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Abstract. In this paper we propose to address the problem of 3D object
categorization. We model 3D object as a piecewise smooth Riemannian
manifold and propose metric tensor and Christoffel symbols as a novel
set of features. The proposed set of features captures the local and global
geometry of 3D objects by exploiting the uniqueness and compatibility
of the features. The metric tensor represents a geometrical signature of
the 3D object in a Riemannian manifold. To capture global geometry
we propose to use combination of metric tensor and Christoffel symbols,
as Christoffel symbols measure the deviations in the metric tensor. The
categorization of 3D objects is carried out using polynomial kernel SVM
classifier. The effectiveness of the proposed framework is demonstrated
on 3D objects obtained from different datasets and achieved comparable
results.

1 Introduction

In this paper we propose three dimensional (3D) object categorization of a given
3D object using metric tensor and Christoffel symbols [1–4] with the help of
kernel based support vector machine (SVM) classifier. With the availability of
point cloud data of 3D objects, there is a surge of interest in novel methods for
3D object categorization. Categorization of 3D objects is a challenging problem.
To address this issue we propose a set of features based on metric tensor and
Christoffel symbols. Metric tensor together with Christoffel symbols captures
the unique set of geometric features that are inherent to the 3D object shapes.
The physical or intuitive parameter for an object is surface curvature. However
they directly do not provide the inherent geometry of the 3D object [1–4]. One
of the major challenges lies with the features to consider from the large datasets.
Most of the 3D categorization methods use shapes, features and Bag-of-Words
extracted from certain projections of the 3D objects. However, we propose to
use features extracted from the geometry of 3D objects for categorization. The
categorization of 3D objects finds its applications in the areas of content based
retrieval, object detection, object recognition, and object tracking.

Humans usually are better in generic than in specific recognition, categoriza-
tion is considered to be a much harder problem for computers. Since geometric
features serves as a key for categorization, this influences the performance in
terms of relevance and accuracy of results. Various sets of 3D features consid-
ered in literature for categorization and recognition are spin images [5], 3D shape
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context [6], global or local features [7–9], Point Feature Histogram (PFH) [10]
and the Viewpoint Feature Histogram (VFH)model [11], Aspect Graph approach
[12], spin images combined with other shape and contextual features [13]. In [14]
the Global Structure Histogram (GSH) descriptor is presented to represent the
point cloud information. The GSH represents objects such that it can general-
ize over different poses and views, and cope with incomplete data for correct
categorization of objects. Use of viewpoints in all possible variations to build
the training dataset and unsupervised approach for object categorization could
be expensive during learning model building. In [15] authors propose a learning
model by using a hypothetical 3D object category. Parts (collection of smaller
image patches) of the objects are considered and correspondences between these
parts are based on the appearance and geometric consistency. The final model is
visualized as parts in a 3D graph based of the learned geometric relations. This
approach classifies, localizes and does pose estimation of object in the image.
In [16] authors present the work of multi-view part-based model of [15, 17], via
minimal supervision and detection of objects under arbitrary or unseen poses.
The proposed algorithm requires large number of views in training data in order
to generalize which is an open issue.

