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Abstract. In recent years, digital reconstruction of cultural heritage
provides an effective way of protecting historical relics, in which the
modeling of surface reflection of historical heritage with high fidelity
places a very important role. In this paper Gaussian process (GP) re-
gression based approach is proposed to model the reflection properties
of real materials, in which the simulation data generated by the existing
model are both used as the training data and the proof that Gaussian
process model can be used to describe the material reflection. Matusik’s
MERL database is also adopted to perform training and inference and
obtain the reflection model of the real material. Simulation results show
that the proposed GP regression approach can achieve a good fitting of
the reflection properties of certain materials, greatly reduce the BRDF
measurement time and ensure high realistic rendering at the same time.

1 Introduction

Cultural heritage provide very important physical treasure for studying ancient
history, art and development of science and technology. On one hand, the old
history cultural heritage is experiencing considerable damage with the passage
of time, and needs digital protection, so establishing a digital model of cultural
heritage is of great essence. On the other hand, realistic digital display technol-
ogy is needed to spread the cultural relic’s value throughout the world. Precisely
relics’ digital model should include the original 3D information and correct sur-
face texture information. At present, we can use 3D scanners, three-dimensional
modeling software (such as 3DMax, Multi Creator) and many other methods to
construct three-dimensional geometric models. But the complexity of reflection
phenomenon and the high dimension of reflection data makes the technology of
material reflection property acquisition and modeling much more difficult and
has been an important research content for a long time.

The light properties on the surface of materials are determined by the inter-
action between light and objects. The interaction between light and surfaces can
be described by a function of 12 dimensions[1]. In practice, for uniform opaque
materials, ignoring the space and time changing characteristics, the reflectance
function can be simplified as a 4 dimensional bidirectional reflectance distribu-
tion function (BRDF)[1]. BRDF describes the appearance of a material by its
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interaction with light at a surface point and is a function of incident and obser-
vation direction vector. The BRDF is denoted symbolically as f , as shown in
(1).

f(θin, ϕin, θout, ϕout) =
dLr(θin, ϕin; θout, ϕout;Ein)

dEi(θin, ϕout)(sr−1)
[sr−1] (1)

A classical BRDF measurement device is gonioreflectometer[1], which sam-
ples the angular dependency sequentially by positioning a light source and a
detector at various directions. Matusik et al.[2] took images from curved sample
to measure isotropic BRDFs and reduced the measuring times significantly. In
order to reduce the damage to the cultural relic caused by contacting and being
exposed to bright light, measurement times should be reduced. Some researchers
also use little measured data to fit the analytical model to represent BRDFs[4, 8,
7, 12, 5, 13]. But for complex phenomena of reflection, the performance of anal-
ysis models with a single lobe is not very good[11]. It is found that there are
many extraneous information between BRDFs of different incident and output
angles. In this paper, we put forward the method of using Gaussian process,
which is based on Bayesian inference method, to learn the relationship between
BRDFs of different angles and predict BRDFs of new angle in the whole space.
Through the establishment of Gaussian model we can reduce the measurement
times dramatically and get more promising rendering performance.

2 Related work

In order to establish material reflection model and reconstruct the cultural relics
with high sense of reality, we studied different existing methods of BRDF mod-
eling. Analytical BRDF models used for rendering can be divided into three
categories: empirical (i.e., phenomenological) models, physically-based models
and data-driven models. Empirical models such as Phong model[3], the Ward
model[4] and anisotropic Phong model[5] etc. focus on using a specific formula to
match the surface reflection effect and do not consider the physical mechanism
of the light-material interaction explicitly, which makes them concise and the
performance becomes idealistic. Torrance and Sparrow[6] supposed that there
are many small triangle micro-facets on the material surface and used the micro-
facets to describe roughness of the surface. Later, Cook[7] and Blinn[8] improved
the Torrance-Sparrow model, and put forward the Cook-Torrance and Blinn
model respectively.

