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Abstract. Supervised Descent Method (SDM) is a highly efficient and
accurate approach for facial landmark locating/face alignment. It learns
a sequence of descent directions that minimize the difference between
the estimated shape and the ground truth in HOG feature space during
training, and utilize them in testing to predict shape increment itera-
tively. In this paper, we propose to modify SDM in three respects: 1)
Multi-scale HOG features are applied orderly as a coarse-to-fine feature
detector; 2) Global to local constraints of the facial features are con-
sidered orderly in regression cascade; 3) Rigid Regularization is applied
to obtain more stable prediction results. Extensive experimental result-
s demonstrate that each of the three modifications could improve the
accuracy and robustness of the traditional SDM methods. Furthermore,
enhanced by the three-fold improvements, the extended SDM compares
favorably with other state-of-the-art methods on several challenging face
data sets, including LFPW, HELEN and 300 Faces in-the-wild.

1 Introduction

Facial landmark locating is key to many visual tasks such as face recognition, face
tracking, gaze detection, face animation, expression analysis etc. It is also a face
alignment procedure, if we regard all landmarks together as a face shape. Previ-
ous works on face recognition has proven that the recognition performance highly
depend on the preciseness of the image alignment process [1][2][3][4]. An excel-
lent facial landmark locating approach should be fully automatic, efficient and
robust in unconstrained environment with large variations in facial expression,
appearance, poses, illuminations, etc. Also, the number of feature points that are
needed to be located varies with the intended application. For example, for face
recognition or detection, 10 points including nose tip, four eye corners and two
mouth corners are enough. However, for higher level applications such as facial
animation and 3D reconstruction, 68 or even more landmarks are preferred. To
facilitate the assessment of locating algorithm in complex environment, datasets
annotated with various number of landmarks have been released, such as LF-
PW(29) [5], HELEN(194) [6] and IBUG(68) [7]. The images in these datasets
are almost real-world, cluttered images which are mainly collected from the In-
ternet and exhibit large variations in pose, appearance, expression, resolution
etc. When dealing with large amounts of landmarks, a global shape constraint is
essential for the landmark detector, since some points such as those on the chin
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and contours are difficult to be characterized alone by the local appearance and
may need clues from the correlation between landmarks or the facial structure.

The normal process to achieve landmark locating is first learning some dis-
criminative information such as principal components[8–10], static probability
model[5, 11–13] or regressors [14, 15, 13, 16–19] from the training data, and then
when given a test image, making use of the learned information or model as well
as the property of the test image (feature or appearance) to predict the shape
(increment) or parameter, aiming at aligning the estimated shape to the true
shape. Always the estimation procedure could not be accomplished in one step,
due to both intrinsic factors such as variability between individuals and extrin-
sic factors such as pose, partial occlusion, illumination and camera resolution
differences and so forth, which means that usually feature point locating is an
iterative coarse-to-fine procedure.

In recent years, discriminative shape regression has emerged as the leading
approach for accurate and robust face alignment. Among them, SDM[15] pro-
posed by Xiong et al. is a representative for its natural derivation from Newton
Descent Method as well as its high efficiency and accuracy. Furthermore, the
authors put forward the error function for discriminative methods, connecting
it with parameterized appearance models. In this paper, based on SDM and the
coarse-to-fine principle in face alignment procedure, we make three modifica-
tions to the original algorithm: 1) Multi-scale HOG features are applied orderly
as a coarse-to-fine feature detector; 2) Global to local constraints of the facial
features are considered orderly in regression cascade; 3) Rigid Regularization is
applied to obtain more stable prediction results. We show the improvement in
locating accuracy by testing these modifications on several challenging datasets.