In [18] 3D object categorization is introduced based on Bag-of-Words (BoW)
paradigm. The visual vocabulary for bag of words is constructed in a multilevel
way considering different seed regions. Hierarchical clustering is followed at each
level for different region descriptors to obtain Bag-of-Words histograms for each
mesh. Finally, the object categorization is done using one-against-all SVM clas-
sifier [19]. If the region descriptors are not properly clustered to obtain 3D visual
words and if the vocabulary is so large that it could not distinguish between rel-
evant and irrelevant variations may results into wrong categories. In [20] authors
propose a discriminative approach to solve problem of 3D shape categorization.
3D local descriptors are extracted from 3D shapes, quantized using k-means to
obtain 3D visual vocabulary and build a BoW representation. A general 3D Spa-
tial Pyramid (3DSP) decomposition with multiple kernels is used to subdivide a
cube impressed into surface of 3D shape repeatedly and compute weighted sum
of histograms at increasingly fine sub-volumes. In [21] author expresses summary
of categorization methods modeled from 2D images to 3D patch based model. In
[22] author provides object detection from domestic scenes and based on shape
model, categorizes the objects. The shape model is constructed by surface re-
construction method based on Growing Neural Gas (GNG) in combination with
a shape distribution based descriptor. However, the shape ambiguity (eg. bowl
and cup) between categories decreases the discrimination because of object sim-
ilarities under certain perspectives. This requires large number of training data
to be provided for improving the discriminative performance. In our approach
we address the problem of 3D object categorization by proposing metric tensor
and Christoffel symbols as geometric features of the 3D object using point cloud
representation. Towards this we make the following contributions:
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1. We propose metric tensor and Christoffel symbols to represent basic geome-
try of 3D object which are intern used for 3D object categorization: we model
3D objects as a set of Riemannian manifolds and compute the features.

2. We propose framework for categorization of 3D objects using the proposed
set of features, computed on local basis and captures the global geometry.

3. We demonstrate categorization of 3D objects using models obtained from
state of art datasets like SHREC’12 using local patch based classification
[23] and Princeton Shape benchmark dataset [24] using a BoW approach.

The rest of the paper is organized as follows. Section 2 describes the motivation
and proposed approach. The geometric features are detailed in section 3. We
discuss proposed 3D object categorization in Section 4. We demonstrate the
results on 3D object categorization in Section 5. Finally we conclude in Section
6.

2 Motivation and Approach

Differential manifold1

Differential manifold3

Differential manifold2

Fig. 1. The 3D object (bunny) exhibits non-uniformity in the distribution of geomet-
rical properties and hence modeled as a set of Riemannian manifolds.

We model the given 3D object in a Euclidean space as a piecewise smooth
Riemannian manifold. Let V (x, y, z) be a 3D object in the Euclidean space and
is modeled as,

V (x, y, z) 7→ Ψ(M, g) (1)

where M, g represent the Riemannian manifold.
The piecewise smooth Riemannian manifold constitutes a continuous space

and 3D point cloud represented in a Euclidean space is a sampled version of
this continuous space. To capture the inherent geometry in Riemannian space,
we need to model the 3D object as a piecewise smooth Riemannian manifold
to account for the discontinuities in the geometry. A Riemannian manifold is a
smooth construct which alone cannot represent the inherent geometry of the 3D
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object as the 3D object exhibits non-smooth behavior at certain positions due
to non-uniform geometry. Consider the 3D model of a cube, the edge of the cube
represents the transition in geometric properties and constitutes a non-smooth
construct or is a geometric discontinuity. The derivatives for the Riemannian
manifold are not defined at these points and contradicts the definition of a
smooth Riemannian manifold. This necessitates the need of a piecewise smooth
Riemannian manifold.

When we have a unique mapping of 3D Euclidean space to the Riemannian
space, the claim is there exists a unique mapping in the discretized (sampled)
version of the 3D Euclidean space to the Riemannian space. 3D point cloud in
Euclidean space can be represented by a unique discretized piecewise smooth
Riemannian manifold.

Riemannian manifold or Riemannian space (M, g) [2] is a real smooth dif-
ferential manifold M equipped with an inner product gp on the tangent space
at each point p and is given by,

p 7→ gp(X(p), Y (p)) (2)

where the mapping from p 7→ gp is a smooth function with X(p) and Y (p) being
vector fields in the tangent space of the 3D model at point p. The family gp of
inner products is called Riemannian metric tensor.

The 3D object hence is a piecewise smooth differential manifold in which
each tangent space is associated with an inner product which varies smoothly
from point to point. The local geometrical properties of the 3D object can hence
be inferred from the inner product computed on a local tangent plane for the
object.

