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Abstract. In this paper, the shape decomposition problem is addressed
as a solution of an appropriately constrained Nonnegative Matrix Fac-
torization Problem (NMF). Inspired from an idealization of the visibility
matrix having a block diagonal form, special requirements while formu-
lating the NMF problem are taken into account. Starting from a con-
taminated observation matrix, the objective is to reveal its low rank
almost block diagonal form. Although the proposed technique is applied
to shapes on the MPEG7 database, it can be extended to 3D objects.
The preliminary results we have obtained are very promising.

1 Introduction

Shape decomposition constitutes of a vital procedure in the field of computer
vision, that is able to distinguish the different components of the original object
and split it into meaningful ones. Meaningful components are defined as parts
that can be perceptually distinguished from the remaining object. In this paper
the shape decomposition problem is addressed and a novel decomposition tech-
nique is proposed, which solves the above mentioned problem as a special case
of the well known NMF situation, using spectral analysis as a head-start. From
algebraic perspective, the formulation of NMF can be regarded as decomposing
the original matrix into two factor matrices, incorporating the nonnegativity
requirement. Far beyond this mathematical exploration, the notion underlying
the NMF is closely related to the human perception mode, as perception of the
whole is achieved by perception of its parts [?]. For an extended review in the
NMF we urge the interested reader to look at [?].
Let us consider a plane curve, that describes a shape boundary, to be defined
from the path traced by the following N position vectors:

r(i) = (x(i), y(i)) , i = 1, 2, · · · , N. (1)

Then, we can construct the following Visibility Graph GV = (V, E ,W), where
V, E ,W are the nodes and edges sets and a binary weighted matrix respectively.
More precisely, in this graph model of the plane curve, nodes’ set V is defined
as follows:

V = {r(i), i = 1, 2, · · · , N} , (2)
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and the wij element of the N ×N matrix W can be defined as follows:

wij =

{
1, if nodes i, j are visible

0, otherwise
(3)

where nodes i, j are considered as visible if, the following V isibility Rule hold:

– VR: The connecting edge εij is totally located inside the plane curve.

The GV of the camel (Figure 1(a)), obtained by the application of the above
mentioned V isibility Rule, is depicted in Figure 1(b). As it is obvious the struc-
ture of this matrix does not facilitate shape partitioning. An ideal matrix for
shape decomposition would have the form of an almost block-diagonal similarity
matrix [?], where its non-overlapping blocks could represent the shape’s parts,
in a sequential manner as it is shown in Figure 1(c). The potential gaps between
the blocks denote parts of the shape that do not constitute a group. Such parts
are for example those between the camel’s hunches, legs etc (see Figure 1(d)).
The basic idea behind this idealization is that each shape component can be

(a) (b) (c) (d)

Fig. 1. The camel-shape (a). The corresponding GV (b). An ideal block diagonal
matrix for the camel shape decomposition (c), and the resulting shape decom-
posion (d).

represented by a block in the respective block-diagonal matrix. Thus, the shape
decomposition problem can be restated as follows: Given the visibility matrix
W construct a block diagonal matrix that best approximates the desired form,
which is the objective of our paper.

In an attempt to achieve a rough approximation of the desired block diag-
onal form, a restriction is imposed to the W which allows visibility only to a
neighborhood of size n on both sides of its main diagonal. In order to calculate
a proper radius- n can be adopted any hierarchical method or the method of [?],
which we will adopt in this paper.

Constrained GV resulting from the original GV of the camel shape depicted
in Figure 2(a), are shown in Figure 2(b)-2(d) for three (3) different values of
radius n. We are expecting that different values of neighborhood radius, result
in different decompositions of the candidate shape, which becomes obvious in
Figure 3. It is apparent that none of them is perceptually meaningful, as in none
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of them the “optimal” n value is used. For futher details, please refer to [?].
From now and on we will refer to the redefined GV as X̂.

(a) (b) (c) (d)

Fig. 2. Initial GV (a) and n-conditioned GV for different values of n: 40 (b), 30
(c) and 10 (d).