2 Related Work

Pioneering work on landmark locating/shape estimation includes ASM and AAM[8].
These methods learn shape and appearance principal components from training
data to guide the estimation of parameter such as reconstruction coefficients
and geometric transformation to minimize the differences between the query
and model face. The model face is reconstructed by projecting the query face
to the trained principal component subspace. Due to the their elegant mathe-
matical formulation and efficient computation, a number of such AAM/ASM-
based approaches have been proposed. A representative example is STASM[9],
it makes extensions to the original ASM including stacking two ASM in se-
ries, using two-dimensional profile, loosening up the shape model etc. Although
various improvements have been proposed, the drawback of AAM/ASM-based
methods remains apparent: the expressive power of the eigen space is still lim-
ited even when a much higher-dimensional appearance subspace is employed,
therefore these methods show unsatisfactory performance on unseen images or
images with large variation from the training data. Moreover, due to their use
of gradient descent optimization, the result given by these approaches depends
heavily on initialization, which is usually considered undesirable.
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Other popular modern approaches prefer to perform alignment by maximiz-
ing the posterior likelihood of each facial part or point. They usually construct
specific fiducial point detectors for each point or part, which predict their prob-
ability distributions given the local features, and combine them with a global
shape prior to exert constraint. In [5], a Bayesian framework unifies the prob-
ability of a global shape in order to select similar samples from training data
for query images. In [19], seven fiducial landmarks are firstly detected by priori
probability, then MRF is employed to construct global shape to further estimate
fewer fiducial landmarks. Besides, methods based on convolutional network[20]
have also been evaluated and proposed in recent years.

In this study, we focus on the regression-based methods[14, 21, 22, 15, 17, 23,
24], which are the leading approaches in facial landmark locating in recent years
because of their higher accuracy and efficiency over other methods. The good
performance of regression-based methods mainly owe to their ability to adap-
tively enforce shape constraints, the strong learning capacity from large training
datasets as well as the precise objective function.

In general, regression-based methods learn a mapping from image features
to the face shape or shape increments.

Two representative regression-based approaches are explicit shape regres-
sion(ESR) and supervised descent method(SDM). In [22], Cao et al. make use of
”shape indexed feature” and learn a weak regressor between the shape increment
∆S and the features in a cascade manner, and the features are regenerated in
each iteration. During test, starting with an initial shape, shape increments are
predicted step-by-step to refine the shape.

Xiong et al. proposed Supervised Descent Method(SDM)[15] which directly
regresses the shape increment by applying linear regression on HOG feature
map. Different from boosted regression based methods as ESR, they establish
the objective function of aligning image in feature space and infer the approach
from Newton Descent Method to give an explanation to linear regressor and
feature re-generation, which is quite simple, effective and well-understood.

3 Method

To make this paper self-contained, we first give a brief introduction to the SDM
approach[15]. Then we describe the modifications proposed in detail.

3.1 Supervised Descent Method(SDM)

Given an image d ∈ Rm×1 of m pixels , d(x) ∈ R2p×1 represents the vector of
landmarks (face shape) coordinate, where p is the number of landmarks. h(•) is
feature extraction function. The objective function for face alignment is

f(x0 +∆x) = ∥h(d(x0 +∆x))− ϕ∗∥22 (1)

where ϕ∗ = h(d(x∗)) represents the feature(HOG) of the true shape.
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The target is to calculate the shape increment ∆x recursively to minimize
the difference between the feature of estimated shape and that of the true shape,
i.e. align the test image w.r.t. a template ϕ∗ in feature space. HOG feature ex-
tracted from patches around the landmarks is used to achieve robustness against
illumination and appearance variations. After a series of derivation and approx-
imation such as second order Taylor expansion, similar to Newton’s method[25],
the update for x is derived: ∆x1 = −2H−1JT

h (ϕ0 − ϕ∗). Considering that ϕ∗ is
unknown in testing, ϕ∗ is not used in training, and the equation is rewritten as
a generic combination of feature vector ϕ0 plus a bias term b0.

∆x1 = R0ϕ0 + b0 (2)

where R0 is referred as a descent direction.
Due to the large variations of face, alignment can hardly be accomplished

in a single step. To cope with the non-quadratic function, a sequence of generic
descent directions are learned by applying the update rule in Eq. 3.

xk = xk−1 +Rk−1ϕk−1 + bk−1

∆xk = xk − x∗

ϕk = h(d(xk))

(3)

In training, for each iteration, ∆x∗ and ϕk are created applying the update
rule in Eq. 3, then generic descent directions Rk and bias terms bk are learned
through minimizing the difference between the true shape and the predicted
shape in feature space, which can be solved by linear regression, as expressed in
Eq. 4. Then the current estimated shape is updated using Eq. 3. After several
steps, the estimated shape xk converges to the true shape x∗ for all images in
the training set, which means the training process is completed. The main step
of training is summarized in Algorithm 1.

argmin
R,b

∥∆xi
∗ −Rkϕk − bk∥22 (4)

During testing, given a test image, the learned regressors {Ri, bi}Ni=0 are em-
ployed to compute the shape increment recursively using Eq. 3, where N indexes
the number of training stage. The main steps are summarized in Algorithm 2.

