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Abstract. The key problems in visual object classification are: learning
discriminative feature to distinguish between two or more visually similar
categories ( e.g. dogs and cats), modeling the variation of visual appear-
ance within instances of the same class (e.g. Dalmatian and Chihuahua
in the same category of dogs), and tolerate imaging distortion (3D pose).
These account to within and between class variance in machine learning
terminology, but in recent works these additional pieces of information,
latent dependency, have been shown to be beneficial for the learning
process. Latent attribute space was recently proposed and verified to
capture the latent dependent correlation between classes. Attributes can
be annotated manually, but more attempting is to extract them in an
unsupervised manner. Clustering is one of the popular unsupervised ap-
proaches, and the recent literature introduces similarity measures that
help to discover visual attributes by clustering. However, the latent at-
tribute structure in real life is multi-relational, e.g. two different sport
cars in different poses vs. a sport car and a family car in the same pose -
what attribute can dominate similarity? Instead of clustering, a network
(graph) containing multiple connections is a natural way to represent
such multi-relational attributes between images. In the light of this, we
introduce an unsupervised framework for network construction based
on pairwise visual similarities and experimentally demonstrate that the
constructed network can be used to automatically discover multiple dis-
crete (e.g. sub-classes) and continuous (pose change) latent attributes.
Illustrative examples with publicly benchmarking datasets can verify the
effectiveness of capturing multi- relation between images in the unsuper-
vised style by our proposed network.

1 Introduction

Active research on visual object class detection and classification during the last
ten years has produced novel approaches and many effective methods. At the
same time, the main benchmark has switched from the Caltech-4 dataset of 4
categories and 3k images to the ImageNet [3] LSVRC challenge of 200 classes
and 450k images (in ILSVRC 2014). The only change is not the increased num-
ber of images and classes but also a more realistic problem setting. That is,
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Fig. 1. A visual similarity network of ImageNet faces constructed using our procedure.
The network can be used to find similar examples (strong links) or gradual change
path from one example to another via the shortest path.

instead of a single well-captured object in a fixed pose, ILSVRC contains mul-
tiple objects with severe 3D pose changes, occlusions and background clutter.
These result great problems to the standard monolithic 2D methods and there-
fore novel learning paradigms, such as attribute learning [8, 23], have recently
gained momentum. Visual class detection can benefit from discovered latent vi-
sual attributes by learning multiple “fine-grained” classifiers [4].

Many attribute learning works utilise manually annotated attributes [2, 8], which
are not suitable for large-scale problems due to the expensive manpower involved
in the annotation. In view of this, unsupervised approaches that can automat-
ically discover latent attributes [1, 4, 10, 30] are considered and adopted. The
popular unsupervised tool is clustering, but it omits the fact that often latent
attributes are multi-relational and thus breaking them to discrete “modes” is
not sensible – what is anyway the more dominant attribute, car pose or model?

In this work, we adopt a network structure that can unsupervisely learn and
represent multi-relational attributes simultaneously. For network construction,
we propose a pairwise similarity measure and in the experimental part demon-
strate that the network can be used to automatically discover multiple discrete
(e.g. sub-classes) and continuous (pose change) latent attributes (see Fig. 1). Our
network establishes a structure which can be used in visual object categorisation



Discovering Multi-Relational Latent Attributes ... 3

to learn and represent multiple complex attribute-interpreted interconnections
and benefits from more and more data. Our main contributions are as follows:
– A novel similarity measure, which combines descriptor based local appear-

ance similarity and part-based constellation similarity into a unique similar-
ity score, is proposed for constructing a visual similarity network based on
pairwise matches of images.

– Experimental results where multiple multi-relational latent attributes are
discovered using a network (sub-categories, gradual change between exam-
ples in a same category and continuous attributes such as 3D pose change).

All source codes and data will be made publicly available1.