Based on optical and electromagnetic wave theory, these physical-based mod-
els consider Fresnel effect and the micro-scale geometry of a surface so that they
can describe the roughness of real material surface more effectively. Although
physically-based BRDF models have a stronger theoretical basis than empirical
models, fitting physically-based model parameters to measured BRDF data is
not necessarily easier. Also, the surface approximate assumption can’t represent
the object surface reflection mechanism of different materials exactly, because
not all materials meet this relatively simple hypothesis. Analytical models use
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the sparse sampling of real material acquired by cameras or other optical devices,
and fit the mathematical model by using the method of non-linear optimization.
Addy Ngan et al.[17] used an existing high-resolution data set of a hundred
isotropic materials and computed the best approximation for a variety of ana-
lytical model and got the conclusion that in the analysis of the BRDF modeling
method, the whole optimization computation is very big, and the calculation
result is not very stable.

Another method is to use the measured BRDF data directly in the rendering
process. Data-driven method by Matusik and a sampling method by Lawrence
used this approach[18, 22]. Since these BRDFs come from the measured data
directly, they can preserve the subtleties of the data that may be lost in an an-
alytical model and get very realistic results. The main disadvantage of Matusik
et al.’s data-driven model is that each BRDF is stored separately as a tabulated
data structure which requires about 17 MB memory. There are also some models
combined empirical model or data based analytical model with the surface struc-
ture of materials. Marschner[9] and Sadeghi[10] combined the measured BRDF
data with the surface structure to build a BRDF model to describe cloth or fin-
ished wood. These methods can simulate the appearance of complex highlights
and color shifts which cannot be fully handled by pure analytical models. How-
ever, the main disadvantage of these models is the need to express the structure
of the materials which leads to the description of a specific kind of materials. All
the analytical methods use the exact above procedure to represent the material
reflection properties and in the process part of the reflection information gets
lost.

In recent years, BRDF modeling based machine learning also appeared.
Dong Yue[14] proposed manifold bootstrapping for obtaining high-resolution re-
flectance from sparse captured data to build the BRDF model. Gargan and
Neelamkavil[24] presented a model which uses neural networks for approximat-
ing reflectance functions. Kurt and Cinsdikici[15] introduced a new BRDF model
which uses SOMs and MANs to represent measured BRDF data.

The Gaussian process in machine learning is the generalization of a prob-
ability distribution (which describes a finite-dimensional random variables) to
functions[16, 20]. It does not give a definite function, but a combination of func-
tions with different weights which can describe more complex information[16]. In
addition, computations of Gaussian process required for inference and learning
is relatively easy. Over the last decade, theoretical and practical developments
have made Gaussian processes a serious competitor for real supervised learn-
ing, especially for high dimension and non-linear data. However, we haven’t seen
anyone apply Gaussian process into material reflection properties modeling in
our research. So, in this paper, we introduce Gaussian process model and do
the experiments based on Matusik et al.’s measured BRDFs. By using Gaussian
process to predict, measurement times of BRDF data can be reduced which is
time consuming and causes harm to cultural antiques. Also it can get a good
rendering result with small difference compare to the real scene.
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3 Representing BRDFs

3.1 Gaussian Process Model

Gaussian process[16] defines a probability distribution (which describes a finite-
dimensional random variables) to different functions. The Gaussian process model
of BRDF is completely defined by the mean function and covariance function,
as shown in formula (2).

f(x) ∼ GP
(
m(x), k(x,x′)

)
(2)

The mean function m(x) and covariance function k(x,x′) of a process f(x)
is defined as:

m(x) = E[f(x)] (3)

k(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
(4)

Covariance function specifies the covariance between pairs of outputs f(xi)
and f(xj),

cov(f(xi), f(xj)) = k(xi,xj) (5)

The experiments were carried out using different covariance function[16] (see
section 4) where relatively simple rational quadratic (RQ) function is chosen as
the covariance function. RQ covariance function can be seen as a scale mixture
of squared exponential covariance functions (SE) with different length-scales, as
shown in equation (6) and (7).

kSE(xi,xj) = σ2
sexpexp

(
− 1

2

∑d

k=1

(xi,k − xj,k)2

l2k

)
(6)

where l is the characteristic length-scale, σ2
sexp is signal variance and k is the

dimension of input vector.

kRQ(xi,xj) =

(
1 +

1

2α

∑d

k=1

(xi,k − xj,k)2

l2k

)−α
(7)

with α, l > 0 can be seen as a scale mixture of SE covariance functions with
different characteristic length scales.