(a) (b) (c)

Fig. 3. Different decompositions of the camel shape corresponding to different
values of neighborhood radius n (10, 30 and 40 respectively).

The remainder of the paper is organized as follows: In Section 2 related work
is briefly reviewed. In Section 3 the proposed shape decomposition problem is
formulated, while in Section 4 the proposed shape decomposition method is
developed. In Section 5 the results of the experiments we have conducted in the
MPEG7 shape database are presented. In addition a comparison to the matrix
completion problem is provided. Finally, the paper concludes at Section 6.

2 Related Work

The task of determining shape’s parts is a difficult task due to the involvement
of the human perception. However, there exist some generic perception rules
examined in psychologist science, with the short cut rule [?], the minima rule
[?] and the convexity rule [?,?] to be the most popular among them. Methods
for shape decomposition such as [?,?,?,?,?] are based on the above mentioned
rules. Besides these three popular perception rules, the authors of [?] propose a
new one called part-similarity rule. This rule is based on the observation that
similar parts of objects have to be decomposed with the same way, although



4 Foteini Fotopoulou and Emmanouil Z. Psarakis

they may look different due to deformations. A method based on differential
geometry of smoothed local symmetries taylored for decomposing a shape into
its meaningful parts was proposed in [?]. Method [?] suggests an hierarchical
segmentation by exploiting the multiscale properties of diffusion distance. In [?]
the use of a weak-convexity rule, based on “lines-of-sight” is suggested and the
shape decomposition problem is solved by using a spectral clustering algorithm.
Finally, the method psoposed in [?] originates from a visibility graph, which
captures the local neighborhoods and uses an iterative procedure to transform
it into a block diagonal matrix.

As already stated in the Introduction, the shape decomposition problem can
be formulated as a special case of the NMF problem. The idea of NMF was ini-
tiated by Paatero and Taper [?,?] together with Lee and Seung [?], who demon-
strated the NMF potential use in parts based representation. As in this paper we
will focus on the constrained NMF situation, and especially in cases where the
orthogonality constraint is imposed we proceed with a brief discussion among
this category.

The orthogonality principle was first employed in [?] and then in [?] the con-
cept of orthogonal NMF was explicitly expressed. Moreover in [?] the equivalence
of the orthogonal NMF to k-means clustering, its formulation as a constrained
optimization problem and its solution by using a Lagrange multiplier approach
were presented. However the resulting multiplicative update rule, suffers from
the zero locking problem. One solution than ensures robust convergence of the
algorithm thus solving the above mentioned problem was proposed in [?]. Fi-
nally, in [?] an orthogonal NMF algorithm with improved clustering capabilities,
based on the original Lee and Seung algorithm and [?], was presented.

Finally, several schemes for the initialization of the factor matrices which
affect both the convergence rate as well as the quality of the final solution,
have been proposed. In particular, alternatives to the random seed initialization
scheme [?] based on k-means [?] and svd [?], have been reported in the literature.

3 Problem Formulation

The original symmetric nonnegative matrix factorization problem with orthog-
onality constraints is already known and can be stated as follows:
Given a symmetric nonnegative data matrix X ∈ <N×N , the goal is to decom-
pose it into a product of two nonnegative matrices, so that X=V SV T , where V
additionally satisfies the orthogonality constraint and S is added to absorb the
different scales of the matrices. More formally, the orthogonal NMF problem can
be stated by the following optimization problem:

min
V
||X − V SV T ||2F , s.to V ≥ 0 and V TV = I, (4)

where ||A||2F denotes the squared Frobenius norm of matrix A. The aim of this
paper is to appropriately reformulate the shape desomposition problem into
a constrained NMF problem and solve it. Due to the specific binary form of
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the data matrix X̂ the shape decomposition problem is differentiated from the
above mentioned NMF problem mainly due to the special form of its low rank
component. In particular we would like to decompose the binary n-constrained
visibility matrix X̂ into a low rank component, represented by the binary matrix
X, and a sparse component E, that is: X̂ =X+E, where matrix’s E elements
take values from the set {1, 0,−1}.