Apart from the above, training data augmentation (i.e. initializing each train-
ing image from different estimate) is also mentioned to enlarge the training set
and improve the generalization ability.

3.2 Modifications of Original SDM Algorithm

The main step of SDM is to predict the shape increment making use of features
extracted in current iteration by linear regression. Therefore, the performance
depends on both the discrimination of extracted local features and the effective-
ness of linear regression. Based on this, we propose three modifications to the
original supervised descent method, which are described in detail below.
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Algorithm 1 SDM training

Input:
a set of K face images {di}Ki=1

corresponding true shape {xi
∗}

initial estimate shape x0

Output:
regressor {Ri, bi}Ni=0

1: while i < N do
2: compute regress target shape ∆x∗ = x∗ − xi−1

3: extract HOG feature ϕi from current shape xi−1

4: learn Rk and bk using Eq. 4
5: update estimated shape xi using Eq. 2
6: i← i+ 1
7: end while

Algorithm 2 SDM testing

Input:
test image I
regressor {Ri, bi}Ni=0

initial shape S0

Output:
final predicted shape SN

1: while i < N do
2: extract feature ϕi in current shape Si

3: compute shape increment ∆S = Riϕi + bi
4: update shape Si+1 using Si+1 = Si +∆S
5: i← i+ 1
6: end while

Adaptive Feature Block In the original SDM algorithm[15], the SIFT features
of landmarks are extracted in fixed-size blocks to predict the shape increment
for each iteration. Intuitively, the feature extraction block size is related with
the value of shape increment. If the shape increments of all training samples
are scattered widely, a larger feature extraction block is preferred, thus our first
modification is to replace the original fixed-size block by an adaptive feature
extracting block.

In initial stages, when the estimated shape is far from the ground truth, it
is favorable to extract features in bigger patches around predicted landmarks
to utilize more useful information, which is beneficial for handling large shape
variations and guaranteeing robustness, as the first image in Fig. 1 indicates. The
red points stand for the true shape, green ones for currently estimated shape, and
green circles are the range of feature extraction block, where we only draw five
feature point for clarity. In training, the difference between the predicted shape
and the true shape decreases step-by-step. Extracting features in a gradually-
shrinking region helps to grasp the discriminative features effectively. Especially
in late stages, where extracting feature in small-size blocks tends to reduce the
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proportion of noise, thus ensuring accuracy, as is shown in the third picture
in Fig. 1. Therefore, we recommend the progressively-reducing block size other
than fixed size to achieve better feature extration performance.

Stage 1 Stage 2 Stage 5

Fig. 1. An illustration of adaptive feature extraction block mechanism. The red points
represents the true shape, green for estimated landmarks in corresponding stage, green
circles are radius of extraction patch. Along with approximation to true shape, the
radius shrinks.

Adaptive Regression The second modification is intended to modify the re-
gression mode.

During the training process, features of all fiducial points constitute the shape
feature ϕ. In the same way, the displacement of all landmarks consist of the shape
increment ∆x. R and b are obtained by minimizing equation 2 through linear
regression in 4 or 5 steps. ϕ and ∆x are both an ensemble of all landmarks.
We denote this mode as global regression. Global regression enforces a shape
constraint to guarantee robustness, avoiding divergency in iteration, which is
essential when the prediction is far from the target.

Though variations in face geometry and expression are considered, global
regression would sacrifice the accuracy to guarantee robustness at times. Other
regression methods involve part regression, which is regressing different regions
of face separately, and local regression, to regress each landmark individually. By
operating locally at each time, these methods could avoid influence from other
part or landmark of the image.