The problem of learning in Gaussian process is exactly the problem of finding
suitable properties i.e. parameters for the RQ covariance function. This problem
is described in the next two sections of the paper.
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3.2 BRDF Prediction

Our task is to map from the input light and observation conditions (given by
the angle θin, ϕin, θout, ϕout) to the BRDF values. We denote the vector input as
x = (θin, ϕin, θout, ϕout) and continuous output (target) as y. Given a training
dataset D of n observations, D = {X,y} = {(xi,yi) |i = 1, . . . , n} , we want to
make predictions for new input X∗ that in the whole space. For a new input
points x∗ the output BRDF f∗ with the covariance matrix k(x∗,x∗) is,

f∗ ∼ N(0, k(x∗,x∗)) (8)

if there are n training points and n∗ test points, K(X,X∗) denotes the n × n∗
matrix of the covariances evaluated at all pairs of training and test data. It is
similarly for other matrixes K(X∗, X), K(X,X) and K(X∗, X∗).

In the process of actual measurement the observer cannot access the precise
BRDF value because of the measuring conditions, but only noisy observations
thereof y = f(θin, θout, ϕin, ϕout) + ε = f(x) + ε. Suppose noise follows an
independent, identically distributed Gaussian distribution with zeros mean and
variance ε ∼ N(0, σ2

n). So the prior on the BRDF noisy observations is

cov(y) = K(X,X) + σ2
nI (9)

Then the joint distribution of observed BRDF value and function value is[
y
f∗

]
= N

(
0,

[
K(X,X) + σ2

nI,K(X,X∗)
K(X∗, X),K(X∗, X∗)

])
(10)

By conditioning the joint Gaussian prior distribution on the training data
(observations), the joint prior distribution can be restricted to contain only those
functions agree with the observed data points[16].

f∗
∣∣X,y, X∗ ∼ N(f∗ cov(f∗)

)
(11)

where,

f∗ , E[f∗ |X,y, X∗ ] = K(X∗, X)[K(X,X) + σ2
nI]−1y (12)

cov(f∗) = K(X∗,K∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (13)

In the formula (11), prediction mean f∗ is the output of Gaussian regress
process i.e. the predicted BRDF value.

3.3 Parameters Training

Rusinkiewicz[19] proposed a BRDF parameterization method which changed
the data from the traditional axis β = β(θin, θin, ϕout, ϕout) into new axis β =
β(θh, ϕh, θd, ϕd). In the new system, isotropic BRDFs are independent of ϕh.
The input training data reduced to a three-dimensional vector x = (θh, θd, ϕd)
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and target y is the BRDFs associated with the input x. We resampled the
MERL dataset as Gaussian training data and did Gaussian process training and
inference in new coordinate system.

We use the method of maximizing the marginal likelihood function to de-
termine the hyper-parameters in the covariance, mean function and likelihood
function. The marginal likelihood based on output BRDFs value y is p(y |X ).

p(y |X ) =

∫
p(y |f ,X)p(f |X )df (14)

In Gaussian process the prior is in line with the Gaussian distribution f |X ∼
N(0,K), θ is the hyper-parameters, therefore the logarithms of p(f |X , θ) is

log p(f |X , θ) = −1

2
fT (K)−1f − 1

2
log |K| − n

2
log(2π) (15)

And the likelihood is a factorized Gaussian y |f ∼ N(f, σ2
nI), so

log p(y |X , θ) = −1

2
yT (K + σ2

nI)−1y − 1

2
log
∣∣K + σ2

nI
∣∣− n

2
log(2π) (16)

The partial derivatives of the marginal likelihood is

∂

∂θj
log p(y |X , θ) = − 1

2
yTK−1

∂K

∂θj
K−1y − 1

2
tr
(
K−1

∂K

∂θj

)
=

1

2
tr
(
(ααT −K−1)

∂K

∂θj

) (17)

where α = K−1y, and θ is the hyper-parameters in the covariance, i.e. length
scale l, α and the noise σ2

n. With maximizing the marginal likelihood function of
hyper-parameters, the optimal length scale l, α and the noise σ2

n. are acquired.
After getting the hyper-parameters, the properties of the covariance are deter-
mined and the BRDF’s predicted value and its variance σ̂f∗

2
can be obtained

using formula (9).

