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Abstract. 3D mesh data acquisition is often afflicted by undesirable mea-
surement noise. Such noise has an aversive impact to further processing
and also to human perception, and hence plays a pivotal role in mesh pro-
cessing. We present here a fast saliency-based algorithm that can reduce
the noise while preserving the finer details of the original object. In order
to capture the object features at multiple scales, our mesh denoising al-
gorithm estimates the mesh saliency from Gaussian weighted curvatures
for vertices at fine and coarse scales. The proposed algorithm finds wide
application in digitization of archaeological artifacts, such as statues and
sculptures, where it is of paramount importance to capture the 3D surface
with all its details as accurately as possible. We have tested the algorithm
on several datasets, and the results exhibit its speed and efficiency.

1 Introduction

Mesh denoising is an imperative preprocessing technique for improving meshes
containing noise that creeps in during the process of data acquisition and subse-
quent digitization process. It aims at improving the quality of the reconstructed
surface by producing a mesh with better perceptual features. So, it involves
removal of noise while retaining most of the original features present in the
object, and hence should be robust in nature. An important aspect of a denois-
ing algorithm is to adjust vertex positions without any feature disintegration.
The time taken to accomplish the entire process is also one of the important
considerations, especially if real-time interactive mesh processing is required.
The entire process is iterative, where the number of iterations actually depend
on the amount of smoothness required with minimum degradation of the ac-
tual content. Low-level human visual perception plays an indispensable role
in objective evaluation of geometric processing like denoising. Incorporating
perceptuality in mesh denoising analogous to image filtering can improve the
processing of the meshes. The requirement of quality graphical mesh and their
usage in multidisciplinary applications such as digital heritage, explain the
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essence of employing the concept of human perception into mesh processing.
Mesh saliency, as introduced in [1], gives a measure of regional importance,
especially for 3D mesh. It can be integrated into graphics applications, such
as mesh denoising, mesh simplification, shape matching, and segmentation.
Saliency captures features of an object at multiple scales, since what seems in-
teresting at one scale may not remain the same at other scales. It consequently
reveals the difference between the vertex and its surrounding context. Various
mesh processing methods can be modified to accommodate saliency into the
process so that visually salient features can be preserved into the mesh.

1.1 Existing Work

The classical Laplacian smoothing method [2, 3] is the simplest surface smooth-
ing method for noise removal. However, it over-smooths the mesh and also
causes surface shrinkage. Kernel based Laplacian smoothing method proposed
in [4] tries to overcome the problem of classical Laplacian approach. There are
various anisotropic filtering approaches which vary on the technique used to
preserve prominent features. Some algorithms are geometric diffusion based
anisotropic method [5–7]. The other class of algorithms comprise both normal
update and vertex update for the purpose of denoising [8–10]. Various meth-
ods traditionally used for image denoising have been extended to point cloud
denoising as well as mesh denoising. Bilateral filter [11] is one such prominent
method that has proved to be an effective edge-preserving filter. The earlier
work by Fleishman et al. [12] and Jones et al. [13] focused on modifying the
vertex position by a suitable weighted function based on spatial difference as
well as normal difference. Yagou et al. proposed mesh denoising based on alpha
trimming [14] along with mean, median method [9]. Sun et al. [15] proposed
an iterative algorithm of filtering noisy normals and then updating each ver-
tex position based on this modified normal following least square criterion.
The recent work of Zheng et al. [16] emphasizes on both local iterative scheme
and global non-iterative scheme of mesh denoising. Unlike previous methods
of processing normals, it considers normals as a surface signal defined over
the original mesh. It also presents comparative analysis of such scheme under
different constraints like runtime as well as robustness. Denoising can also be
accomplished by considering the point cloud without any mesh representation.
The central idea behind such methods is to denoise the points and then trian-
gulate those denoised points to obtain a reconstructed denoised surface. [17],
[18] are some of the techniques on point cloud denoising. A different approach
based on L0 minimization is undertaken in [19] for mesh denoising. L0 norm is
used to preserve sharp features and smooth the remaining surface.

The concept of saliency has been studied for images to determine salient
image location in [20]. Itti et al.[21] computed a saliency map from the infor-
mation based on center-surround mechanism. Saliency based methods using
the concept of [21] have been used in [22] for computing the saliency map
of a 3D dynamic scene. The idea described in [23] has been used to find 3D
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Fig. 1: Proposed denoising process based on saliency.

surface [24] by smoothing noisy data. A user study that compares the previ-
ous mesh saliency approach with human eye movements is discussed by Kim
et al. [25]. The experimental result discussed in [25] describes the fact that mesh
saliency can model human eye movements comparatively better than what can
be expected purely by chance. The idea of using only local features or locally
prominent salient regions for computing the saliency of a 3D mesh surface is
outperformed in [26]. It incorporates the methodology of not only local contrast
but even global rarity by defining global saliency on each vertex depending on
its contrast with all other vertices.