To enhance the capability of handling large variation, we recommend replac-
ing the original global regression in all stages by a more flexible mode of adaptive
regression: global regression⇒part regression⇒local regression mechanism. The
regression process starts from the mean shape. At initial stages, where the es-
timated shape is unreliable, global regression is preferred to enforce a shape
constraint to guarantee robustness. At middle stages, however, thanks to the
restricted model in previous stages, the majority of the landmarks have been at
or near their optimal position except for some particular regions. For instance,
as shown in Fig 2(a), in the current estimated shape, the mouth region is the
furthest from the true shape than any other regions of the face. At this time,
regressing different regions independently may improve the generalization ability
of the regression model.
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In late stages, on the premise of proper operations in the previous step, only
small refinement on a few of the points is required, i.e., the shape constraint
is now exhausted. Hence, regressing each landmark increment individually is
beneficial, which means that employing local regression at late stages helps to
further improve the locating accuracy.

(a) (b) (c)

Fig. 2. A graphical representation of adaptive regression mechanism.

The choice of landmarks in part regression is alterable, which depends on the
distribution and amount of landmarks. A normal way is dividing the face into five
parts: two eyes region, nose region, mouth region and contour, which is adopted
in our method. Similarly, the configuration of regressions is also alterable. When
the target is complicated, we tend to properly increase the proportion of global
regression, otherwise, the number of local or part regression could be set higher
to achieve better accuracy. In our experiment, we always adopt the setting of
2 global ⇒ 2 part ⇒ 3 local regression. It should be noticed that adaptive
regression is compatible with the adaptive feature block scheme above, which
jointly improve the locating accuracy.

Rigid Regularization Minimizing Eq. 4 is the well-known least squares prob-
lem, which can be solved by linear regression. A straightforward way to improve
performance is to impose regularization, which can be expressed using Eq. 5,
where λ controls the regularization strength, the value of which is adaptive. The
dimension of HOG feature of a single point is 128; for a face shape consisting of
68 landmarks, the number could be as large as 10K+. Without regularization,
the linear regression model is subject to over-fitting, which can be observed clear-
ly in the experiment. Furthermore, regularization gives rise to more iterations
and slows down the convergence rate, thus making the first two modifications
possible. The regularization strength should be adaptive in order to work with
our coarse-to-fine principle. Concretely, in early stages, strong regularization
is preferred to construct a robust model, while later on, a lower regularization
strength is favorable to better fit the true shape S∗. In short, with regularization,
we achieve a more flexible and robust model.

argmin
R,b

(∥∆xi
∗ −Rkϕk − bk∥22 + λ∥Rk∥22) (5)
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3.3 Summary

To sum up, we propose three modifications to SDM in total: 1. adaptive fea-
ture extracting block; 2. adaptive regression mechanism; 3. rigid regularization.
With these extensions, SDM better satisfies the coarse-to-fine criterion of land-
mark locating. Essentially, they are inter-related rather than independent. The
involvement of regularization which slows down convergence, allows an adaptive
regression mechanism as well as finer selection of block sizes. Also, the strength
of regularization should decrease with the global-to-local regressions going on.
It is worth mentioning that the computation complexity is reduced by applying
local regression instead of simply global regression. When tackling faces with p
landmarks, the dimension of one-level regressor R is 2p × (128p + 1) (ignoring
the bias term b), while the sum of all part (local) regressor is Σk

i=12pi× (128pi+
1), Σk

i=1pi = p.

4 Experiment and Comparison

In this section, we evaluate the performance of our method from two aspects.
First of all, we validate the effectiveness of each modification on SDM [15], then
compare that with state-of-the-art methods using two challenging datasets. The
error normalized by the inter-pupil distance is used as an evaluation metric, as
proposed in [5]. Note that the error is a percentage of the pupil-distance, and
we omit the notation % in our reported results for clarity.

In the experiment, our modifications introduce a few adjustable parameters:
feature block (normalized by the face size), regularization strength (represented
as a vector of which the length equals the number of iterations) and adaptive
regression parameter (noted as a three-dimensional vector [a, b, c], which consists
of the number of iterations in global regression, part regression and local regres-
sion respectively, where a + b + c = iteration time). In the original algorithm,
SDM converges in 4 − 5 steps. The modifications we adopt would decrease the
convergence rate, hence we adopt 1 − 2 more steps for fair comparison in the
experiment.