4 Experiment and Result Evaluation

In order to verify the feasibility of Gaussian process in BRDF prediction, we
use the current light model to generate discrete BRDF data, and use GP to fit
these examples. Figure 1 shows the BRDF distribution of five different models
(empirical model: Phong[3], Blinn Phong[8], anisotropic model Bank Phong[23]
and physically-based model: Cook Torrance[7], Blinn[8]) under the fixed light
direction and different observation directions. The top row is the ground truth
(generated by current models) and the bottom row is the predicted results by
GP with the training data shown by red stars.
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Fig. 1. Comparison between existing models and the GP regression

To evaluate the BRDF value predicted by Gaussian process quantification-
ally, we use mean absolute error (MAE) and mean-square error (MSE) to mea-
sure the difference between predicted BRDF value and the ground-truth,

σMAE =
1

N

∑N

i=1
|y(i)− y(i)| (18)

σMSE =
1

N

∑N

i=1

(
y(i)− y(i)

)2
(19)

Table 1. Gaussian process prediction error of current models

Phong Bank Phong Blinn Phong Ward Blinn

MAE 1.72E-04 0.0021 8.99E-04 1.18E-04 4.31E-04
MSE 0.0017 0.0167 0.0034 0.0037 0.0038

We can see from Figure 1 and Table 1 that GP can get good fitting and
prediction for the current model. Hence, a conclusion can be made that Gaussian
process can be used for better BRDF prediction of real materials.

For real materials, we test Gaussian process on MERL[18] material database
to test the prediction performance of GP. The measurements of Matusik et
al.[18] provide a dense (90*90*180 for values) sampling of many isotropic BRDFs.
Every material is described by 1458000 BRDFs in tabular form. It acquires
good rendering results compared favorably with real materials, but the main
drawback of these representations is that their size is too large. We also made
experiments on the sampling rate and error relationships using part of BRDF
data to do inference, as shown in Figure 2. With the increase of sampling rate,
the prediction error reduces greatly. Also the corresponding training time will
increase significantly. So for each material, we choose 2.58% (37616 for values) of
BRDF data as the training data, use Gaussian process to learn the relationship
between BRDFs of different angles, and infer the GP model.
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Fig. 2. The prediction error reduces as the increase of sampling rate.

The ground truth (rendered using MERL BRDF data directly) and the GP model
result of the material “Cherry-235” is shown by Disney’s BRDF explorer[21] in Figure
3. A Terra Cotta Warriors model are lighted by a point light (a) and an environment
map (b). The top row is the MERL rendering result and the bottom row shows the
result of the proposed work. From left to right, the first column is the rendering results
by point lighting, the second column is rendering results based on image lighting and
the third is the image slices.[21]

(a)Point light (b)Image based light (c)ϕd = 90 Image slice

Fig. 3. The MERL and Gaussian process prediction rendering results of “Cherry-235”.
(By using only 2.58% of the MERL datasets, the proposed work attains almost the
same rendering performance.)
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ϕd = 90 image slice is a method to visualize the BRDF features proposed
by Brent Burley et al[21]. All of the interesting features of materials are visible
in the ϕd = 90 image. By comparing the BRDF image slices, we can see the
difference between predicted and true BRDF value intuitively. Figure 4 shows
the schematic view of the image slice and six image slices of materials. The ma-
terials include painting, rubber, plastic, fabric, etc. and use RQ as the Gaussian
process’s covariance.

Fig. 4. The BRDF image slices. All of the interesting features of materials such as
diffuse, specular Fresnel peak and retro-reflection is visible in the ϕd = 90 image. The
figure shows the different between ground truth and predicted values of six materials.

Figure 3(c) and Figure 4 shows that usually the upper left corner of the slice
is the difference between the ground truth and the predicted results, which is
near to the specular and Fresnel peak. One reason for such a case is that, BRDF
changes dramatically near the specular and Fresnel peak but in the proposed
work we choose the same sampling interval for different angles. Increasing the
density of sampling near the angles of specular and Fresnel can modify this
problem, but as a drawback this will increase the computational complexity of
the covariance matrix.