At a first glance, the above mentioned problem resembles to the well known
matrix completion problem [?]. However, there exist some significant differences.
At first, our input matrix is binary and the desired output low rank matrix must
be strictly binary too. Continuing, it is important to highlight that although a
matrix completion algorithm aims at a low rank matrix of general form, we are
seeking for a block diagonal one. Indeed, as we are going to see in Section 5, the
matrix completion problem is not well fitted to shape decomposition problem.
Consequently, our aim is to recover a special form of X, from noisy binary
observations contained in the matrix X̂. By taking into account all the above
mentioned, the shape decomposition problem can be stated as follows:

min
V,k
||X̂ − VkV Tk ||2F , (5)

subject to the following N + k constraints:

C1 : cTj iN+1 = 2, j = 1, 2, ..., k with cji = |vji − vj,i−1|, vj,0 = vj,N+1 = 0

C2 : Vkik = iεN

where cji denotes the absolute forward difference of the elements of the zero
padded eigenvector vj , iM the all one’s vector of length M and iεM an ε-perturbed
version of this vector with the value of ε expressing the percentage of its zero
elements. This special form of iM vector allows the decomposition matrix to be
almost block diagonal if it is required. This fact is in fully accordance with the
ideal matrix description mentioned in the Introduction. Note also that because
vji ∈ {0, 1}, each one of the constraints C1 imposes the desired form of the
eigenvectors, while the constraints C2 express the orthogonality of the columns of
the binary matrix V . Note finally, that the objective function of the constrained
optimization problem does not contain the matrix S anymore.

Although, the above stated problem is NP hard, we are going to overcome this
difficulty by starting with the eigenanalysis of matrix X̂ and properly imposing
in the produced eigenvectors the already stated requirements.

4 The Proposed Spectral Decomposition Method

Let us consider that the X̂ matrix is given. Then, the proposed method aims
at appropriately transforming the original visibility matrix into an almost block
diagonal one, which can be easily used for the visually meaningful decomposition
of the candidate shape.

The first step of the proposed decomposition method consists of the eige-
nanalysis of the given matrix X̂. Specifically, since this matrix is binary and
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symmetric, from the finite dimensional spectral theorem we know that its eigen-
values are real and that it can be diagonalized by an orthonormal matrix U , that
is UTU = I, as follows:

X̂ = UΛUT (6)

where matrix Λ contains the real eigenvalues of the matrix.
Let:

Λ = Λ+ + Λ− (7)

be two diagonal matrices containg the non negative and negative eigenvalues of
matrix X̂, respectively. Then, the original matrix can be written as follows:

X̂ = X̂+ + X̂−, (8)

where X̂± = U±Λ±U
T
± and U+, U− matrices that contain the eigenvectors which

correspond to the non negative and the negative eigenvalues respectively. The
number of columns of these matrices are denoted by N+ and N− respectively
with their sum to be equal to N . Based on the orthogonality of the above defined
matrices X̂±, the following relation holds:

||X̂||2F = ||X̂+||2F + ||X̂−||2F . (9)

Note that matrix X̂+ constitutes the optimal non-negative definite symmetric
approximation of the original matrix X̂. In addition, its Singular Value Decom-
position coincides with the following decomposition of the matrix X̂+:

X̂+ = U+Λ+U
T
+ . (10)

Although, the above mentioned matrix is not a non-negative matrix as the de-
sired one, it constitutes a better approximation to our ultimate goal which is a
block diagonal matrix. Therefore, we are going to use this matrix in the next
step of the proposed method.

In the second step of the proposed algorithm the eigenvectors are sorted in
descending order according to the absolute value of their projection onto the
vector iN . Specifically, let:

p = UT+ iN (11)

be the projection of the vector iN onto the matrix U+.
By taking into account the definition of the inner product, the unit norm of

each eigenvector and the specific form of vector iN , each element of the above
defined vector p can be expressed as follows:

pj =< uj , iN >=
√
N cos(θj), j = 1, 2, ..., N+, (12)

with < a, b > and θj denoting the inner product of vectors a, b and the existing
angle between them respectively.

