distribution is preserved. We expect that diverse decision boundaries
are around positive distributions. It helps the expert model to well learn deci-
sion boundaries and to be generalized by making trees uncorrelated despite the
rare positives.

We learn each tree of the hard negative expert ensemble from differently
sampled sets by the above bagging scheme. Each tree can share some common-
ness by sharing the same positives set, while takes different characteristics from
different negative subsets.

We simply apply random sampling of negative samples, and it shows plausible
results.

Updating Leaf Distribution of LDARF In RF, each leaf node stores the
positive and negative posterior distributions of the training samples arrived at
the node. The posterior of a tree pt(c|v) is defined by the posterior of the leaf
node that the sample v reaches. Given this, the final decision for v is determined
by c∗ = arg maxc∈{P,N} p(c|v), where p(c|v) = 1

T

∑T
t=1 pt(c|v) is the average for

every tree by aggregation rule [18].
Constructing accurate posterior distributions is as important as finding good

split functions. As we use bagging scheme, each tree is built only with sampled
training data, and initially constructed posteriors do not reflect entire training
data in our framework. We update the positive and negative posteriors in leaf
nodes by expectation with the remaining training data after bagging. Thus, the
estimate p(c|l) at a leaf l is calculate as

nl =
1

n(P)
· np,l +

1

n(N )
· nn,l, nc,l =

∑
v∈l

1 [v ∈ c] , (6)

p(c|l) =
1

n(c)
· nc,l
nl

, c ∈ {P,N} , (7)

where n(x) is the cardinality of a set x, 1 [·] is indicator function. p(c|l) is
weighted posterior for relaxing data imbalance between positive and negative.

Learning by Perspective Aware Rejection Ground plane information is
effectively utilized in Hoeim et al . [35] and Park et al . [24], and is shown to be
beneficial for validating the detected locations and scales. Although the perspec-
tive information in detection step has been commonly utilized in some cases like
the driving scenario, we extent its usage in the learning step.

It is possible that the training sets given by the baseline include unreasonable
samples with respect to scale and location in the perspective world. Since samples
from different resolution have different natures as argued in [6, 24], the hard
negative samples with unreasonable scale could introduce unnatural artificial
features in the sample space to be learned.

To reject these unreasonable scale samples, we estimate reasonable height
map using intrinsic camera parameters given in [1] and geometric relation be-
tween a camera and pedestrians. As you can see in Fig. 5-(c), we estimate rough



A Two Phase Approach for Pedestrian Detection 11

10
−3

10
−2

10
−1

10
0

10
1

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

Reasonable, Caltech−Test

 

 

67.07% HOGSVM (Baseline)
60.51% HOGSVM−LDARF+PR (Ours)
49.38% DPM (Baseline)

43.32% DPM−LDARF+PR (Ours)
42.04% MTDPM (Baseline)
38.44% MTDPM−LDARF+PR (Ours)

(a)

Miss rate(%) Methods

49.38 DPM
47.50 DPM+RF
47.06 DPM+PR
43.32 DPM+RF+PR

42.04 MTDPM
38.52 MTDPM+RF
42.15 MTDPM+PR
38.44 MTDPM+RF+PR

Step Time

Feat. pyramid 2.17 sec
Baseline detector (HOGSVM+GPU) 0.80 sec

Baseline detector (DPM) 1.31 sec
Baseline detector (MTDPM) 1.63 sec
Expert detector (LDARF) 0.17 sec

(b)

Fig. 6. Quantitative evaluations of the proposed two-phase classifier on the reasonable
subset of Caltech. (a) Miss-rate comparisons between the baseline and the proposed
two-phase approach. (b)-[Top] Performance comparisons according to combinations of
the proposed modules. (b)-[Bottom] Computation times.

heights of pedestrians in pixels utilizing following relation; f : d = h : H ⇒ h =
fH
d (f : focal length, d : depth, h : height in image, and H : height in real world)

We allow margins for rejecting samples to alleviate error of the estimated
height map. Thus, we reject the candidate boxes which is taller than 1.5 times
or shorter than 0.5 times of reasonable height. It could reduce the variance of
negative samples in feature space. This seems to be very simple, but it improves
the performance of the final detector (see Sec. 5.3).