IfM represents a differential manifold of dimensionality n then a Riemannian
metric [2] on the manifold M is a family of the inner products given by,

gp : TpM× TpM 7→ R|∀p ∈M (3)

where TpM represents the tangent space at each point p on the manifoldM. The
inner product gp on the manifoldM defines a smooth function fromM 7→ R [1,
2]. The definition of Riemannian metric tensor is dependent on the parametriza-
tion technique employed in the tangent plane of the differential manifold. Let
f denote the coordinate function defined on the tangent plane of the manifold
which defines the map f : (x, y, z) 7→ (u, v), where (u, v) defines the parameters
on the tangent plane of the manifold. The parametrization of the manifold can
be obtained by using the inverse map f−1 to obtain the basis functions that can
be used to compute the metric tensor on the manifold. The parametrization on
the manifold is uniquely chosen for all the 3D objects so that the basis functions
defined on the tangent plane are velocity vectors.

Given a Riemannian manifold (M, g) there exists a unique affine connection
∇ on M that is symmetric and compatible with g [2]. The uniqueness of the
affine connection and the compatibility with the metric g is described in Theorem
1.
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THEOREM 1 A Riemannian manifold (M, g) admits precisely one symmetric
connection compatible with the metric. This particular connection is called the
Riemannian connection or the LeviCivitta connection.

The affine connection ∇ is called the LeviCivitta connection if

1. It preserves the metric i.e., ∇g = 0
2. It is torsion free. i.e., for any vector fields X and Y we have,

∇XY −∇YX = [X,Y ] (4)

[X,Y ] is the Lie Bracket [2] of the vector fields X and Y .

The components of the LeviCivitta connection with respect to a system of local
co-ordinates are called Christoffel symbols [2].

The Riemannian metric tensor along with Christoffel symbols for a defined
parametrization of the tangent space constitute unique set of features for a given
3D object. But the definition of Riemannian metric tensor and Christoffel sym-
bols depends on the choice of a co-ordinate system. To overcome this drawback
we define a Cartesian world co-ordinate system in accordance with which we
compute the components of metric tensor and Christoffel symbols. The given
3D objects under consideration are coarsely registered according to a prede-
fined Cartesian world co-ordinate system using a ICP (iterative closest point)
algorithm for 3D registration [25]. For every category of the 3D objects certain
benchmark 3D objects are selected and the rest of the 3D objects are coarsely
registered using the ICP algorithm.

In what follows we address the problem of 3D object categorization using
a supervised learning approach. The input to the categorization framework is
a 3D point cloud obtained either through set of images or from the modeling
tools. The categorization is carried out using a supervised learning approach on
a kernel based SVM framework. The geometric features for the input point cloud
are computed and fed to the SVM. The geometric features used for the learning
framework are metric tensor and Christoffel symbols. These set of features are
used in a kernel based SVM framework for training and testing of the 3D objects.
The testing data fed to the SVM which, after the learning process is able to
classify the 3D object on a local patch basis.

3 Features

Riemannian metric tensor and Christoffel symbols effectively portray the in-
herent geometrical properties for a 3D object due to their compatibility and
uniqueness and hence are best suited as features for categorization of 3D ob-
jects. The metric tensor represents the geometrical signature of the manifold
in the local patch, however this alone may not capture the global geometrical
properties since variations in the local patches are not inherently captured in
the metric tensor. The Christoffel symbols give the numerical measure for the
deviations in the geometrical properties of the manifold in the neighborhood of
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a patch. Hence variations in the modeled geometrical properties using metric
tensor can be effectively captured by Christoffel symbols. The geometrical prop-
erties can quantitatively be represented using the combination of metric tensor
and Christoffel symbols. The metric tensor and Christoffel symbols vary from
point to point for a 3D object and hence can be represented as a mapping from
the co-ordinates on the 3D object to the fields defined by metric tensor and
Christoffel symbols and is given by,

Φ : V (x, y, z) 7→ (g, Γ ) (5)

where Ψ(x, y, z) represents the given 3D object, g and Γ represent the met-
ric tensor and Christoffel symbols. The 3D objects under consideration can be
uniquely represented by the pair of fields (g, Γ ) defined on them.