2 Related Work

Attribute learning – Explicit learning of visual attributes was first proposed
by Ferrari and Zisserman [8]. Their method learned visual models of various
attributes via weakly supervised setting where the training set was produced by
pre-defined Web searches. Recently, unsupervised attribute discovery has gained
more attention owing to its superiority to saving the involvement of manpower.
Methods for completely unsupervised visual object classification (no labels or
bounding boxes) have been proposed [10, 11, 27], but due to their large accuracy
gap to the state-of-the-art supervised methods [5, 12, 25] they have not received
enough attention. Attributes may still be beneficial in certain cases, such as zero-
shot learning [14], with only a small number of training images [2], fine-grained
classification [9] or utilising scene attributes to improve detection [16, 19].

Visual networks – Methods employing a network (graph) structure to repre-
sent visual relationships have recently been proposed [4, 10, 19, 22, 29, 30]. Most
of these algorithms aim at finding classes or a specific object automatically [10,
22, 29]. The core element of the methods is to introduce a proper similarity mea-
sure and tailoring it for a problem-specific goal. In recent works, Aghazadeh et
al. [1] and Dong et al. [4] establish their similarity measures using classification
scores of the exemplar SVM [17] which forms own classifier for each sample.
Another similarity measure was proposed [30] using feature’s tree distances in
unsupervised random clustering forests. Learning similarity measures can be
time consuming since they may change if new images are added and therefore
our measure will be based on pairwise structural similarity combining local part
appearance and part configuration.

3 Visual Similarity Networks

Given a set of images containing objects from visual classes and with appear-
ance and pose variation and imaging distortions, we aim to create an image
network where link strengths represent the visual similarity between two net-
work nodes (images). The network, or termed graph, consists of nodes (images),

1 The codes can be downloaded from :https://bitbucket.org/kamarainen/imgalign/code
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edges between the nodes and weights representing the visual similarity (distance)
between two nodes. The graph is directed if the used similarity measure does
not commute, or undirected if it does.
In our proposed network-based framework, the assumption is that such network
can be constructed from pairwise similarities by forming a similarity matrix that
represents a full-connected network. If the matrix is symmetric, the network is
undirected. The core elements in this procedure are i) a pairwise image visual
similarity measure (Sec. 3.1) and ii) a network construction strategy (Sec. 3.2).

3.1 A Pairwise Visual Similarity Measure

Explicit visual measures, such as the simple pixel-wise difference, have the prob-
lem that they cannot tolerate well standard imaging distortion and typically
behave well only close to a perfect match. Therefore, the recent trend in measur-
ing visual similarity is to use “learning metrics” that establish a computational
measure via ad hoc learning [1, 4, 30]. With learning metrics, the problem is that
they depend on used training images and a selected objective function, and it is
unclear how they generalise beyond images in the training set.
To measure pairwise similarity on object class level, we adopt structural visual
similarity based on the part-based models of visual classes that has been par-
ticularly successful in object class detection [6, 7, 13]. In the simplest form, we
describe j = 1, 2, . . . ,M parts of an image Ii by feature descriptors Fi,j (e.g.
SIFT). Every descriptor is associated with a spatial location xj = (x, y)j . The
part-based visual similarity of two images Ia and Ib can be defined as

s(Ia, Ib) = s ({< Fa,j ,xj >j=1...Ma} , {< Fb,j ,xj >j=1...Mb
}) (1)

The problem is that the two images are related to each other by unknown ge-
ometric transformation T : {< F,x >} 7→ {< F ′,x′ >} that aligns the object
parts (and affects also to the part descriptors if these are not invariant to the
selected transformation type). The similarity measure of two unaligned images
must therefore include the transformation term

s(Ia, Ib) = max
T

s(Ia,T(Ib)) . (2)