5 Experimental Results

To focus on the effects of each module, we fixed the used feature with HOG [2].
In this section, the comparisons between our method and other approaches based
on HOG feature are only shown to easily compare the effects of the proposed
method. Comparisons with more than other recent approaches can be found in
the supplementary material.

We evaluated on Caltech benchmark [1] which is the challenging and latest
pedestrian benchmark. For training both the baselines and expert in our frame-
work, we used both set00-set05 in Caltech and training set in INRIA dataset [2]
due to the lack of information from high-resolution pedestrians in Caltech.

To compare performances, we followed full image evaluation and miss rate
against FPPI (False Positives Per Image) plot by varying the threshold on the
detection confidence as in [1]. For testing, we used set06-set10 in Caltech. We
repeated the whole training and evaluation process 5 times and report averaged
values.

Since the existing detectors find more than 80% of pedestrians at 10 FPPI
as shown in Fig. 2-(b), we set the rejection threshold of the baseline detectors to
a value corresponding to 10 FPPI. Total 72 different scale images are used for
all the experiments, as in the default setting of [7].
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(a) Examples of the improved results

Miss rate Methods

49.38 DPM (Baseline)

45.72 DPM+oRF-LDA [29]+PR
44.71 DPM+StdRF [26]+PR
44.39 DPM+SVMRF [15]+PR
43.32 DPM+LDARF(Ours)+PR

47.50 DPM+RF
47.06 DPM+PRD
47.77 DPM+RF+PRL
43.50 DPM+RF+PRD
43.32 DPM+RF+PRL+PRD

43.85 DPM+RF+PR (+)
43.98 DPM+RF+PR (x)
43.32 DPM+RF+PR (Opt.)

(b) Effect of each module

Fig. 7. Effects of the expert model. (a) Sampled results of Straightened detection
at 1 FPPI ([Top] DPM [7], [Bottom] Ours (DPM+LDARF+PR)). We denote the
false positives and true positives as Yellow and Magenta respectively. (b) Comparisons
according to the expert types (Top, Sec. 3.2), the perspective-aware rejection scheme
in the learning and detection step (Middle, Sec. 4), and integration rules (Bottom,
Sec. 3.3)

The computation times shown in the bottom of Fig. 6-(b) are measured on
a PC with 3.40GHz i7-4770 CPU and 32Gb RAM. The computation time of the
proposed framework depends on the choice of baseline detector. For DPM [7]
and MT-DPM [6], it takes 3.48 and 3.8 sec respectively (feature pyramid con-
struction + applying DPM or MTDPM). HOGSVM+GPU [36] takes 0.80
sec including the feature pyramid construction and detection times. Our pro-
posed two-phase classifier model only takes additional 0.17 sec per an image on
MATLAB+MEX code to improve the performance. It can easily speed up by
parallelization with modern GPU techniques due to the independent structure
of trees. Also, the score integration takes 2.3 ms in average.

5.1 Evaluations of Two-phase Classifier Model

We compare the performances of existing methods with the boosted perfor-
mances by our two-phase model. We apply our approach to HOGSVM [2],
DPM [7] and MT-DPM [6] as a baseline, of which the cores are the linear
classifier model based on HOG feature.

As depicted in Fig. 3, our expert detector is trained from the detection results
of the baseline detector. Thus, a training set for expert depends on the baseline
detectors, so each expert is learned differently according to the baseline. As
shown in Fig. 6-(a), our model improves the accuracy of the baseline detector
from 3.60% to 6.56%.

Notice that, for MT-DPM, we use executable code provided by the authors
without context model, so that the baseline detector trained by only Caltech
benchmark. Also, the expert is trained with fewer sampled data, because the ex-
ecutable only provides sampled results by non-maximum suppression (NMS) [1],
while other experts for HOGSVM and DPM are learned from samples without
NMS. Despite this handicap, the proposed two-phase model still improves the
performance of MT-DPM as 3.60%. On Caltech benchmark, most of methods
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exploiting only HOG feature did not achieve below 40 % miss rate except MT-
DPM+Context [6]4 which utilizes another vehicle detector to utilize a high level
contextual relationship between vehicles and pedestrians.