By defining the following matrices:

S = diag{sign(cos(θj)), j = 1, 2, . . . , N+}
Û+ = U+S (13)
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Equ. (11) can be equivalently rewritten as follows:

|p| = ÛT+ iN . (14)

Note also that by taking into account the fact that the Singular Value Decom-
position is only unique up to a reflection of each eigenvector, the decomposition
of Equ. (10) can be equivalently rewritten as follows:

X̂+ = Û+Λ+Û
T
+ . (15)

Let us now concentrate ourselves on the vector |p| defined in Equ. (14). As
it is clear, each element of this vector constitutes the projection of the redefined
eigenvector ûj (or equivanently the j-th column of the matrix Û+ defined in
Equ.(13)) to the all one’s vector iN . Thus, it makes sense to assume that the
value of each element specifies the contribution of the corresponding eigenvector
in the reconstruction of this vector. Consequently, let us sort them in descending
order into the vector |pS |, and rearrange accordingly the columns of matrix Û+

to obtain its desired sorted counterpart ÛS+.
In the next step, we are going to replace all these N+ eigenvectors by their

binary equivalents. In order to achieve our goal, for each one of the N+ eigen-
vectors, a hard thresholding procedure is applied. To this end, let:

Ij = {min(ûSj) :
max(ûSj)−min(ûSj)

L− 1
: max(ûSj)}, (16)

be a sequence of length L, resulting from the uniform sampling of the range of
the j-th column of matrix ÛS+, that is the range of the eigenvector ûSj and let
us define the following sequence (of the same length) of binary vectors:

Uj = {vji = sign ((ûSj − Ti) > 0) , Ti ∈ Ij}. (17)

Note that the above defined set contains all the binary versions of eigenvector
ûSj after its hard threshoding by Ti.

Let us now denote by UAj the subset of the binary vectors that belong into
the set Uj defined in Equ. (17) and strictly satisfy the C1 constraints of the
optimization problem (5). It is clear that this subset contains all the admissi-
ble binary representations of the eigenvector ûSj . In order to isolate the most
characteristic one, let us compute the l0 norm of each admissible vector, i.e.:

li = ||vji||0, i = 1, 2, . . . , |UAj | (18)

where |UAj | denotes the cardinality of set UAj . Then, find out the most frequent
element of the above defined sequence vj and if its l0 norm is greater than a
predefined minimum admissible value m`0 , consider it as the most representive
binary vector of the specific eigenvector. We must stress at this point that the
latter restriction puts a down limit to the size of the smallest permitted shape
component. Repeat the above described procedure for each one of the N+ sorted
eigenvectors contained in the matrix ÛS+. It is clear that after this we end up
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with a subset of M out of the N+ binary eigenvectors which strictly satisfy the
constraints C1 and their l0 norms are greater than the minimum admissible value
m`0 . Finally, sort these binary eigenvectors in desceding order according to their
l0 norm.

Having defined the binirized form of the M eigenvectors, in the last step of
the proposed algorithm we impose all the neccesary constraints onto the binary
eigenvectors in order to satisfy the constraint C2 of the constrained optimization
problem (5). Specifically, each one of the M selected binary eigenvectors is se-
quentially examined for the satisfaction of the above mentioned constraint. In
particular, for each pair of succesive binary vectors their intersection is identi-
fied and if it is not empty is substracted from the eigenvector with the smaller
l0 norm. Keep the resulting vector if its l0 norm is greater than ml0 . Note that
by repeating the above described procedure over all the vectors, we end up with
k ≤ M mutually exclusive binary vectors which sum up to a iεN vector and this
concludes the proposed technique.

An outline of the proposed algorithm follows.