1.2 Our Work

Our proposed method for mesh denoising is similar to the one followed for
denoising in [27] with some modifications. In [27] saliency [1] is combined
with contextual discontinuities [10]. In [10], an adaptive smoothing is used to
denoise a 2D image, incorporating both inhomogeneity and spatial gradient.
Inhomogeneity reveals the incoherence between a pixel and its surrounding
pixels. The proposed method also takes mesh saliency into consideration by
using curvature as a geometric feature of the object. The saliency value for a
vertex is high if it is a salient point and vice versa. The Gaussian weighted
average of the principal curvature estimated at each point (vertex) around a
neighborhood is considered as a suitable weight function with the weight being
amplified depending on certain algorithmic criteria. Curvature of each point
v on the surface is computed, and the largest absolute value of the principal
curvature is considered for the process, as follows.

κ(v) = max(|κmax(v)|, |κmin(v)|) (1)

where, κmax(v) and κmin(v) denote peak convex and peak concave curvatures
respectively.
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2 Proposed Method

Figure 1 presents a block diagram of the proposed method on mesh denoising.
Its various stages are briefly explained in this section.

2.1 Curvature Estimation

The method of curvature estimation is based on [28]. It is one of the efficient and
widely used techniques for estimating curvature of a 3D dataset. Initially, for
all points in the dataset, normals are computed. Then, by principal component
analysis (PCA) of these normals, the maximum and the minimum principal
curvatures for all data points are obtained.

2.2 Neighborhood Determination and Weight Computation

We consider a distance based threshold as opposed to ring neighborhoods used
by [27]. We determine the neighborhood of each vertex (point) of the mesh using
kd-Tree based ANN algorithm provided by the Point Cloud Library (PCL) [29].
Let the neighborhood N2(v, δ) for a vertex v be the set of vertices within a distance
δ, measured in L2 norm. That is, N2(v, δ) = {x : ‖x − v‖ < δ}, where x denotes a
mesh vertex. The Gaussian-weighted average of the principal curvature is given
by

G (κ(v), δ) =

∑
x∈N2(v,2δ)

κ(x) exp
(
−‖x − v‖2

2δ2

)
∑

x∈N2(v,2δ)

exp
(
−‖x − v‖2

2δ2

) (2)

where, κ(x) is the absolute value of principal curvature, and N2(v, 2δ) denotes
the neighborhood of a vertex v within a distance 2δ. The value δ is the standard
deviation of the Gaussian filter. To incorporate the saliency feature, different
values of δ are considered to incorporate the idea of multiple resolutions, which
in turn, captures the important features of the object at all perceptually mean-
ingful scales.

2.3 Saliency Computation

The mesh saliency that tends to capture the most prominent features at multiple
scales is estimated as

Sk(v) = |G(κ(v), δk) − G(κ(v), δk+1)| (3)

where, Sk(v) is the saliency value of a vertex v at a scale δk w.r.t. the next scale
δk+1. The difference between the two captures the importance of saliency of
a vertex v at two successive scales. The scales used in our method are from
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{kε : 1 ≤ k ≤ 6}, where ε = χ ¯‖e‖ is considered as a multiple of the average edge
length ¯‖e‖ of the mesh

The coarseness factor χmultiplied with ¯‖e‖ to obtain ε is a parameter supplied
manually, depending on the object to be denoised, and we have found values in
the range 1–4 to be most effective. For a high value of χ, the finer details are lost,
whereas a low value of χ can capture the finer details. The saliency of a vertex
is finally estimated as the average of its saliency values computed at different
scales, in accordance with the following equation.

S(v) =
1

ns − 1

ns−1∑
k=1

Sk(v) (4)

where, ns is the number of scales used (6 in our experiments).

2.4 Weight Update

The maximum saliency, Smax(v), and the minimum saliency, Smin(v), are com-
puted for all mesh vertices, and then the saliency value of each vertex S(v) is
normalized for adaptive smoothing. The normalized saliency value is given by

S̃(v) =
S(v) − Smin(v)

Smax(v) − Smin(v)
. (5)

A high saliency value usually corresponds to a surface feature. In other
words, vertices with higher saliency values maintain their sharp features during
denoising. Hence, we choose a value β such that all saliency values greater than
β are amplified, while the rest do retain the original. We choose β in the saliency
interval of 60-80th percentile; in most the cases, β is considered as the 80th
percentile of the saliency value, while the amplifying factor λ is selected in the
range 4–10. As a result, the normalized saliency obtained in Eqn. 5 is finally
modified as per the following equation.