While the parts may have false matches due to background clutter, self-similarity
or descriptor mismatch, or no matches due to occlusion, practical implementation
of the similarity function becomes very complex.
In order to match two images Ia and Ib well, there should be good matches be-
tween the descriptors Fa,j ∼ Fb,j′ and the matching descriptors (j ↔ j′) should
locate spatially close xa,j ∼ xb,j′ under the transformation T (e.g., 2D scaling,
translation and rotation). To avoid the complex approximation, we construct the
similarity matching step-wise: first we construct the part appearance similarity
matrix D and then using the sparse binary D we sample transformations T such
that the geometric matching of feature locations is maximised. Our visual mea-
sure combines part-based appearance similarity and parts’ constellation based
structural similarity into a single novel measure.
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Part-based appearance similarity – As a standard procedure, we compute
dense SIFT descriptors using the VLFeat library [28] for every image scaled into
the same image resolution (320 × 200, 640 × 400). Scaling makes the method
resolution independent such that proportionally same size objects are matched
against each other. We can achieve scaling invariance by using multi-resolution
pyramid grids scaling invariance, but we did not find it necessary with the stan-
dard benchmark datasets (e.g. Caltech-101/256, Pascal VOC, ImageNet). For
pairwise similarity of images a and b, the full descriptor distance matrix is com-
puted between all features {Fa}i and {Fb}j forming the descriptor distance ma-
trix DMa×Mb

. We convert the distance matrix into a sparse binary form by
assigning 1 to the five best matches and 0 for the rest. The five best is justified
by the class level matching which is much weaker than between two views of a
same object. 2-5 best matches were found to improve the matching considerably
while beyond 5 improvement saturated quickly.

Structural similarity – The part-based similarity (e.g. summing N best de-
scriptor distances) would somehow resemble the visual bag of words approach
which has been used in graph construction [29]. However, the problem with that
measure is that it does not constrain the accepted matches to be spatially con-
sistent. Instead, we propose a similarity scoring procedure similar to used in
specific image matching [15, 21, 26], but in our case for multiple candidates and
not restricted by some fixed number of inliers. Due to enormous number of po-
tential matches for exhaustive search, we repeat a random sampling procedure
that selects two (minimum for similarity transform) features from a, their best
candidates within the five best in DMa×Mb

, transforms all features in a to b and
counts how many matches were found within the descriptor ellipses [18]. This
procedure is repeated R times (100 found sufficient in our experiments for im-
ages of size 320 × 200) and the highest number used as the similarity measure
between the images from a to b. It is noted that we do not restrict the transfor-
mation although it would improve the results with the standard datasets where
objects are typically captured in a few standard poses (e.g. pictures of horizon-
tal and vertical guitars in ImageNet). Moreover, the similarity matrix SN×N is
non-symmetric since matching from a to b can be different from b to a.

Similarity matrix – The output of the structural similarity is the number of
parts that match both by their appearance and their configuration between the
two images a and b. To establish a similarity matrix, the procedure is executed
between all images making our method’s computational complexity O(N2) for
N images. At this stage, we make one more trick that prevents classes with
plenty of salient parts to dominate by their high similarity scores and transform
the actual scores to match ranks, i.e. the highest rank N is assigned to the best
matching image and 1 to the worst matching:

S′ (i = 1 . . . N, j = 1 . . . N) = row wise rank(S(i, j), SN×N ) . (3)
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3.2 Network Construction

The network construction is straightforward if we change the structural visual
similarity scores given as rank numbers to distances by

Ŝ (i = 1 . . . N, j = 1 . . . N) =
N

S′(i, j)
. (4)

Moreover, to make undirected graph algorithms available we convert the distance
matrix symmetric by

Ŝ (i, j) = min
(
Ŝ(i, j), Ŝ(j, i)

)
. (5)

The visual similarity network of images is constructed as a graph G = (V,E,W ),
where V = {V1, ..., VN} denotes the set of vertices (nodes), EN×N denotes the
set of edges or links, and WN×N is the set of edge weights. We assign each image
Iq ∈ {I1, ..., IN} to the corresponding vertice Vq and set the computed ŜN×N as
the edge weights such that W (i, j) = S (i, j). Therefore the edge weights would
reflect the visual similarity such that low weights are assigned between similar
images. It should be noted that we set the diagonal of W to 0 to remove self-
references. The full network consists of N × (N − 1) links. An example of the
constructed network is illustrated in Fig. 1.

4 Examples and Experiments

In the experiments, we used images from various synsets of the ImageNet Large
Scale Visual Recognition Challenge 2014 (ILSVRC2), EPFL GIMS08 [20], and
10 categories of 3D object [24]. The only input for the network construction was
images and therefore only their visual content affects the results.