Algorithm 1 NMF Spectral Shape Decomposition

1. Input X̂ and ml0

2. Make the eigenanalysis of matrix X̂: X̂ = UΛUT

3. Form its non-negative definite part:X̂+ = U+Λ+U
T
+

4. Compute the projection vector p of Equ.(11)
5. Use Equ. (12) to compute matrices S and Û+ of (13)
6. Sort vector |p| and form the sorted matrix ÛS+

7. Use Equs. (16-18) to isolate the binary equivalents of the eigenvectors ûSj ,
j = 1, 2, . . . N+ which strictly satisfy the constraints C1 of the optimization
problem (5), and their l0 norm is greater than ml0 . Sort them according to
their l0 norm.

8. Impose constraints to satisfy the constraints C2 of the optimization problem (5).

Having completed the presentation of the proposed technique, in the next
section we are going to apply it in a number of 2D shapes and compare its
performance against other well-known techniques.

5 Experimental Results

5.1 Shape Decomposition

In this section we present comparative results obtained by applying the proposed
method to several shapes of the MPEG7 shape database part B [?]. All shape
contours we used in our experiments were sampled uniformly at 200 points and
the size of the smallest permitted shape component, controlled by the value of
the parameter ml0 , was set to 5. A sample of 2D decomposed shapes, using the
introduced method, is shown in Figure 4.

In our opinion the proposed method seems to be insensitive to the number
and the complexity of the shape components (see for example the decomposition
of the mouse or that of the butterfly shown in Figure 4). It is evident, that for
most shapes the decomposition is meaningfull, while in some situations, parts
that obviously could not be separated by a human being, are splitted by the
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Fig. 4. A sample of decomposed shapes of the MPEG7 database.

algorithm. Specifically, the dog shapes are decomposed into their main parts
(i.e. the head, the tail and the legs) in most cases. Moreover, in the mouse the
ears, the tails, the hands and the legs are successfully separated. Finally, in the
butterfly shapes, the antennas are defined as separate parts, except from the
third one. In addition, the wings are well defined, too. An exception is made to
the first and third butterfly figures, where the wings are distorted. It is worth
mentioning, that the spectral decomposition proposed in this paper, provides
satisfactory results achieving at a great degree to recognize most meaningful
articulated shape parts, even if they are depicted in different poses, which are
acceptable compared to other methods.

To further demonstrate the effectiveness of the proposed decomposition method,
we will proceed in showing some comparative results. In particular, we will com-
pare our method to [?],[?], [?] and [?]. The above mentioned results are shown
in Figure 5. Since human perception is essential for the evaluation of the pro-
duced results, human decompositions are shown in the first column of this figure.
For each of the categories (see Figure 5) for which the experiment conducted,
humans were asked to decompose the shapes manually into meaningful parts.
The results of this experiment were borrowed from [?]. In addition, we should
mention that in the fifth column of the Figure 5, where the results of the [?] are
depicted, the decomposition does not include the staightening process. As it is
apparent, our proposed method succeeds in most cases to successfully approx-
imate the results of the first column. In addition, although in some cases the
introduced method identifies some extra components, it succeeds in capturing
other ones, that none of the compared methods can do. For example, in the
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elephant shape we have to mention that although its spine is found as a sepa-
rate shape part, the head is also found as a component, which is in accordance
with the perceptual decomposition shown in the first column and in most of the
other methods is missed. The same observation holds for the cow’s and frog’s
head. Finally, regarding the beetle shape, our method is the only one among the
compared ones that decomposes its legs as separate parts, which confirms the
effectiveness of our method to bendable shape parts. Concluding, although the
performance of the proposed technique can be characterized as quite good, it
could be further improved if a more sophisticated scheme, than that we adopted
from [3] is used for structuring the constrained visibility matrix X̂. This point
is currently under investigation.

Fig. 5. Examples of the decomposition for 14 categories of the MPEG7 shape
database. Human decompositions (1st column) and the results obtained from
the application of, [?] (2nd column), [?] (3rd column), [?] (4th column), [?] (5th
column), the proposed decomposition technique (last column).