4.1 Comparison with SDM

In this section, we validate the effect of modifications we proposed using two
common facial datasets: LFPW[5] and LFW[26], which correspond to different
situations of landmark locating. Experimental configurations are described be-
low.
LFW consists of 13232 images in total. We adopt 10-point annotations and face
bounding boxes released by [17]. Among the 13232 images, 10000 are selected
randomly as the training data, with the remaining 3232 used for testing. The
images in LFW dataset are low-resolution, hence the amounts of landmarks are
relatively small.
LFPW are released by Belhumeur et al[5], containing 1432 face images, 1132
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for training and 300 for testing, each of which has 35 fiducial landmark annota-
tions. Since only image URLs are available and some links disappeared as time
passed, we failed to download sufficient data for experiments. Thanks to [7], a
version of 1035 images is available (each annotated with 68 landmarks), 881 of
which are for training and the rest 224 for testing. Since the size of the training
data is small, we employ data augmentation to improve generalization ability by
initializing each training image multiple times. In this way, the descent direction
varies to generate multiple training samples. We enlarge the training data 10
times in our experiment.

In our analysis, feature extracting block size and regularization strength de-
crease gradually. The adaptive regression parameter follows the global-to-local
principle. All the parameter settings are adaptive to the coarse-to-fine criteri-
on in landmark locating. The parameters we adopt are shown in Table 1 (the
original SDM in not included). Specifically, for testing the original SDM, we
adopt a fixed parameter which gives the best performance: a block size of 0.16
(normalized by face size) for feature extracting.

Table 1. Parameter configuration on two data sets.

data set LFW LFPW

number of
landmarks

10 68

image size 100 ∗ 100 400 ∗ 400
iteration 7 7

adaptive block [0.48, 0.32, 0.16, 0.08, 0.04, 0.04, 0.02] [0.24, 0.20, 0.16, 0.12, 0.08, 0.04, 0.02]

adaptive
regression

[3, 0, 4] [2, 2, 3]

The two graphs in Fig. 3 illustrate the improvements brought by our three
modifications on LFW and LFPW datasets respectively, from which we can
observe several similarities. First of all, it is noticed that the original SDM con-
verges faster than others (within 4 iterations), for its average error starts to
remain stable earlier in both of the graphs. Also, on both datasets we achieve
over 15% error reduction compared to the original SDM method. Fig. 3(a) alone
shows that the effect of adaptive block is the most obvious on the LFW dataset,
with the error declining from 5.96 to 5.5. In contrast, the curves of Fig. 3(b)
indicate that, with the LFPW dataset of 68 landmarks, the rigid regularization
applied contributes the most among the three modifications. An explanation is
that as the amount of landmarks is large, the initially predicted shape is further
from the ground truth, so a stronger global shape constraint is necessary. In this
case, more iterations of global regression (instead of part or local regression)
should be implemented and strong regularization is preferred in the mean time.
Overall, it turns out that with each modification applied, the average error de-
creases more or less, which demonstrates that all three modifications proposed
are effective in improving the performance of the original SDM.
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Fig. 3. Curves of average error versus iteration. 3(a) on LFW dataset, 3(b) on LFPW
dataset. m1: modification of adaptive feature extracting block; m2: modification of
adaptive regression mechanism;m3: modification of rigid regularization.

4.2 Comparison with State-of-the-art

In this section, we compare our method with state-of-the-art on two challenging
datasets. These datasets show large variations in face shape, appearance, and
number of landmarks, which is briefly introduced below. In the experiment,
the average of normalized error of all landmarks and images is reported and
compared. The adaptive regression parameter is set as[2, 2, 3] and the block sizes
(normalized by the length of face size) as [0.24, 0.20, 0.16, 0.12, 0.08, 0.04, 0.02].

Helen (194 landmarks) [6] It contains 2, 330 high resolution, accurately la-
beled face images. In our experiment, we follow the setting in [6]: 2000 images for
training and 330 images for testing. The most discriminative peculiarities that
HENLEN dataset holds are its high resolution and the large number of facial
landmarks.

300 Faces in-the-wild (68 landmarks) [7] It consists of existing datasets
including LFPW[5], AFW [27], HELEN [6], XM2VTS [28] and IBUG. All images
have been re-annotated by 68 landmarks. This dataset shows the largest variation
in pose, expression, illumination, resolution due to cross-database annotation. To
compare with state-of-the-art, we follow the setting in [14] which is dividing the
training data into two parts in our own experiment. The training set is composed
of the whole AFW dataset and the training data from LFPW and HELEN, with
3148 images in total.