3.1 Metric Tensor

Geodesic Path

Euclidean Path

Tangent plane

P1

P2

Fig. 2. The shortest distance between the points P1-P2 is computed as the geodesic
distance (orange) on the manifold and is different from the Euclidean distance (green)
between the points due to curvilinear properties of the surface.

Riemannian metric tensor is one of the features used for the classification
of the models in the proposed method. The metric g on a manifold is a second
order covariant tensor field. The metric tensor gµν is a symmetric tensor and in
3-dimensions comprises of 6 independent components. The metric tensor gives
the quantitative measure for the deviation in the manifold from the Euclidean
space. The inner product or the arclength of a curve in the manifold can be
computed with the help of the metric tensor and is given by,

ds2 =

3∑
µ=1

3∑
ν=1

gµνdx
µdxν (6)

where ds2 is the arclength of an infinitesimal curve on the manifold and dxµ,
dxν are the contravariant tangent vectors in the tangent plane of the manifold.
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The deviation in the arclength ds2 from the Euclidean distance function
as shown in Fig. 2, gives a measure of the metric tensor g. To compute the
metric tensor we calculate the arclength ds2 as the geodesic distance between
two neighboring points on a local patch as shown in Fig 3. The geodesic distance
is computed on the 3D point cloud by using Algorithm 1.

Data: Pair of points v1 v2 on the manifold to compute the geodesic distance.
Result: Geodesic distance between the pair of points.
initialization;
do dist ← 0;
k ← 2;
k1← 2;
i← 1;
I1 ← 0;
while v2 /∈ I1 do

I1 ← k-nnsearch(v1,k);
k ← k + 1;

end
while v1 /∈ I2 do

I2 ← k-nnsearch(v2,k1);
k1← k1 + 1;

end
I3 ← I1

⋂
I2;

while i 6= size(I3) do
dist ← dist + EuclideanDistance(I3[i],I3[i-1]) ;
i ← i + 1;

end
Algorithm 1: Geodesic distance computation on a pair of points on a point
cloud.

In matrix notation the relation between the arclength ds and components of
the metric tensor g is given by,

ds2 =
(
dx1 dx2 dx3

)g11 g12 g13g21 g22 g23
g31 g32 g33

dx1dx2

dx3

 (7)

The metric tensor consist of 6 independent components in 3-dimension. To
compute the components of metric tensor a minimum of 6 pair of points are
required for which the geodesic distances has to be computed. The geodesic
distance is computed for 6 pair of points on the tangent plane of the manifold
using Algorithm 1. Equation 7 is used to solve for the components of the metric
tensor by using the 6 geodesic distances and the contravariant vectors dxµ and
dxν in the tangent plane.
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Geodesic path

Euclidean path

Fig. 3. The metric computation for a 3D object is carried out on a local tangent plane
by computing the deviation of the geodesic distance from the Euclidean distance.

3.2 Christoffel Symbols

The Christoffel symbols give a measure of the deviation of the metric tensor
as a function of position. The Christoffel symbols in 3-dimensions comprises of
18 independent components. The relation between metric tensor and Christoffel
symbols is given by,

Γσµν =
1

2

3∑
ρ=1

gσρ{∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ
} (8)

Equation 8 suggests that the computation of Christoffel symbols is dependent
on the first derivative of metric tensor. The derivative operator in non-Euclidean
space does not preserve the tensorial attributes of Christoffel symbols. They pre-
serve the tensorial attributes under certain non-linear transformations. Equation
8 provides a pseudo-tensor which is utilized as one of the features in the proposed
3D object categorization.