The rendering results of the proposed work are shown in the Figure 5, where
the Gaussian process can get good results under both point lighting and image
lighting. It is difficult to distinguish the difference between ground truth and
GP regression results with the naked eye. So we calculate the pixel difference
value between them by using 1-b/a (a, b are the pixel values of two point light
image, respectively). The difference of figure 5(a) and figure 5(b) is much smaller
than the difference of point light image, we did not show them) and show the
distribution in Fig.5 (e). As Fig.5 (e) shows, the difference is under 5% of true
BRDF rendering value.

As the visual effect of the rendering results depends on people’s psycholog-
ical perception, there is still no unified standard to measure. Since PSNR is
an objective criterion for evaluation of image, we use peak signal to noise ratio
(PSNR) to evaluate the image of object model rendered by predicted BRDF and
the ground truth.
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PSNR = 10 ∗ log
( (2n − 1)2

MSE

)
(20)

where, MSE is the mean square error between the original image and process
images.

(a)our result (b)ground truth (c)our result (d)ground truth (e)difference

Fig. 5. GP regression results of 6 different materials (red plastic, purple paint, blue
rubber, blue melic, silver paint, violet rubber) under the image based light (a) (b) and
point light (c) (d). (e) Pixel difference value between ground truth and proposed work.

Table 2 gives the different error analysis of these 6 materials. The repre-
sentations error of these 6 materials with RQ covariance is very small and our
PSNR is much higher than other methods (Phong: 32.09, Blinn-Phong: 30.97,
Cook-Torrance: 32.98, Murat Kurt: 52.12)[15].

Covariance functions are used to describe the relationship between different
outputs. Also we experimented using different covariance function and their com-
bination[16](formula 6,7 and 22), this is the reason that we chose the rational
quadratic (RQ) function with little error to be the covariance function in section
3.1.

Matern class function (Matern)
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Table 2. Gaussian process prediction error of different materials

red plastic purple paint blue rubber blue melic silver paint violet rubber

MAE 0.0144 0.0048 0.0049 0.0028 0.0124 0.0054
MSE 0.0375 0.0248 0.0259 0.0212 0.0345 0.0253
PSNR 62.3924 64.1940 63.9993 64.8764 62.7547 64.0961

kν(xi,xj) = σ2
m

21−ν

Γ (ν)
(
√

2νr)νKν(
√

2νr) (21)

where, r =

(∑d
k=1

(xi,k−xj,k)
2

l2k

) 1
2

. ν is used to control the roughness of

process, and Kν is the modified Bessel function.

Table 3. Gaussian process prediction error with different covariance

Error Gaussian Process Prediction Error

RQ SE Matern Matern+SE Matern+RQ RQ+SE

σMAE 0.0134 0.0156 0.0122 0.0800 0.0187 0.0205
σMSE 0.0830 0.0875 0.0837 0.4527 0.0992 0.1078
PSNR 54.4767 50.2725 52.6951 36.1594 57.2624 52.9558

5 Future Work

In the proposed work, Gaussian process is used to predict real BRDFs. The
experiments show that the error of prediction is small, the peak signal to noise
ratio of the rendering image is high and the results can satisfy the demand of
practical application.

Using Gaussian process based on Bayesian method can not only achieve accu-
rate prediction but also reduce the complexity and time consumption of BRDF
measurement procedure. However, a significant problem with Gaussian process
used in BRDF prediction is that for large data processing problems both stor-
ing the Gram matrix and solving the associated linear systems are prohibitive
on modern workstations. Also, the training process of GP is time-consuming
and the learning process is done offline now. With the ascension of computer
hardware technology and improvement of the algorithm, real-time calculation is
promising to realize.

In this paper, we only considered the isotropic homogeneous materials whose
reflection properties is not supposed to change with spatial location. As a four
dimensional function, although BRDF describes the illumination properties of
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different view and light direction on the materials surface, it can only describes
the reflection law of homogeneous material. For some uneven material surface
of cultural relics, there will be self-occlusion, self-shadow, occlusion and other
complicated visual effects. BTF (Bidirectional texture function) can not only
capture the changes in light properties along with the light and view direction
but also capture the sampling location. In future, we will focus on the research
of non-homogeneous relic’s material and BTF representations.
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