5.2 Relevance to Other Closely Related Techniques

Visibility Shape Decomposition: As already mentioned, the idea of the ideal
form of an ideal visibility matrix and the use of a constrained visibility matrix
as a head-start were borrowed from the VSD method proposed in [3]. Although
in [3] the decomposition problem is solved in a totally different way, we consider
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it essential to provide a short comparison between the decomposition results
provided by these two methods. Although the experiments showed in the VSD
are very promising, there exist many occasions where the resulting decomposition
leads to over segmented shapes. This problem is due to the iterative procedure
which sometimes fails to capture whole segments as a compact block in the final
almost-block diagonal matrix. Therefore, we can observe decompositions where
a perceptually expected group is splitted into two smaller ones, with no physical
meaning. In Figure (6) two indicative examples of the above stated problem,
accompanied by their corresponding block diagonal matrices are shown. As we
can observe, the cow’s head is over segmented and the same holds for the round
part of the apple. On the other side regarding the performance of the proposed
method, all the comments we made in the previous subsection are still valid.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Decompositions and block diagonal matrices of the apple and cow shapes
resulting from the application of VSD (a-d) and the proposed technique (e-h)

Matrix Completion Problem: Given a corrupted data matrix D, the process
of matrix completion is to decompose the matrix into a sum of a low-rank matrix
X and a sparse matrix E. In [?] is shown that, under broad conditions, the
optimal solution to the completion problem is given from the solution of the
following convex optimization problem:

min
X,E
||X||? + γ||E||1, s.t. D = X + E (19)

where γ > 0 is a parameter that is used to control the sparseness of the matrix
E.

There exist many well-known techniques that can be used for the solution of
the constrained optimization problem defined in (12), such as Augmented La-
grange Multiplier (ALM) Method [?], the Accelarated Proximal Gradient (APG)
[?], the Dual Method [?], the Singular Value Thresholding [?] to name a few.
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In all the experiments we have conducted we used the IALM and the SVT al-
gorithms,1 and the results we have obtained confirm that although the Robust
PCA [?] methods can be successfully used for solving the matrix completion
problem, for the shape decomposition one they seem to be inappropriate.

(a) (b) (c)

Fig. 7. The fork shape (a), the rank 193 visibility matrix (b) and the rank 5
block diagonal matrix resulting from the application of the proposed technique
(c)

(a) (b) (c) (d)

Fig. 8. IALM decompositions results and the rank of the obtained low rank
matrix X for the fork shape for different valious of the parameter γ. γ=0.05,
rank=5 (a), γ=0.06, rank=13 (b), γ=0.08, rank=25 (c), γ=0.1, rank=46 (d)

As it is apparent from (19), the greater the value of γ is, the sparser the
matrix becomes. From the Figure 8 we can observe that as the value of the
parameter γ increases, the matrix’s rank is increased and the resulting matrix
escapes the block diagonal form. However, for small values of γ some groups seem
to reveal, but the desired block diagonal form is not achieved. Specifically, as we
can see from Figure 8(a), although the rank of the produced matrix is exactly
the same as the rank of the block diagonal matrix resulting from the application
of our method (see Figure 7(c)), the IALM algorithm produces a matrix that is
not in the desired form. Moreover, by increasing the parameter γ we can see in
Figures 8(b)-8(d) that the constructed matrix seems to somehow approximate

1 In our experiments for the implementation of the matrix completion techniques
we have used the matlab codes from http://perception.csl.illinois.edu/

matrix-rank/sample_code.html.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html


Spectral Shape Decomposition by Using a Constrained NMF Algorithm 13

the block diagonal form, however by escaping the low rank constraint. These
observations confirm the fact that the completion algorithms in their original
form seem to be unsuitable for the shape decomposition problem, as they result
in a low rank matrix which has not necessarily the special desired form. The
same remarks hold for the SVT completion algorithm.

6 Conslusions

In this work, a novel perspective on the shape decomposition issue was proposed.
Originating from an eigenanalysis of a constrained visibility matrix, the shape
decomposition problem was formulated as a constrained orthogonal NMF one.
From the results we obtained it seems that the introduced technique results in
perceptually most meaningful decomposition than most of the existing meth-
ods. Although the proposed method is applied to a large number of 2D shapes,
extension in 3D shapes is currently under investigation.
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