The Christoffel symbols are computed from the metric tensor values for every
12 pair of points belonging to two neighboring tangent planes on the manifold.
The computation of the Christoffel symbols for a pair of neighboring tangent
planes is as shown in Fig 4. The Christoffel symbols represent the deviations in
the metric tensor from one tangent plane to another due to the phenomenon of
parallel transport on a curvilinear surface [3, 4].

The explicit geometry of the 3D object is represented by Riemannian curva-
ture tensor which is captured by the combination of metric tensor and Christoffel
symbols [2]. The uniqueness and compatibility of the metric tensor and Christof-
fel symbols as described in Theorem 1 enables us to model the given 3D object
uniquely. Therefore metric tensor and Christoffel symbols can be used as geo-
metrical features for the categorization of 3D objects.
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Deviations in Geometry

Tangent plane2

Tangent plane1

Fig. 4. The computation of Christoffel symbols for a 3D object is carried out on a pair
of neighboring local tangent planes by computing the deviations in the metric tensor
over the tangent planes.

4 Categorization of 3D objects

The categorization of the 3D objects into generic classes is carried out using a
SVM framework with the proposed set of features and is shown in Fig 5. The
proposed set of features are computed for a predefined set of models belonging
to a particular class of objects and are fed to the SVM for learning.

4.1 Learning Framework

The categorization of 3D objects is carried out using a support vector machine
framework [19]. The support vector machine is best suited for the categorization
problem as it maps the features for classification into multidimensional vector
space and supports non-linear kernels for classification. The features used for
the categorization comprise of 24 independent components which are in turn
dependent on the geometrical position of the point over which the features are
computed. The normalization of the features is carried out by utilizing the posi-
tional dependence of the features for the 3D objects. The features for the train-
ing dataset are computed for unit scaled models to compensate for the scale
dependence of the features. In our case we employ the polynomial kernel for the
learning framework in support vector machine as the features, metric tensor and
Christoffel symbols exhibit positional dependence.

The features, metric tensor and Christoffel symbols for the input 3D model
are computed using the proposed method. The features computed are fed to the
SVM framework for categorization of the 3D object using local patch based and
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ata

Testi

SVM FRAMEWORK:

Polynomial Kernel

Animal Building Furniture Household Plant Vehicle

Metric

Tensor

Deviations in Geometry

Christoffel

Symbols

Fig. 5. Overview of the 3D object categorization.

BoW approach. In local patch based approach, the categorization of 3D objects
is carried out into the predefined set of categories on a local patch basis with each
patch comprising of 12 points. In BoW approach, k-means clustering is used for
the proposed set of features on the training dataset to build the vocabulary. The
vocabulary is used to compute the histogram on the proposed set of features.
Based on the local patch or BoW approach SVM classifies the 3D objects into
predefined set of categories.

5 Results and discussions

The effectiveness of the proposed categorization framework is demonstrated on
models obtained from SHREC12 [23] and Princeton Shape Benchmark database
[24] as shown in Fig 6. The algorithm is implemented on Intel(R) Core(TM) i7-
4700MQ processor @ 2.40GHz and 8GB RAM with NVIDIA GeForce GT 755M
graphics. The code is written in Matlab and C using point cloud library (PCL).
We demonstrate the results for categorization of basic 3D objects in Section 5.1
and categorization of 3D objects in Section 5.2.

5.1 Categorization of basic shapes

The categorization framework is initially demonstrated on basic geometrical
models like sphere, cone, cylinder and torus of varied scales. The global geomet-
rical properties for basic shapes like sphere, cone and cylinder can be influenced
from the local geometrical properties. The classification of the models is initially
carried out on a local patch basis. The decision for the global classification of the
model is derived from the results of the classification on the local basis. Table
1 shows the percentage content of each basic geometrical model in the testing
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Princeton 

Shape 

Benchmark 

dataset

SHREC'12 

dataset

Fig. 6. Samples from the SHREC’12 and Princeton Shape Benchmark dataset

models for sphere, cone, cylinder and torus. We obtain an overall classification
success rate of 100% for different scale models for each basic model. We also
obtain an average accuracy of 83.60% for correct content categorization. The re-
sults demonstrates that the local patch exhibits similarity to the global structure
for basic shapes and we make the following observations,

1. From the basic geometry it is clear that sphere exhibits more similarity to
cone than cylinder and torus and is reinforced in the results.