S̃(v) =

{
λS̃(v) if S̃(v) ≥ β
S̃(v) otherwise (6)

2.5 Vertex Update

To denoise the mesh, we recompute the position of each vertex in the mesh. This
step involves causing a vector displacement to each vertex. We begin by con-
sidering a neighborhood within a distance δ around the vertex, and determine
the centroid of the concerned neighborhood. We then compute the centroid
normal C and the point normal P (mapped vector difference between the cen-
troid and the respective point). The mapped normal overcomes the anomaly of
using the true point normal as described in paper [17]. The vertex is replaced
by the weighted average computed around the neighborhood of that vertex.
The weight function is Gaussian in nature with P j · C as the variable, and the
saliency value from Eqn. 6 as the scale.
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(a) (b) (c)

Fig. 2: (a) Meduse original surface (b) Noisy (Gaussian) surface (c) Denoised
surface

Fig. 3: (a) Buddha laser scanned surface (b) Denoised Buddha surface

3 Results and Discussion

The algorithm is tested on various datasets acquired by our system as well as
data available from standard databases [30, 31]. The user-defined parameters λ
is used for amplifying the saliency value so that features are preserved during
smoothing. In majority of the dataset, only one iteration of denoising is used to
ensure that the object does not get over-smoothed and blurry. Figure 2 illustrates
the effect of denoising on a surface corrupted by Gaussian noise. The parameters
used is λ = 4. The object shown in Figure 4 is of a column of a temple. The
result obtained for this object shows another instance of the effectiveness of
the algorithm in denoising an object while preserving its features. The user-
defined parameters in this case is λ = 5. The Buddha dataset obtained using our
own scanner without any synthetically added noise also responds effectively to
denoising process, as shown in Figure 3. The parameters used for denoising in
this case are the same used for the result shown in Figure 2.
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(a) (b) (c)

Fig. 4: (a) Column surface (b) Noisy (Gaussian) surface (c) Denoised surface

(a) (b) (c) (d) (e)

Fig. 5: (a) Noisy surface (b) Laplacian
(c) Fleishman bilateral Filter (d) Normal filtering (e) Denoised (Saliency-based) surface

3.1 Comparative Analysis

The quantitative evaluation as well as the objective evaluation based on per-
ceptual metric can be used for comparing the results, albeit the focus is on
quantitatively evaluating the outputs of different denoising method. The quan-
titative evaluation is based on root mean square (RMS) error method. It takes
into consideration the correspondence among the vertices of the two objects un-
der comparison, and hence it is limited to the comparison between two meshes
sharing the same connectivity. The quantitative error is estimated as
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(a) (b) (c) (d) (e)

Fig. 6: Various denoised (Column dataset) output (a) Noisy surface (b) Laplacian
surface (c) Bilateral filtered surface (d) Normal filtered surface and (e) Saliency
surface (proposed method)

Error(A,B) =
1
n

n∑
i=1

∥∥∥vA
i − vB

i

∥∥∥1/2
(7)

where, n is the number of vertices of the mesh, vB
i is the vertex of denoised mesh

B, and vA
i is its corresponding vertex in the original mesh A.

A comparison of the proposed method with some of the existing mesh-
denoising algorithms is presented in Figure 5. The parameters of the existing
methods have been tuned to generate the best possible outputs. The Laplacian
method, as shown in Figure 5(b), almost smooths the surface, hence degrading
its features. Fleishman bilateral filter extends the concept of 2D bilateral filter to
3D mesh denoising. The result shown in Figure 5(c) is able to preserve details
to some extent but takes considerable amount of time to denoise the mesh. The
Normal filtering technique (Sun et al.) requires a large number of iterations ini-
tially for the task of normal update and also for vertex update, hence increasing
the runtime for denoising. However, the details of the object remain intact to
a large extent. The output shown in Figure 5(d) required ten normal iterations
and fifteen vertex iterations to complete the denoising process. The result in
Figure 6 shows the comparison on Column data with some existing methods.
Table 1 presents a comparison of the proposed method with some of the existing
algorithms in terms of quantitative error and also with respect to the execution
time of the denoising process.
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Table 1: Performance analysis
Algorithms Data (vertices) Error (Ev) Time (in secs)

Laplacian smoothing
Column (480932) 2.28 × 101 18

Meduse (358904) 6.66 × 10−3 14

Bilateral filter (Fleishman et al.)
Column (480932) 2.26 × 101 13752

Meduse (358904) 6.68 × 10−3 11356

Normal filtering (Sun et al.)
Column (480932) 2.24 × 101 385

Meduse (358904) 6.51 × 10−3 215

Saliency based denoising
Column (480932) 2.21 × 101 261

Meduse (358904) 6.32 × 10−3 203

4 Conclusion

The proposed technique based on mesh saliency is suitable for denoising due
to its simplicity, execution speed, and ability to retain the originality of the
object while removing the noise. It comes up with a significantly low error rate
on different datasets, although its execution is quite fast compared to some
of the existing methods. Its fast execution time merits its readiness to larger
datasets with archaeological artifacts of historical importance, such as statues,
sculptures, monuments, and temple structures.
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