The proposed two-phase model mines HOG feature for more information to
improve performance without additional advanced features and show the consis-
tent improvement which allow better performance than the previous HOG-based
algorithms.
5.2 Evaluations of Discriminative Random Forests

We compare expert detectors with the axis-aligned model (StdRF) [18], Maŕın et
al . (SVMRF) [15], the ridge regression based LDA model (oRF-LDA) in [29]
and the proposed LDA based discriminative RF (LDARF). Contrary to Sec. 5.1,
in order to maintain training data to be same for all the expert detectors, we
fixed the baseline with DPM [7]. For fair comparison, parameters such as the
depth of tree and the number of trees were set to 6 and 100 respectively for all
the experts.

As shown in the top of Fig. 7-(b), our LDARF shows better performance
compared to other RF as a expert. This implies that LDARF was learned more
discriminatively. Fig. 7-(a) shows that mis-classified instances by the baseline
are well straightened by our expert.

5.3 Influences according to Each Components

Fig. 7-(b) shows the influence according to each component of our framework,
such as the choice of the expert types, the perspective-aware rejection (PR), and
the integration rule.

As mentioned in Sec. 4, we use PR at both detection and learning step. It
means that we intend to completely ignore particular instances that are not
matched with reasonable height according to their position during both learn-
ing and detection time. As shown in the middle of Fig. 7-(b), applying both
PRL (PR in Learning step) and PRD (PR in Detection step) (denoted by
DPM+RF+PRL+PRD) improves the performance compared to the single
usage of PRL or PRD. We notice that DPM+RF+PRL would produce more
false positives than DPM+RF, because in learning step, DPM+RF+PRL ig-
nores the samples with unreasonable heights and supposes that the given candi-
dates for the expert are already filtered by PR. In this case, DPM+RF+PRL
has not been learned for other resolution candidates, so that could not distin-
guish un-reasonable height instances from positive. When both PRL and PRD
are applied, we can expect that the sample space to be learned get reduced and
focused to distinguish the positive and hard negatives with excluding effects of
un-reasonable resolutions of instances.

In the bottom of Fig. 7-(b), we try to find a good integration rule of two
scores from the baseline and the expert. We compare a simple addition rule
(a · sB + b · sE), multiplication rule ((a · sB + b) · sE), and the proposed optimal
integration rule in Sec. 3.3. For the addition and multiplication rule, parameter
sweeping for a and b is applied to empirically find the best combination. Our

4
Codes for MT-DPM+Context was not provided by author when this paper is submitted.
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(a) Statistics for rank of true positives

4

(b) DPM

1
12

(c) DPM+RF

Fig. 8. (a) Summary of true positive ranks. Each entry of the table denotes the number
of true positives with i-rank. (b,c) Sample results by DPM and the proposed two-phase
model without PR (DPM+RF). True positives are denoted by Margenta color with
their rank value.

optimized integration rule shows better performance. Although the differences of
the performances are marginal, the proposed method can suggest more plausible
rules than the heuristically found best rules with high probability due to stable
performance from the convex formulation. If one adds more complex rules by
aggregating to the rule vector, better integration could be automatically found.

5.4 Analysis for performance improvement

In the performance measure suggested by [1], miss rates at sampled FPPIs are
calculated by varying threshold. This implies that only relative scores (i.e. ranks)
between true positives and false positives are important. As many true positives
get higher ranks, less miss rate can be achieved. Therefore, to analyze why and
how our approach improve the performance, we count the number of instances
for each rank. We count rank of true positives in each image and summarize
them for test images. The proposed two-phase model and the integration of two
scores operate as a re-ranking process. The average rank of true positives is
reduced from 2.7391 to 2.3072 by applying the proposed method (Fig. 8-(a)).
As shown in Fig. 8-(b,c), the re-ranking caused by the proposed method allows
higher threshold (less false positives) while true positives are kept.

6 Conclusion

We present a two-phase framework for pedestrian detection inspired by data
mining philosophy, especially from the rare class detection. The baseline and
expert detectors, which have different characteristics, optimally integrated by
max-margin criteria without any heuristics. We validate our method on the
systematical experiments and analyze re-ranking effects. We believe that the
consistent improvements by our method are mainly comes from the samples
space reduction to be learned. The beauty of our approach is that it can be
easily adopted to an existing detector as an add-on module, and can improve
the performance with little additional computation.
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