2. Cone exhibits more similarity to cylinder and sphere than torus as cone is
geometrically similar to both sphere and cylinder.

3. Cylinder exhibits more similarity to torus than sphere and cone due to the
positive and null curvature regions in cylinder and torus.

4. Torus model is geometrically very similar to a sphere as it comprises of
positive Gaussian curvature region in the exterior parts.

Table 1. Result for the categorization of basic models with percentage content.

Testing Sphere Cone Cylinder Torus
data set content content content content

Sphere 89.01% 8.73% 0.90% 1.36%

Cone 7.31% 85.19% 6.50% 0.99968%

Cylinder 0.367% 0.027% 91.79% 7.82%

Torus 22.28% 7.04% 2.27% 68.41%

5.2 3D Object Categorization

We demonstrate the results for the categorization of the 3D objects using one-
against-all testing strategy in SVM learning framework. We have used libSVM



12 Syed Altaf Ganihar, Shreyas Joshi, Shankar Setty, Uma Mudenagudi

[26] for the training and testing of the SVM framework. The training and testing
for the SHREC’12 dataset is carried out using local patch based approach with
3rd order polynomial kernel based SVM framework. The SHREC’12 dataset
consists of 20 models in each category. We have used 10 randomly selected models
for training and the rest 10 models for testing. The overall accuracy for the
SHREC’12 dataset is 66.42% measured as MCC (Mean Correct Classification)
[20] for the 5 categories.

The Princeton shape benchmark dataset comprises of 1594 shapes for 6
classes in coarse level two. We have used coarse level two for the evaluation of
the proposed framework for categorization. The subsets for training and testing
proposed in [27] is used for the experimentation of the proposed categorization
framework. The training and testing for the Princeton shape benchmark dataset
is carried out using the BoW approach with K = 200 for the proposed set of
features. The training dataset used for the learning comprises of 807 models and
the rest 787 models are used for testing using 15th order polynomial kernel based
SVM classifier. The overall accuracy for the Princeton shape benchmark dataset
is 67.90% for 6 categories. The confusion matrix for the SHREC’12 dataset and
Princeton shape benchmark dataset is shown in Fig 7.
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Fig. 7. Confusion Matrix for SHREC’12 and Princeton shape benchmark dataset

5.3 Results Comparison

The results for the 3D object categorization framework are carried out using the
state of art datasets like SHREC’12 and Princeton shape benchmark dataset
used by [20]. We compare our results with the results presented by [20] which
uses a similar data set. For BoW approach with K=200 and L=0 the authors
in [20] have achieved 61.43% measured as MCC with 3DSP-χ2 kernel and for
K=1000 and L=1 have achieved an accuracy of 66.31% MCC . With K=200 for
the BoW approach we have achieved an accuracy of 67.90% MCC.
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6 Conclusion

In this paper we have addressed the problem of 3D object categorization. We
have modeled 3D object as a piecewise smooth Riemannian manifold and propose
metric tensor and Christoffel symbols as a novel set of features. The metric
tensor along with Christoffel symbols represents the inherent geometry of the
3D object uniquely in a Riemannian manifold and hence used to represent the
global geometry for the 3D object. The categorization of 3D objects is carried out
using polynomial kernel SVM classifier using proposed set of features with local
patch based approach and BoW approach. We have demonstrated 3D objects
categorization using SHREC’12 dataset and Princeton shape benchmark dataset.
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