The testing set is composed of IBUG and the test sets of HELEN and LFPW,
with 689 images in total. The testing set are also divided into two subsets for
further comparison: 1. the challenging IBUG subset, consisting of IBUG data;
2. the common subset, consisting of the testing sets from HELEN and LFPW.
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Face bounding box is offered at the same time1, produced by their in-house
detector. All images are cropped and normalized into a fixed size of 400 ∗ 400
before operation.

Results Recently, a new approach based on boosted-regression called LBF [14]
has been proposed. The accuracy appears to be the highest in the literature,
outperforming SDM and ESR. Also, its speed is extremely fast. For comprehen-
sive comparison, the performance of LBF is also reported, yet we should note
that the aim of our method is to extend the simple, well-understood but efficient
facial landmark location algorithm SDM.

From results illustrated in Table 2 and 3, we find that ESDM outperforms
SDM by a large margin on all testing sets, again demonstrating the effectiveness
of the modifications we proposed. In general, ESDM achieves comparable result
with LBF.

Observing the average error on HELEN dataset reported in Table 2 alone, the
performance of our method advances state-of-the-art over all. Regression-based
methods[14, 21, 22, 15] significantly outperforms ASM-based[24, 29] approaches,
proving the advantage of the flexible model of iterative alignment. During our
experiment, it is also observed that our approach achieves slightly higher locating
accuracy of certain parts than others, such as the contour of lip and the eyes.
Table 3 illustrates the performance on 300 Faces in-the-wild dataset including
two subsets. Similar to what is done in [15], we experiment on the original SDM
algorithm and obtain results of [7.32, 5.40, 15.32] on the fullset, common subset,
challenging subset respectively. The rates are comparable with those reported
in [15]. Our ESDM method shows superior results over SDM, ESR and LBF
fast and is comparable to LBF. It is worth mentioning that on the common test
subset, under the condition of identical training data, ESDM performs better
than LBF, and we attribute this to the adequacy of training samples. Our method
performs less desirably than LBF on the challenging test subset, mainly due to
the drawback of the initialization mechanism of our method. In Fig. 4 and 5, some
example images and comparison results from the common and the challenging
subsets of 300 Faces in-the-wild are displayed.

5 Conclusion and Discussions

In this paper, we propose three modifications on SDM including: 1) Multi-scale
HOG feature extraction in a coarse-to-fine manner; 2) Global to local regression
of features in cascade; 3) Rigid Regularization applied to obtain more stable
prediction results. Extensive experimental results demonstrate that each of the
three modifications substantially improves the accuracy and robustness of the
traditional SDM method. Furthermore, our method achieves favorable perfor-
mance over most of the other state-of-the-art methods and comparable results

1 http://ibug.doc.ic.ac.uk/resources/300-W



12 Liu Liu, Jiani Hu, Shuo Zhang, Weihong Deng

Table 2. Average error of several algorithm on HELEN dataset, results of other meth-
ods come from corresponding paper.

Method
HELEN

(194 landmarks)

ESDM(Our method) 5.32
SDM[15] 5.85
ESR[22] 5.70
RCPR[21] 6.50
LBF[14] 5.41
LBF fast[14] 5.80
STASM[9] 11.1
CompASM[24] 9.10

Table 3. Error on 300-W(68 landmarks) data sets including two subsets, the result of
SDM and ESR originate from [14].

Method Full set Common Subset Challenging Subset

ESDM(our method) 6.44 4.73 13.92
SDM[15] 7.52 5.6 15.4
ESR[22] 7.58 5.28 17.0
LBF[14] 6.32 4.95 11.98
LBF fast[14] 7.37 5.38 15.5

Fig. 4. Several examples from the Challenging Subset, some results of SDM are shown
in the first row, corresponding results of our method are shown in the second line.
Compared to SDM our method still achieve good performance on these extremely
difficult images with large variation in pose, expression, partial occlusion.

Fig. 5. A comparative result on common subset from 300 Faces in-the-wild.



Extended Supervised Descent Method for Robust Face Alignment 13

with the LBF method, on several challenging face datasets including LFPW,
HELEN and 300 Faces in-the-wild.
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