4.1 Discovering Classes and Sub-classes

At first, it is attempting to use the network structure to automatically discover
the most apparent discrete attributes such as visual classes (synsets) [10, 29] or
their sub-classes [4]. Whether our network structure can represent inter-class
relationships we selected three distinct ImageNet classes: cars, motorbikes and
airplanes. Using the Prim’s algorithm, we constructed a minimum spanning tree
(MST) shown in Fig. 2. From the tree and its closeups, it is evident that the
classes have distinct branches that also represent sub-class information (scooters
form their own branch in the motorbikes).

2 http://image-net.org/challenges/LSVRC/2014/
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Fig. 2. A minimum spanning tree of a network constructed using our pairwise similarity
measure for ImageNet cars, motorbikes and airplanes with closeups demonstrating the
class branches.

4.2 From Classes to Objects in Similar Pose

The interpretation that our network can be used to unsupervised discover classes
and sub-classes as shown in Fig. 2 is not accurate. It can be used for dedicatedly
selected examples, but if we add more ImageNet images that span almost full 3D
poses, pairwise similarities do not anymore code class level similarity but com-
bined pose and class similarity, and which dominates depends of a specific image
pair. This finding is demonstrated in Fig. 3 where we generated the graphs for
a large number of images from multiple ImageNet synsets (guitar, airplane), 3D
object dataset (head, bicycle, shoe, stapler). In these examples, the pose dom-
inates the pairwise similarity and not the specific object example. The finding
conflicts with the works that try to discover classes and sub-classes in a graph
structure [4, 10, 29], but supports works learning multiple classifiers for different
poses [1]. Overall, our examples illustrate the fact that pairwise visual similarity
graph represents multiple multi-relational latent attributes at the same time.

4.3 Traveling Graph in Latent Continuous Attribute Space

The previous examples illustrated how a single graph can represent multiple
“competing” attributes simultaneously and therefore methods based on strict
boundaries, such as clustering, are deemed to fail. In a single network, there
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Fig. 3. Single network node images (denoted by the red rectangular) and for each 3-4
neighbour images with the strongest connection links (similarity scores). The results
are more dominated by a specific pose rather a specific object.

can be several almost equally good paths between two nodes and the transition
“smoothness” depends on how many images there are in a network. A single
shortest path can be selected by, for example, MST algorithm. In Fig. 4 we
demonstrate continuous attributes by selecting “source” and “sink” images, and
traveling the graph from the source to the sink via the MST’s path. The images
in nodes within the path represent the active attributes.

5 Conclusions

In this work, we proposed to use pairwise “structural visual similarity” between
images to construct a network of images. The structural visual similarity is based
on a simple principle that local regions of the two images match and are in
similar spatial configuration (constellation). By using the similarity measure in
network construction we noticed that the network can represent multi-relational
attributes of discrete type (e.g. class/sub-class) and continuous type (e.g. 3D
pose) (Fig. 5). However, with a large number of images, such as in the largest
ImageNet synsets, certain attributes, such as the pose, may dominate other at-
tributes and therefore any unsupervised graph-based attribute search using tight
boundaries, such as clustering or minimum spanning tree (Fig. 6), is deemed to
fail. Therefore, we believe that the network structure representing images as
nodes and their similarities as connecting edges is a natural presentation of vi-
sual data. In this sense, even the attribute classifiers may share some images.
Our future work will exploit the network structure further and the immediate in-
terests are two-fold: 1) how to boost our network algorithm of the computational
complexity O(N2) (similarity matrix construction) more efficient to cope with
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Fig. 4. “Source” images selected from 3D object dataset (head, bicycle, shoe), Ima-
geNet (sax, airplane), EPFL GIMS08 (car) on the top and “sink” images at the bottom.
The other images represent nodes, “smooth transition”, between the source and sink
within the minimum spanning tree. Note that, the path encodes gradual change in pose
(face, car, bike and shoe) or appearance mixed with pose (music instrument, airplane).
The shortest path depends on all images and there can be multiple almost equally good
paths.

millions of images; and 2) how to unsupervised discover all active multi-relational
attributes.
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